############################################################
## Multinomial logit data analysis example : Travel types ##
############################################################

# People in the US make travel choices among ‘short domestic’, ‘long domestic’ and ‘international’
# Outcome variables: short domestic vs. long domestic vs. international
# Predictors: social economic status (categorical) and sensitivity to new environment (continuous; inversely coded)
# The number of observation is 200

# Response variables: Program choice
  # international is the reference category, j = 0
  # short domestic is the j = 1 category
  # long domestic is the j = 2 category

# Explanatory variables
  # sensitivity to new environment: continuous variable X1
  # Social economic status (ses): categorical variable
    # ses low  
    # ses middle  
    # ses high  
  # gender: categorical variable
    # gender female  
    # gender male

# Load packages
require(foreign)
## Loading required package: foreign
require(nnet)
## Loading required package: nnet
require(ggplot2)
## Loading required package: ggplot2
require(reshape2)
## Loading required package: reshape2
# Read data
travel <- read.csv(file = "C:/Users/ehk994/Desktop/Teaching/Fall 2021/IMC465_Marketing Model II/Week 3 - Advanced choice data model/travel.csv", sep=",")

str(travel)
## 'data.frame':    200 obs. of  4 variables:
##  $ gender     : chr  "male" "female" "female" "female" ...
##  $ ses        : chr  "low" "middle" "high" "low" ...
##  $ travel     : chr  "longDom" "shortDom" "longDom" "longDom" ...
##  $ sensitivity: int  35 33 39 37 31 36 36 31 41 37 ...
travel$gender <- as.factor(travel$gender)
travel$ses <- as.factor(travel$ses)
travel$travel <- as.factor(travel$travel)
## Description of Data
with(travel, table(ses, travel))
##         travel
## ses      international longDom shortDom
##   high              42       7        9
##   low               19      12       16
##   middle            44      31       20
with(travel, do.call(rbind, tapply(sensitivity, travel, function(x) c(M = mean(x), SD = sd(x)))))
##                      M       SD
## international 56.25714 7.943343
## longDom       46.76000 9.318754
## shortDom      51.33333 9.397775
## Set reference level
travel$travel <- relevel(travel$travel, ref = "international")
travel$ses <- relevel(travel$ses, ref = "low")
travel$gender <- relevel(travel$gender, ref = "male")
## Run multinomial model
travelml <- multinom(travel ~ ses + gender + sensitivity, data = travel)
## # weights:  18 (10 variable)
## initial  value 219.722458 
## iter  10 value 179.062277
## final  value 178.858982 
## converged
summary(travelml)
## Call:
## multinom(formula = travel ~ ses + gender + sensitivity, data = travel)
## 
## Coefficients:
##          (Intercept)    seshigh  sesmiddle genderfemale sensitivity
## longDom     5.949238 -0.8192132  0.4068942  -0.60630493 -0.12456991
## shortDom    2.933717 -1.1472828 -0.5189852  -0.07993732 -0.05896894
## 
## Std. Errors:
##          (Intercept)   seshigh sesmiddle genderfemale sensitivity
## longDom     1.291404 0.6070211 0.4863972    0.4225750  0.02390876
## shortDom    1.257426 0.5229032 0.4506561    0.3967909  0.02236772
## 
## Residual Deviance: 357.718 
## AIC: 377.718
## Odds (relative risks) 
# Exponentiate the coefficients to get risk ratios
exp(coef(travelml))
##          (Intercept)   seshigh sesmiddle genderfemale sensitivity
## longDom    383.46115 0.4407783 1.5021452    0.5453623   0.8828765
## shortDom    18.79737 0.3174983 0.5951242    0.9231742   0.9427361
## z test statistics to find p-values
z <- summary(travelml)$coefficients/summary(travelml)$standard.errors
z
##          (Intercept)   seshigh  sesmiddle genderfemale sensitivity
## longDom     4.606800 -1.349563  0.8365472   -1.4347865   -5.210220
## shortDom    2.333114 -2.194063 -1.1516214   -0.2014595   -2.636341
## 2-tailed z test: p-values
p <-  2*pnorm(-abs(z))
p
##           (Intercept)    seshigh sesmiddle genderfemale  sensitivity
## longDom  4.089138e-06 0.17715618 0.4028472    0.1513479 1.886167e-07
## shortDom 1.964219e-02 0.02823085 0.2494767    0.8403393 8.380543e-03
## Predicted probabilities for each of the outcome levels (each obs)
head(pp <- fitted(travelml))
##   international   longDom  shortDom
## 1     0.1206750 0.5913409 0.2879841
## 2     0.1311413 0.6753940 0.1934647
## 3     0.4408788 0.3155332 0.2435880
## 4     0.1983698 0.4132199 0.3884103
## 5     0.1079086 0.7129739 0.1791175
## 6     0.2761470 0.5266003 0.1972527
## Fitted probabilities
# 'sensitivity' at its mean
mean(travel$sensitivity)
## [1] 52.775
## Probability varying the levels or values of each variable
dwrite <- data.frame(ses = rep(c("low", "middle", "high"), each = 82), gender = rep(c("male", "female"), each = 41), sensitivity = rep(c(30:70),
    3))

# store the predicted probabilities for each value of ses and write
pp.write <- cbind(dwrite, predict(travelml, newdata = dwrite, type = "probs", se = TRUE))

lpp <- melt(pp.write, id.vars = c("ses", "gender", "sensitivity"), value.name = "probability")
head(lpp)  # view first few rows
##   ses gender sensitivity      variable probability
## 1 low   male          30 international  0.07496222
## 2 low   male          31 international  0.08273639
## 3 low   male          32 international  0.09116656
## 4 low   male          33 international  0.10028246
## 5 low   male          34 international  0.11011088
## 6 low   male          35 international  0.12067501
## Calculate the mean probabilities within each level of ses
by(pp.write[, 4:6], pp.write$ses, colMeans)
## pp.write$ses: high
## international       longDom      shortDom 
##     0.6050407     0.2206906     0.1742688 
## ------------------------------------------------------------ 
## pp.write$ses: low
## international       longDom      shortDom 
##     0.4056048     0.2666280     0.3277672 
## ------------------------------------------------------------ 
## pp.write$ses: middle
## international       longDom      shortDom 
##     0.4248199     0.3788666     0.1963135
## Likelihood ratio test 1
# with 'gender' vs without 'gender'
# model
mod2 <- multinom(travel ~ ses + gender + sensitivity, data = travel)
## # weights:  18 (10 variable)
## initial  value 219.722458 
## iter  10 value 179.062277
## final  value 178.858982 
## converged
logLik(mod2)
## 'log Lik.' -178.859 (df=10)
# Nested model
mod <- multinom(travel ~ ses + sensitivity, data = travel)
## # weights:  15 (8 variable)
## initial  value 219.722458 
## iter  10 value 179.982880
## final  value 179.981726 
## converged
logLik(mod)
## 'log Lik.' -179.9817 (df=8)
# Degree of freedom
df <- length(coef(mod2)) - length(coef(mod)) 
df
## [1] 2
# Test statistics and p-value
teststat<--2*(as.numeric(logLik(mod))-as.numeric(logLik(mod2)))
teststat
## [1] 2.245489
pchisq(teststat,df=2,lower.tail=FALSE)
## [1] 0.3253855
## Likelihood ratio test 2
# with sensitivity vs without sensitivity
# model
mod2 <- multinom(travel ~ ses + gender + sensitivity, data = travel)
## # weights:  18 (10 variable)
## initial  value 219.722458 
## iter  10 value 179.062277
## final  value 178.858982 
## converged
logLik(mod2)
## 'log Lik.' -178.859 (df=10)
# Nested model
mod <- multinom(travel ~ ses + gender, data = travel)
## # weights:  15 (8 variable)
## initial  value 219.722458 
## iter  10 value 195.534775
## final  value 195.520828 
## converged
logLik(mod)
## 'log Lik.' -195.5208 (df=8)
# Degree of freedom
df <- length(coef(mod2)) - length(coef(mod)) 
df
## [1] 2
# Test statistics and p-value
teststat<--2*(as.numeric(logLik(mod))-as.numeric(logLik(mod2)))
teststat
## [1] 33.32369
pchisq(teststat,df=2,lower.tail=FALSE)
## [1] 5.805666e-08
#vReject H0: keep ses in the model
############################################################
## Ordered logit data analysis example 1: Wine repurchase ##
############################################################
# Number of obs: 400

# Response variable Y: “How likely will you purchase a certain wine?”
  # high probability
  # medium probability, and 
  # low probability

# Predictors:  
  # coupon: yes (1), no (0)
  # peers: yes (1), no (0)
  # quality: quality rating by experts from zero to five

## Load packages
require(foreign)
require(ggplot2)
require(MASS)
## Loading required package: MASS
require(Hmisc)
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Warning: package 'survival' was built under R version 4.1.1
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
require(reshape2)

## Read data
coupon <- read.csv(file='C:/Users/ehk994/Desktop/Teaching/Marketing Model II/4 - Ordered and conditional logistic/Ordered logit/class_example_coupon_data.csv', stringsAsFactors = F, header=T, na.strings=c("","NA"))
## Look at the first few lines
head(coupon)
##   Number          rpurchase coupon peers quality
## 1      1   high probability      0     0    3.25
## 2      2 medium probability      1     0    3.20
## 3      3    low probability      1     1    3.93
## 4      4 medium probability      0     0    2.80
## 5      5 medium probability      0     0    2.52
## 6      6    low probability      0     1    2.58
## Range, mean and sd of quality
range(coupon$quality)
## [1] 1.89 3.99
summary(coupon$quality)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.890   2.710   2.980   2.989   3.260   3.990
sd(coupon$quality)
## [1] 0.3979409
## Frequencies
# one at a time, table rpurchase, coupon and peers
lapply(coupon[, c("rpurchase", "coupon", "peers")], table)
## $rpurchase
## 
##   high probability    low probability medium probability 
##                 40                220                140 
## 
## $coupon
## 
##   0   1 
## 337  63 
## 
## $peers
## 
##   0   1 
## 343  57
# Three way cross tabs
ftable(xtabs(~ rpurchase + coupon + peers, data = coupon))
##                           peers   0   1
## rpurchase          coupon              
## high probability   0             20   7
##                    1             10   3
## low probability    0            175  25
##                    1             14   6
## medium probability 0             98  12
##                    1             26   4
# Boxplot
ggplot(coupon, aes(x = rpurchase, y = quality)) +
  geom_boxplot(size = .75) +
  geom_jitter(alpha = .5) +
  facet_grid(coupon ~ peers, margins = TRUE) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))

## Fit ordered logit model and store results 'm'

# Recode the y variables
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:Hmisc':
## 
##     src, summarize
## The following object is masked from 'package:MASS':
## 
##     select
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
coupon$rpurchase2<-recode(coupon$rpurchase, "low probability" = 1, "medium probability" = 2, "high probability" = 3)

coupon$rpurchase2 <- as.factor(coupon$rpurchase2)

m <- polr(rpurchase2 ~ coupon + peers + quality, data = coupon, Hess=TRUE)

# We specify Hess=TRUE to have the model return the observed information matrix from optimization (called the Hessian) which is used to get standard errors.

## View a summary of the model
summary(m)
## Call:
## polr(formula = rpurchase2 ~ coupon + peers + quality, data = coupon, 
##     Hess = TRUE)
## 
## Coefficients:
##            Value Std. Error t value
## coupon   1.04770     0.2658  3.9419
## peers   -0.05881     0.2979 -0.1975
## quality  0.61597     0.2606  2.3633
## 
## Intercepts:
##     Value   Std. Error t value
## 1|2  2.1978  0.7770     2.8287
## 2|3  4.2933  0.8018     5.3546
## 
## Residual Deviance: 717.0249 
## AIC: 727.0249
## p-values
(ctable <- coef(summary(m)))
##               Value Std. Error    t value
## coupon   1.04770355  0.2657895  3.9418551
## peers   -0.05881433  0.2978621 -0.1974549
## quality  0.61596621  0.2606343  2.3633348
## 1|2      2.19783331  0.7769700  2.8287234
## 2|3      4.29328052  0.8017936  5.3545958
## calculate and store p values
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
p
##       coupon        peers      quality          1|2          2|3 
## 8.085382e-05 8.434716e-01 1.811130e-02 4.673406e-03 8.574790e-08
## combined table
(ctable <- cbind(ctable, "p value" = p))
##               Value Std. Error    t value      p value
## coupon   1.04770355  0.2657895  3.9418551 8.085382e-05
## peers   -0.05881433  0.2978621 -0.1974549 8.434716e-01
## quality  0.61596621  0.2606343  2.3633348 1.811130e-02
## 1|2      2.19783331  0.7769700  2.8287234 4.673406e-03
## 2|3      4.29328052  0.8017936  5.3545958 8.574790e-08
(ci <- confint(m)) # default method gives profiled CIs
## Waiting for profiling to be done...
##              2.5 %    97.5 %
## coupon   0.5281767 1.5721750
## peers   -0.6522060 0.5191385
## quality  0.1076201 1.1309148
## OR and CI
exp(cbind(OR = coef(m), ci))
##                OR     2.5 %   97.5 %
## coupon  2.8510962 1.6958375 4.817114
## peers   0.9428818 0.5208954 1.680579
## quality 1.8514446 1.1136246 3.098490
## Predicted probabilities
newdat <- data.frame(
  coupon = rep(0:1, 200),
  peers = rep(0:1, each = 200),
  quality = rep(seq(from = 1.9, to = 4, length.out = 100), 4))

## Look at the first few lines
head(newdat)
##   coupon peers  quality
## 1      0     0 1.900000
## 2      1     0 1.921212
## 3      0     0 1.942424
## 4      1     0 1.963636
## 5      0     0 1.984848
## 6      1     0 2.006061
## Combine with probabilities
newdat <- cbind(newdat, predict(m, newdat, type = "probs"))

##show first few rows
head(newdat)
##   coupon peers  quality         1         2          3
## 1      0     0 1.900000 0.7364304 0.2213989 0.04217067
## 2      1     0 1.921212 0.4916828 0.3954893 0.11282791
## 3      0     0 1.942424 0.7313270 0.2254341 0.04323891
## 4      1     0 1.963636 0.4851534 0.3993764 0.11547024
## 5      0     0 1.984848 0.7261615 0.2295056 0.04433297
## 6      1     0 2.006061 0.4786291 0.4032047 0.11816621
## reshape for plots
library(reshape2)
lnewdat <- melt(newdat, id.vars = c("coupon", "peers", "quality"), 
                variable.name = "Level", value.name="Probability")

## view first few rows
head(lnewdat)
##   coupon peers  quality Level Probability
## 1      0     0 1.900000     1   0.7364304
## 2      1     0 1.921212     1   0.4916828
## 3      0     0 1.942424     1   0.7313270
## 4      1     0 1.963636     1   0.4851534
## 5      0     0 1.984848     1   0.7261615
## 6      1     0 2.006061     1   0.4786291
## Plot
ggplot(lnewdat, aes(x = quality, y = Probability, colour = Level)) +
  geom_line() + facet_grid(coupon ~ peers, labeller="label_both")

# plot in left upper side: Other variables fixed at:  No coupon and no peer recommendation
###########################################################
##### Ordered logit data analysis example 2: Opinion ######
###########################################################

# Number of obs: 70

# Response variable Y (opinion):
  # strongly disagree
  # disagree
  # agree
  # strongly agree

# Predictors (continuous):  
  # x1
  # x2
  # x3

 
## Getting sample data
library(foreign)
orderData <- read.dta("https://dss.princeton.edu/training/Panel101.dta")
orderData <- orderData[c(5:8)]
## Summary of variables
summary(orderData)
##        x1                x2                x3                opinion  
##  Min.   :-0.5676   Min.   :-1.6218   Min.   :-1.16539   Str agree:20  
##  1st Qu.: 0.3290   1st Qu.:-1.2156   1st Qu.:-0.07931   Agree    :15  
##  Median : 0.6413   Median :-0.4621   Median : 0.51419   Disag    :19  
##  Mean   : 0.6480   Mean   : 0.1339   Mean   : 0.76185   Str disag:16  
##  3rd Qu.: 1.0958   3rd Qu.: 1.6078   3rd Qu.: 1.15486                 
##  Max.   : 1.4464   Max.   : 2.5303   Max.   : 7.16892
## Look at the first few lines
head(orderData)
##          x1         x2          x3   opinion
## 1 0.2779036 -1.1079559  0.28255358 Str agree
## 2 0.3206847 -0.9487200  0.49253848     Disag
## 3 0.3634657 -0.7894840  0.70252335     Disag
## 4 0.2461440 -0.8855330 -0.09439092     Disag
## 5 0.4246230 -0.7297683  0.94613063     Disag
## 6 0.4772141 -0.7232460  1.02968037 Str agree
## Model
m1 <- polr(opinion ~ x1 + x2 + x3, data=orderData, Hess=TRUE)
summary(m1)
## Call:
## polr(formula = opinion ~ x1 + x2 + x3, data = orderData, Hess = TRUE)
## 
## Coefficients:
##      Value Std. Error t value
## x1 0.98140     0.5641  1.7397
## x2 0.24936     0.2086  1.1954
## x3 0.09089     0.1549  0.5867
## 
## Intercepts:
##                 Value   Std. Error t value
## Str agree|Agree -0.2054  0.4682    -0.4388
## Agree|Disag      0.7370  0.4697     1.5690
## Disag|Str disag  1.9951  0.5204     3.8335
## 
## Residual Deviance: 189.6382 
## AIC: 201.6382
## Odds ratio (risk ratios)
m1.or=exp(coef(m1))
m1.or
##       x1       x2       x3 
## 2.668179 1.283198 1.095150
## Predicted probabilities
m1.pred <- predict(m1, type="probs")
summary(m1.pred)
##    Str agree          Agree            Disag          Str disag      
##  Min.   :0.1040   Min.   :0.1255   Min.   :0.1458   Min.   :0.07418  
##  1st Qu.:0.2307   1st Qu.:0.2038   1st Qu.:0.2511   1st Qu.:0.17350  
##  Median :0.2628   Median :0.2144   Median :0.2851   Median :0.23705  
##  Mean   :0.2869   Mean   :0.2124   Mean   :0.2715   Mean   :0.22923  
##  3rd Qu.:0.3458   3rd Qu.:0.2271   3rd Qu.:0.2949   3rd Qu.:0.26968  
##  Max.   :0.5802   Max.   :0.2313   Max.   :0.3045   Max.   :0.48832
# Predicted probabilities
newdat <- data.frame(
  x1 = rep(seq(from = -0.5676, to = 1.4464, length.out = 100), 4),
  x2 = rep(seq(from = -1.6218, to = 2.5303, length.out = 100), 4),
  x3 = rep(seq(from = -1.1654, to = 7.1689, length.out = 100), 4))

newdat <- cbind(newdat, predict(m1, newdat, type = "probs"))

##show first few rows
head(newdat)
##           x1        x2         x3 Str agree     Agree      Disag  Str disag
## 1 -0.5676000 -1.621800 -1.1654000 0.7030665 0.1556096 0.09664083 0.04468304
## 2 -0.5472566 -1.579860 -1.0812152 0.6950569 0.1589354 0.09967090 0.04633679
## 3 -0.5269131 -1.537919 -0.9970303 0.6869275 0.1622530 0.10277082 0.04804866
## 4 -0.5065697 -1.495979 -0.9128455 0.6786815 0.1655575 0.10594045 0.04982048
## 5 -0.4862263 -1.454038 -0.8286606 0.6703226 0.1688438 0.10917953 0.05165408
## 6 -0.4658828 -1.412098 -0.7444758 0.6618546 0.1721064 0.11248764 0.05355137
# Reshape the data long with the reshape2 package and plot all of the predicted probabilities for the different conditions
lnewdat <- melt(newdat, id.vars = c("x1", "x2", "x3"),
  variable.name = "Level", value.name="Probability")
# view first few rows
head(lnewdat)
##           x1        x2         x3     Level Probability
## 1 -0.5676000 -1.621800 -1.1654000 Str agree   0.7030665
## 2 -0.5472566 -1.579860 -1.0812152 Str agree   0.6950569
## 3 -0.5269131 -1.537919 -0.9970303 Str agree   0.6869275
## 4 -0.5065697 -1.495979 -0.9128455 Str agree   0.6786815
## 5 -0.4862263 -1.454038 -0.8286606 Str agree   0.6703226
## 6 -0.4658828 -1.412098 -0.7444758 Str agree   0.6618546
# Use class for the predicted category
newdat[, c("pred.prob")] <- predict(m1, newdata=newdat, type="class")
newdat
##               x1          x2          x3  Str agree      Agree      Disag
## 1   -0.567600000 -1.62180000 -1.16540000 0.70306653 0.15560960 0.09664083
## 2   -0.547256566 -1.57985960 -1.08121515 0.69505694 0.15893537 0.09967090
## 3   -0.526913131 -1.53791919 -0.99703030 0.68692750 0.16225302 0.10277082
## 4   -0.506569697 -1.49597879 -0.91284545 0.67868153 0.16555755 0.10594045
## 5   -0.486226263 -1.45403838 -0.82866061 0.67032260 0.16884379 0.10917953
## 6   -0.465882828 -1.41209798 -0.74447576 0.66185456 0.17210643 0.11248764
## 7   -0.445539394 -1.37015758 -0.66029091 0.65328152 0.17534002 0.11586420
## 8   -0.425195960 -1.32821717 -0.57610606 0.64460784 0.17853895 0.11930849
## 9   -0.404852525 -1.28627677 -0.49192121 0.63583813 0.18169753 0.12281957
## 10  -0.384509091 -1.24433636 -0.40773636 0.62697724 0.18480996 0.12639637
## 11  -0.364165657 -1.20239596 -0.32355152 0.61803027 0.18787037 0.13003759
## 12  -0.343822222 -1.16045556 -0.23936667 0.60900253 0.19087282 0.13374175
## 13  -0.323478788 -1.11851515 -0.15518182 0.59989955 0.19381136 0.13750715
## 14  -0.303135354 -1.07657475 -0.07099697 0.59072707 0.19667998 0.14133188
## 15  -0.282791919 -1.03463434  0.01318788 0.58149101 0.19947271 0.14521381
## 16  -0.262448485 -0.99269394  0.09737273 0.57219746 0.20218360 0.14915059
## 17  -0.242105051 -0.95075354  0.18155758 0.56285268 0.20480674 0.15313962
## 18  -0.221761616 -0.90881313  0.26574242 0.55346307 0.20733631 0.15717806
## 19  -0.201418182 -0.86687273  0.34992727 0.54403516 0.20976660 0.16126285
## 20  -0.181074747 -0.82493232  0.43411212 0.53457559 0.21209201 0.16539065
## 21  -0.160731313 -0.78299192  0.51829697 0.52509108 0.21430709 0.16955788
## 22  -0.140387879 -0.74105152  0.60248182 0.51558844 0.21640658 0.17376071
## 23  -0.120044444 -0.69911111  0.68666667 0.50607451 0.21838542 0.17799505
## 24  -0.099701010 -0.65717071  0.77085152 0.49655618 0.22023878 0.18225657
## 25  -0.079357576 -0.61523030  0.85503636 0.48704034 0.22196207 0.18654065
## 26  -0.059014141 -0.57328990  0.93922121 0.47753389 0.22355096 0.19084246
## 27  -0.038670707 -0.53134949  1.02340606 0.46804369 0.22500146 0.19515690
## 28  -0.018327273 -0.48940909  1.10759091 0.45857655 0.22630984 0.19947861
## 29   0.002016162 -0.44746869  1.19177576 0.44913922 0.22747274 0.20380203
## 30   0.022359596 -0.40552828  1.27596061 0.43973837 0.22848715 0.20812136
## 31   0.042703030 -0.36358788  1.36014545 0.43038056 0.22935040 0.21243055
## 32   0.063046465 -0.32164747  1.44433030 0.42107221 0.23006024 0.21672339
## 33   0.083389899 -0.27970707  1.52851515 0.41181964 0.23061480 0.22099344
## 34   0.103733333 -0.23776667  1.61270000 0.40262899 0.23101259 0.22523408
## 35   0.124076768 -0.19582626  1.69688485 0.39350622 0.23125257 0.22943854
## 36   0.144420202 -0.15388586  1.78106970 0.38445712 0.23133409 0.23359989
## 37   0.164763636 -0.11194545  1.86525455 0.37548729 0.23125694 0.23771107
## 38   0.185107071 -0.07000505  1.94943939 0.36660209 0.23102132 0.24176490
## 39   0.205450505 -0.02806465  2.03362424 0.35780668 0.23062787 0.24575414
## 40   0.225793939  0.01387576  2.11780909 0.34910598 0.23007762 0.24967144
## 41   0.246137374  0.05581616  2.20199394 0.34050468 0.22937203 0.25350945
## 42   0.266480808  0.09775657  2.28617879 0.33200720 0.22851298 0.25726076
## 43   0.286824242  0.13969697  2.37036364 0.32361772 0.22750270 0.26091801
## 44   0.307167677  0.18163737  2.45454848 0.31534015 0.22634386 0.26447384
## 45   0.327511111  0.22357778  2.53873333 0.30717816 0.22503944 0.26792097
## 46   0.347854545  0.26551818  2.62291818 0.29913513 0.22359282 0.27125221
## 47   0.368197980  0.30745859  2.70710303 0.29121417 0.22200768 0.27446047
## 48   0.388541414  0.34939899  2.79128788 0.28341814 0.22028805 0.27753883
## 49   0.408884848  0.39133939  2.87547273 0.27574961 0.21843821 0.28048053
## 50   0.429228283  0.43327980  2.95965758 0.26821092 0.21646277 0.28327903
## 51   0.449571717  0.47522020  3.04384242 0.26080411 0.21436653 0.28592801
## 52   0.469915152  0.51716061  3.12802727 0.25353097 0.21215456 0.28842141
## 53   0.490258586  0.55910101  3.21221212 0.24639306 0.20983213 0.29075347
## 54   0.510602020  0.60104141  3.29639697 0.23939166 0.20740466 0.29291873
## 55   0.530945455  0.64298182  3.38058182 0.23252782 0.20487774 0.29491208
## 56   0.551288889  0.68492222  3.46476667 0.22580236 0.20225710 0.29672875
## 57   0.571632323  0.72686263  3.54895152 0.21921586 0.19954856 0.29836439
## 58   0.591975758  0.76880303  3.63313636 0.21276868 0.19675800 0.29981503
## 59   0.612319192  0.81074343  3.71732121 0.20646098 0.19389139 0.30107714
## 60   0.632662626  0.85268384  3.80150606 0.20029270 0.19095471 0.30214762
## 61   0.653006061  0.89462424  3.88569091 0.19426358 0.18795393 0.30302382
## 62   0.673349495  0.93656465  3.96987576 0.18837321 0.18489504 0.30370359
## 63   0.693692929  0.97850505  4.05406061 0.18262095 0.18178396 0.30418524
## 64   0.714036364  1.02044545  4.13824545 0.17700605 0.17862658 0.30446756
## 65   0.734379798  1.06238586  4.22243030 0.17152755 0.17542868 0.30454985
## 66   0.754723232  1.10432626  4.30661515 0.16618438 0.17219598 0.30443191
## 67   0.775066667  1.14626667  4.39080000 0.16097531 0.16893406 0.30411404
## 68   0.795410101  1.18820707  4.47498485 0.15589899 0.16564840 0.30359701
## 69   0.815753535  1.23014747  4.55916970 0.15095394 0.16234430 0.30288213
## 70   0.836096970  1.27208788  4.64335455 0.14613860 0.15902695 0.30197116
## 71   0.856440404  1.31402828  4.72753939 0.14145128 0.15570133 0.30086635
## 72   0.876783838  1.35596869  4.81172424 0.13689019 0.15237229 0.29957043
## 73   0.897127273  1.39790909  4.89590909 0.13245349 0.14904446 0.29808658
## 74   0.917470707  1.43984949  4.98009394 0.12813923 0.14572229 0.29641840
## 75   0.937814141  1.48178990  5.06427879 0.12394542 0.14241004 0.29456994
## 76   0.958157576  1.52373030  5.14846364 0.11987000 0.13911176 0.29254562
## 77   0.978501010  1.56567071  5.23264848 0.11591085 0.13583129 0.29035028
## 78   0.998844444  1.60761111  5.31683333 0.11206582 0.13257226 0.28798909
## 79   1.019187879  1.64955152  5.40101818 0.10833270 0.12933812 0.28546755
## 80   1.039531313  1.69149192  5.48520303 0.10470928 0.12613207 0.28279150
## 81   1.059874747  1.73343232  5.56938788 0.10119330 0.12295713 0.27996703
## 82   1.080218182  1.77537273  5.65357273 0.09778248 0.11981608 0.27700051
## 83   1.100561616  1.81731313  5.73775758 0.09447455 0.11671154 0.27389852
## 84   1.120905051  1.85925354  5.82194242 0.09126720 0.11364589 0.27066785
## 85   1.141248485  1.90119394  5.90612727 0.08815813 0.11062133 0.26731546
## 86   1.161591919  1.94313434  5.99031212 0.08514506 0.10763986 0.26384844
## 87   1.181935354  1.98507475  6.07449697 0.08222568 0.10470330 0.26027402
## 88   1.202278788  2.02701515  6.15868182 0.07939771 0.10181327 0.25659948
## 89   1.222622222  2.06895556  6.24286667 0.07665887 0.09897123 0.25283219
## 90   1.242965657  2.11089596  6.32705152 0.07400692 0.09617847 0.24897952
## 91   1.263309091  2.15283636  6.41123636 0.07143962 0.09343609 0.24504887
## 92   1.283652525  2.19477677  6.49542121 0.06895474 0.09074506 0.24104760
## 93   1.303995960  2.23671717  6.57960606 0.06655010 0.08810619 0.23698302
## 94   1.324339394  2.27865758  6.66379091 0.06422353 0.08552015 0.23286239
## 95   1.344682828  2.32059798  6.74797576 0.06197289 0.08298745 0.22869285
## 96   1.365026263  2.36253838  6.83216061 0.05979609 0.08050851 0.22448144
## 97   1.385369697  2.40447879  6.91634545 0.05769104 0.07808360 0.22023507
## 98   1.405713131  2.44641919  7.00053030 0.05565572 0.07571288 0.21596049
## 99   1.426056566  2.48835960  7.08471515 0.05368811 0.07339639 0.21166428
## 100  1.446400000  2.53030000  7.16890000 0.05178624 0.07113410 0.20735283
## 101 -0.567600000 -1.62180000 -1.16540000 0.70306653 0.15560960 0.09664083
## 102 -0.547256566 -1.57985960 -1.08121515 0.69505694 0.15893537 0.09967090
## 103 -0.526913131 -1.53791919 -0.99703030 0.68692750 0.16225302 0.10277082
## 104 -0.506569697 -1.49597879 -0.91284545 0.67868153 0.16555755 0.10594045
## 105 -0.486226263 -1.45403838 -0.82866061 0.67032260 0.16884379 0.10917953
## 106 -0.465882828 -1.41209798 -0.74447576 0.66185456 0.17210643 0.11248764
## 107 -0.445539394 -1.37015758 -0.66029091 0.65328152 0.17534002 0.11586420
## 108 -0.425195960 -1.32821717 -0.57610606 0.64460784 0.17853895 0.11930849
## 109 -0.404852525 -1.28627677 -0.49192121 0.63583813 0.18169753 0.12281957
## 110 -0.384509091 -1.24433636 -0.40773636 0.62697724 0.18480996 0.12639637
## 111 -0.364165657 -1.20239596 -0.32355152 0.61803027 0.18787037 0.13003759
## 112 -0.343822222 -1.16045556 -0.23936667 0.60900253 0.19087282 0.13374175
## 113 -0.323478788 -1.11851515 -0.15518182 0.59989955 0.19381136 0.13750715
## 114 -0.303135354 -1.07657475 -0.07099697 0.59072707 0.19667998 0.14133188
## 115 -0.282791919 -1.03463434  0.01318788 0.58149101 0.19947271 0.14521381
## 116 -0.262448485 -0.99269394  0.09737273 0.57219746 0.20218360 0.14915059
## 117 -0.242105051 -0.95075354  0.18155758 0.56285268 0.20480674 0.15313962
## 118 -0.221761616 -0.90881313  0.26574242 0.55346307 0.20733631 0.15717806
## 119 -0.201418182 -0.86687273  0.34992727 0.54403516 0.20976660 0.16126285
## 120 -0.181074747 -0.82493232  0.43411212 0.53457559 0.21209201 0.16539065
## 121 -0.160731313 -0.78299192  0.51829697 0.52509108 0.21430709 0.16955788
## 122 -0.140387879 -0.74105152  0.60248182 0.51558844 0.21640658 0.17376071
## 123 -0.120044444 -0.69911111  0.68666667 0.50607451 0.21838542 0.17799505
## 124 -0.099701010 -0.65717071  0.77085152 0.49655618 0.22023878 0.18225657
## 125 -0.079357576 -0.61523030  0.85503636 0.48704034 0.22196207 0.18654065
## 126 -0.059014141 -0.57328990  0.93922121 0.47753389 0.22355096 0.19084246
## 127 -0.038670707 -0.53134949  1.02340606 0.46804369 0.22500146 0.19515690
## 128 -0.018327273 -0.48940909  1.10759091 0.45857655 0.22630984 0.19947861
## 129  0.002016162 -0.44746869  1.19177576 0.44913922 0.22747274 0.20380203
## 130  0.022359596 -0.40552828  1.27596061 0.43973837 0.22848715 0.20812136
## 131  0.042703030 -0.36358788  1.36014545 0.43038056 0.22935040 0.21243055
## 132  0.063046465 -0.32164747  1.44433030 0.42107221 0.23006024 0.21672339
## 133  0.083389899 -0.27970707  1.52851515 0.41181964 0.23061480 0.22099344
## 134  0.103733333 -0.23776667  1.61270000 0.40262899 0.23101259 0.22523408
## 135  0.124076768 -0.19582626  1.69688485 0.39350622 0.23125257 0.22943854
## 136  0.144420202 -0.15388586  1.78106970 0.38445712 0.23133409 0.23359989
## 137  0.164763636 -0.11194545  1.86525455 0.37548729 0.23125694 0.23771107
## 138  0.185107071 -0.07000505  1.94943939 0.36660209 0.23102132 0.24176490
## 139  0.205450505 -0.02806465  2.03362424 0.35780668 0.23062787 0.24575414
## 140  0.225793939  0.01387576  2.11780909 0.34910598 0.23007762 0.24967144
## 141  0.246137374  0.05581616  2.20199394 0.34050468 0.22937203 0.25350945
## 142  0.266480808  0.09775657  2.28617879 0.33200720 0.22851298 0.25726076
## 143  0.286824242  0.13969697  2.37036364 0.32361772 0.22750270 0.26091801
## 144  0.307167677  0.18163737  2.45454848 0.31534015 0.22634386 0.26447384
## 145  0.327511111  0.22357778  2.53873333 0.30717816 0.22503944 0.26792097
## 146  0.347854545  0.26551818  2.62291818 0.29913513 0.22359282 0.27125221
## 147  0.368197980  0.30745859  2.70710303 0.29121417 0.22200768 0.27446047
## 148  0.388541414  0.34939899  2.79128788 0.28341814 0.22028805 0.27753883
## 149  0.408884848  0.39133939  2.87547273 0.27574961 0.21843821 0.28048053
## 150  0.429228283  0.43327980  2.95965758 0.26821092 0.21646277 0.28327903
## 151  0.449571717  0.47522020  3.04384242 0.26080411 0.21436653 0.28592801
## 152  0.469915152  0.51716061  3.12802727 0.25353097 0.21215456 0.28842141
## 153  0.490258586  0.55910101  3.21221212 0.24639306 0.20983213 0.29075347
## 154  0.510602020  0.60104141  3.29639697 0.23939166 0.20740466 0.29291873
## 155  0.530945455  0.64298182  3.38058182 0.23252782 0.20487774 0.29491208
## 156  0.551288889  0.68492222  3.46476667 0.22580236 0.20225710 0.29672875
## 157  0.571632323  0.72686263  3.54895152 0.21921586 0.19954856 0.29836439
## 158  0.591975758  0.76880303  3.63313636 0.21276868 0.19675800 0.29981503
## 159  0.612319192  0.81074343  3.71732121 0.20646098 0.19389139 0.30107714
## 160  0.632662626  0.85268384  3.80150606 0.20029270 0.19095471 0.30214762
## 161  0.653006061  0.89462424  3.88569091 0.19426358 0.18795393 0.30302382
## 162  0.673349495  0.93656465  3.96987576 0.18837321 0.18489504 0.30370359
## 163  0.693692929  0.97850505  4.05406061 0.18262095 0.18178396 0.30418524
## 164  0.714036364  1.02044545  4.13824545 0.17700605 0.17862658 0.30446756
## 165  0.734379798  1.06238586  4.22243030 0.17152755 0.17542868 0.30454985
## 166  0.754723232  1.10432626  4.30661515 0.16618438 0.17219598 0.30443191
## 167  0.775066667  1.14626667  4.39080000 0.16097531 0.16893406 0.30411404
## 168  0.795410101  1.18820707  4.47498485 0.15589899 0.16564840 0.30359701
## 169  0.815753535  1.23014747  4.55916970 0.15095394 0.16234430 0.30288213
## 170  0.836096970  1.27208788  4.64335455 0.14613860 0.15902695 0.30197116
## 171  0.856440404  1.31402828  4.72753939 0.14145128 0.15570133 0.30086635
## 172  0.876783838  1.35596869  4.81172424 0.13689019 0.15237229 0.29957043
## 173  0.897127273  1.39790909  4.89590909 0.13245349 0.14904446 0.29808658
## 174  0.917470707  1.43984949  4.98009394 0.12813923 0.14572229 0.29641840
## 175  0.937814141  1.48178990  5.06427879 0.12394542 0.14241004 0.29456994
## 176  0.958157576  1.52373030  5.14846364 0.11987000 0.13911176 0.29254562
## 177  0.978501010  1.56567071  5.23264848 0.11591085 0.13583129 0.29035028
## 178  0.998844444  1.60761111  5.31683333 0.11206582 0.13257226 0.28798909
## 179  1.019187879  1.64955152  5.40101818 0.10833270 0.12933812 0.28546755
## 180  1.039531313  1.69149192  5.48520303 0.10470928 0.12613207 0.28279150
## 181  1.059874747  1.73343232  5.56938788 0.10119330 0.12295713 0.27996703
## 182  1.080218182  1.77537273  5.65357273 0.09778248 0.11981608 0.27700051
## 183  1.100561616  1.81731313  5.73775758 0.09447455 0.11671154 0.27389852
## 184  1.120905051  1.85925354  5.82194242 0.09126720 0.11364589 0.27066785
## 185  1.141248485  1.90119394  5.90612727 0.08815813 0.11062133 0.26731546
## 186  1.161591919  1.94313434  5.99031212 0.08514506 0.10763986 0.26384844
## 187  1.181935354  1.98507475  6.07449697 0.08222568 0.10470330 0.26027402
## 188  1.202278788  2.02701515  6.15868182 0.07939771 0.10181327 0.25659948
## 189  1.222622222  2.06895556  6.24286667 0.07665887 0.09897123 0.25283219
## 190  1.242965657  2.11089596  6.32705152 0.07400692 0.09617847 0.24897952
## 191  1.263309091  2.15283636  6.41123636 0.07143962 0.09343609 0.24504887
## 192  1.283652525  2.19477677  6.49542121 0.06895474 0.09074506 0.24104760
## 193  1.303995960  2.23671717  6.57960606 0.06655010 0.08810619 0.23698302
## 194  1.324339394  2.27865758  6.66379091 0.06422353 0.08552015 0.23286239
## 195  1.344682828  2.32059798  6.74797576 0.06197289 0.08298745 0.22869285
## 196  1.365026263  2.36253838  6.83216061 0.05979609 0.08050851 0.22448144
## 197  1.385369697  2.40447879  6.91634545 0.05769104 0.07808360 0.22023507
## 198  1.405713131  2.44641919  7.00053030 0.05565572 0.07571288 0.21596049
## 199  1.426056566  2.48835960  7.08471515 0.05368811 0.07339639 0.21166428
## 200  1.446400000  2.53030000  7.16890000 0.05178624 0.07113410 0.20735283
## 201 -0.567600000 -1.62180000 -1.16540000 0.70306653 0.15560960 0.09664083
## 202 -0.547256566 -1.57985960 -1.08121515 0.69505694 0.15893537 0.09967090
## 203 -0.526913131 -1.53791919 -0.99703030 0.68692750 0.16225302 0.10277082
## 204 -0.506569697 -1.49597879 -0.91284545 0.67868153 0.16555755 0.10594045
## 205 -0.486226263 -1.45403838 -0.82866061 0.67032260 0.16884379 0.10917953
## 206 -0.465882828 -1.41209798 -0.74447576 0.66185456 0.17210643 0.11248764
## 207 -0.445539394 -1.37015758 -0.66029091 0.65328152 0.17534002 0.11586420
## 208 -0.425195960 -1.32821717 -0.57610606 0.64460784 0.17853895 0.11930849
## 209 -0.404852525 -1.28627677 -0.49192121 0.63583813 0.18169753 0.12281957
## 210 -0.384509091 -1.24433636 -0.40773636 0.62697724 0.18480996 0.12639637
## 211 -0.364165657 -1.20239596 -0.32355152 0.61803027 0.18787037 0.13003759
## 212 -0.343822222 -1.16045556 -0.23936667 0.60900253 0.19087282 0.13374175
## 213 -0.323478788 -1.11851515 -0.15518182 0.59989955 0.19381136 0.13750715
## 214 -0.303135354 -1.07657475 -0.07099697 0.59072707 0.19667998 0.14133188
## 215 -0.282791919 -1.03463434  0.01318788 0.58149101 0.19947271 0.14521381
## 216 -0.262448485 -0.99269394  0.09737273 0.57219746 0.20218360 0.14915059
## 217 -0.242105051 -0.95075354  0.18155758 0.56285268 0.20480674 0.15313962
## 218 -0.221761616 -0.90881313  0.26574242 0.55346307 0.20733631 0.15717806
## 219 -0.201418182 -0.86687273  0.34992727 0.54403516 0.20976660 0.16126285
## 220 -0.181074747 -0.82493232  0.43411212 0.53457559 0.21209201 0.16539065
## 221 -0.160731313 -0.78299192  0.51829697 0.52509108 0.21430709 0.16955788
## 222 -0.140387879 -0.74105152  0.60248182 0.51558844 0.21640658 0.17376071
## 223 -0.120044444 -0.69911111  0.68666667 0.50607451 0.21838542 0.17799505
## 224 -0.099701010 -0.65717071  0.77085152 0.49655618 0.22023878 0.18225657
## 225 -0.079357576 -0.61523030  0.85503636 0.48704034 0.22196207 0.18654065
## 226 -0.059014141 -0.57328990  0.93922121 0.47753389 0.22355096 0.19084246
## 227 -0.038670707 -0.53134949  1.02340606 0.46804369 0.22500146 0.19515690
## 228 -0.018327273 -0.48940909  1.10759091 0.45857655 0.22630984 0.19947861
## 229  0.002016162 -0.44746869  1.19177576 0.44913922 0.22747274 0.20380203
## 230  0.022359596 -0.40552828  1.27596061 0.43973837 0.22848715 0.20812136
## 231  0.042703030 -0.36358788  1.36014545 0.43038056 0.22935040 0.21243055
## 232  0.063046465 -0.32164747  1.44433030 0.42107221 0.23006024 0.21672339
## 233  0.083389899 -0.27970707  1.52851515 0.41181964 0.23061480 0.22099344
## 234  0.103733333 -0.23776667  1.61270000 0.40262899 0.23101259 0.22523408
## 235  0.124076768 -0.19582626  1.69688485 0.39350622 0.23125257 0.22943854
## 236  0.144420202 -0.15388586  1.78106970 0.38445712 0.23133409 0.23359989
## 237  0.164763636 -0.11194545  1.86525455 0.37548729 0.23125694 0.23771107
## 238  0.185107071 -0.07000505  1.94943939 0.36660209 0.23102132 0.24176490
## 239  0.205450505 -0.02806465  2.03362424 0.35780668 0.23062787 0.24575414
## 240  0.225793939  0.01387576  2.11780909 0.34910598 0.23007762 0.24967144
## 241  0.246137374  0.05581616  2.20199394 0.34050468 0.22937203 0.25350945
## 242  0.266480808  0.09775657  2.28617879 0.33200720 0.22851298 0.25726076
## 243  0.286824242  0.13969697  2.37036364 0.32361772 0.22750270 0.26091801
## 244  0.307167677  0.18163737  2.45454848 0.31534015 0.22634386 0.26447384
## 245  0.327511111  0.22357778  2.53873333 0.30717816 0.22503944 0.26792097
## 246  0.347854545  0.26551818  2.62291818 0.29913513 0.22359282 0.27125221
## 247  0.368197980  0.30745859  2.70710303 0.29121417 0.22200768 0.27446047
## 248  0.388541414  0.34939899  2.79128788 0.28341814 0.22028805 0.27753883
## 249  0.408884848  0.39133939  2.87547273 0.27574961 0.21843821 0.28048053
## 250  0.429228283  0.43327980  2.95965758 0.26821092 0.21646277 0.28327903
## 251  0.449571717  0.47522020  3.04384242 0.26080411 0.21436653 0.28592801
## 252  0.469915152  0.51716061  3.12802727 0.25353097 0.21215456 0.28842141
## 253  0.490258586  0.55910101  3.21221212 0.24639306 0.20983213 0.29075347
## 254  0.510602020  0.60104141  3.29639697 0.23939166 0.20740466 0.29291873
## 255  0.530945455  0.64298182  3.38058182 0.23252782 0.20487774 0.29491208
## 256  0.551288889  0.68492222  3.46476667 0.22580236 0.20225710 0.29672875
## 257  0.571632323  0.72686263  3.54895152 0.21921586 0.19954856 0.29836439
## 258  0.591975758  0.76880303  3.63313636 0.21276868 0.19675800 0.29981503
## 259  0.612319192  0.81074343  3.71732121 0.20646098 0.19389139 0.30107714
## 260  0.632662626  0.85268384  3.80150606 0.20029270 0.19095471 0.30214762
## 261  0.653006061  0.89462424  3.88569091 0.19426358 0.18795393 0.30302382
## 262  0.673349495  0.93656465  3.96987576 0.18837321 0.18489504 0.30370359
## 263  0.693692929  0.97850505  4.05406061 0.18262095 0.18178396 0.30418524
## 264  0.714036364  1.02044545  4.13824545 0.17700605 0.17862658 0.30446756
## 265  0.734379798  1.06238586  4.22243030 0.17152755 0.17542868 0.30454985
## 266  0.754723232  1.10432626  4.30661515 0.16618438 0.17219598 0.30443191
## 267  0.775066667  1.14626667  4.39080000 0.16097531 0.16893406 0.30411404
## 268  0.795410101  1.18820707  4.47498485 0.15589899 0.16564840 0.30359701
## 269  0.815753535  1.23014747  4.55916970 0.15095394 0.16234430 0.30288213
## 270  0.836096970  1.27208788  4.64335455 0.14613860 0.15902695 0.30197116
## 271  0.856440404  1.31402828  4.72753939 0.14145128 0.15570133 0.30086635
## 272  0.876783838  1.35596869  4.81172424 0.13689019 0.15237229 0.29957043
## 273  0.897127273  1.39790909  4.89590909 0.13245349 0.14904446 0.29808658
## 274  0.917470707  1.43984949  4.98009394 0.12813923 0.14572229 0.29641840
## 275  0.937814141  1.48178990  5.06427879 0.12394542 0.14241004 0.29456994
## 276  0.958157576  1.52373030  5.14846364 0.11987000 0.13911176 0.29254562
## 277  0.978501010  1.56567071  5.23264848 0.11591085 0.13583129 0.29035028
## 278  0.998844444  1.60761111  5.31683333 0.11206582 0.13257226 0.28798909
## 279  1.019187879  1.64955152  5.40101818 0.10833270 0.12933812 0.28546755
## 280  1.039531313  1.69149192  5.48520303 0.10470928 0.12613207 0.28279150
## 281  1.059874747  1.73343232  5.56938788 0.10119330 0.12295713 0.27996703
## 282  1.080218182  1.77537273  5.65357273 0.09778248 0.11981608 0.27700051
## 283  1.100561616  1.81731313  5.73775758 0.09447455 0.11671154 0.27389852
## 284  1.120905051  1.85925354  5.82194242 0.09126720 0.11364589 0.27066785
## 285  1.141248485  1.90119394  5.90612727 0.08815813 0.11062133 0.26731546
## 286  1.161591919  1.94313434  5.99031212 0.08514506 0.10763986 0.26384844
## 287  1.181935354  1.98507475  6.07449697 0.08222568 0.10470330 0.26027402
## 288  1.202278788  2.02701515  6.15868182 0.07939771 0.10181327 0.25659948
## 289  1.222622222  2.06895556  6.24286667 0.07665887 0.09897123 0.25283219
## 290  1.242965657  2.11089596  6.32705152 0.07400692 0.09617847 0.24897952
## 291  1.263309091  2.15283636  6.41123636 0.07143962 0.09343609 0.24504887
## 292  1.283652525  2.19477677  6.49542121 0.06895474 0.09074506 0.24104760
## 293  1.303995960  2.23671717  6.57960606 0.06655010 0.08810619 0.23698302
## 294  1.324339394  2.27865758  6.66379091 0.06422353 0.08552015 0.23286239
## 295  1.344682828  2.32059798  6.74797576 0.06197289 0.08298745 0.22869285
## 296  1.365026263  2.36253838  6.83216061 0.05979609 0.08050851 0.22448144
## 297  1.385369697  2.40447879  6.91634545 0.05769104 0.07808360 0.22023507
## 298  1.405713131  2.44641919  7.00053030 0.05565572 0.07571288 0.21596049
## 299  1.426056566  2.48835960  7.08471515 0.05368811 0.07339639 0.21166428
## 300  1.446400000  2.53030000  7.16890000 0.05178624 0.07113410 0.20735283
## 301 -0.567600000 -1.62180000 -1.16540000 0.70306653 0.15560960 0.09664083
## 302 -0.547256566 -1.57985960 -1.08121515 0.69505694 0.15893537 0.09967090
## 303 -0.526913131 -1.53791919 -0.99703030 0.68692750 0.16225302 0.10277082
## 304 -0.506569697 -1.49597879 -0.91284545 0.67868153 0.16555755 0.10594045
## 305 -0.486226263 -1.45403838 -0.82866061 0.67032260 0.16884379 0.10917953
## 306 -0.465882828 -1.41209798 -0.74447576 0.66185456 0.17210643 0.11248764
## 307 -0.445539394 -1.37015758 -0.66029091 0.65328152 0.17534002 0.11586420
## 308 -0.425195960 -1.32821717 -0.57610606 0.64460784 0.17853895 0.11930849
## 309 -0.404852525 -1.28627677 -0.49192121 0.63583813 0.18169753 0.12281957
## 310 -0.384509091 -1.24433636 -0.40773636 0.62697724 0.18480996 0.12639637
## 311 -0.364165657 -1.20239596 -0.32355152 0.61803027 0.18787037 0.13003759
## 312 -0.343822222 -1.16045556 -0.23936667 0.60900253 0.19087282 0.13374175
## 313 -0.323478788 -1.11851515 -0.15518182 0.59989955 0.19381136 0.13750715
## 314 -0.303135354 -1.07657475 -0.07099697 0.59072707 0.19667998 0.14133188
## 315 -0.282791919 -1.03463434  0.01318788 0.58149101 0.19947271 0.14521381
## 316 -0.262448485 -0.99269394  0.09737273 0.57219746 0.20218360 0.14915059
## 317 -0.242105051 -0.95075354  0.18155758 0.56285268 0.20480674 0.15313962
## 318 -0.221761616 -0.90881313  0.26574242 0.55346307 0.20733631 0.15717806
## 319 -0.201418182 -0.86687273  0.34992727 0.54403516 0.20976660 0.16126285
## 320 -0.181074747 -0.82493232  0.43411212 0.53457559 0.21209201 0.16539065
## 321 -0.160731313 -0.78299192  0.51829697 0.52509108 0.21430709 0.16955788
## 322 -0.140387879 -0.74105152  0.60248182 0.51558844 0.21640658 0.17376071
## 323 -0.120044444 -0.69911111  0.68666667 0.50607451 0.21838542 0.17799505
## 324 -0.099701010 -0.65717071  0.77085152 0.49655618 0.22023878 0.18225657
## 325 -0.079357576 -0.61523030  0.85503636 0.48704034 0.22196207 0.18654065
## 326 -0.059014141 -0.57328990  0.93922121 0.47753389 0.22355096 0.19084246
## 327 -0.038670707 -0.53134949  1.02340606 0.46804369 0.22500146 0.19515690
## 328 -0.018327273 -0.48940909  1.10759091 0.45857655 0.22630984 0.19947861
## 329  0.002016162 -0.44746869  1.19177576 0.44913922 0.22747274 0.20380203
## 330  0.022359596 -0.40552828  1.27596061 0.43973837 0.22848715 0.20812136
## 331  0.042703030 -0.36358788  1.36014545 0.43038056 0.22935040 0.21243055
## 332  0.063046465 -0.32164747  1.44433030 0.42107221 0.23006024 0.21672339
## 333  0.083389899 -0.27970707  1.52851515 0.41181964 0.23061480 0.22099344
## 334  0.103733333 -0.23776667  1.61270000 0.40262899 0.23101259 0.22523408
## 335  0.124076768 -0.19582626  1.69688485 0.39350622 0.23125257 0.22943854
## 336  0.144420202 -0.15388586  1.78106970 0.38445712 0.23133409 0.23359989
## 337  0.164763636 -0.11194545  1.86525455 0.37548729 0.23125694 0.23771107
## 338  0.185107071 -0.07000505  1.94943939 0.36660209 0.23102132 0.24176490
## 339  0.205450505 -0.02806465  2.03362424 0.35780668 0.23062787 0.24575414
## 340  0.225793939  0.01387576  2.11780909 0.34910598 0.23007762 0.24967144
## 341  0.246137374  0.05581616  2.20199394 0.34050468 0.22937203 0.25350945
## 342  0.266480808  0.09775657  2.28617879 0.33200720 0.22851298 0.25726076
## 343  0.286824242  0.13969697  2.37036364 0.32361772 0.22750270 0.26091801
## 344  0.307167677  0.18163737  2.45454848 0.31534015 0.22634386 0.26447384
## 345  0.327511111  0.22357778  2.53873333 0.30717816 0.22503944 0.26792097
## 346  0.347854545  0.26551818  2.62291818 0.29913513 0.22359282 0.27125221
## 347  0.368197980  0.30745859  2.70710303 0.29121417 0.22200768 0.27446047
## 348  0.388541414  0.34939899  2.79128788 0.28341814 0.22028805 0.27753883
## 349  0.408884848  0.39133939  2.87547273 0.27574961 0.21843821 0.28048053
## 350  0.429228283  0.43327980  2.95965758 0.26821092 0.21646277 0.28327903
## 351  0.449571717  0.47522020  3.04384242 0.26080411 0.21436653 0.28592801
## 352  0.469915152  0.51716061  3.12802727 0.25353097 0.21215456 0.28842141
## 353  0.490258586  0.55910101  3.21221212 0.24639306 0.20983213 0.29075347
## 354  0.510602020  0.60104141  3.29639697 0.23939166 0.20740466 0.29291873
## 355  0.530945455  0.64298182  3.38058182 0.23252782 0.20487774 0.29491208
## 356  0.551288889  0.68492222  3.46476667 0.22580236 0.20225710 0.29672875
## 357  0.571632323  0.72686263  3.54895152 0.21921586 0.19954856 0.29836439
## 358  0.591975758  0.76880303  3.63313636 0.21276868 0.19675800 0.29981503
## 359  0.612319192  0.81074343  3.71732121 0.20646098 0.19389139 0.30107714
## 360  0.632662626  0.85268384  3.80150606 0.20029270 0.19095471 0.30214762
## 361  0.653006061  0.89462424  3.88569091 0.19426358 0.18795393 0.30302382
## 362  0.673349495  0.93656465  3.96987576 0.18837321 0.18489504 0.30370359
## 363  0.693692929  0.97850505  4.05406061 0.18262095 0.18178396 0.30418524
## 364  0.714036364  1.02044545  4.13824545 0.17700605 0.17862658 0.30446756
## 365  0.734379798  1.06238586  4.22243030 0.17152755 0.17542868 0.30454985
## 366  0.754723232  1.10432626  4.30661515 0.16618438 0.17219598 0.30443191
## 367  0.775066667  1.14626667  4.39080000 0.16097531 0.16893406 0.30411404
## 368  0.795410101  1.18820707  4.47498485 0.15589899 0.16564840 0.30359701
## 369  0.815753535  1.23014747  4.55916970 0.15095394 0.16234430 0.30288213
## 370  0.836096970  1.27208788  4.64335455 0.14613860 0.15902695 0.30197116
## 371  0.856440404  1.31402828  4.72753939 0.14145128 0.15570133 0.30086635
## 372  0.876783838  1.35596869  4.81172424 0.13689019 0.15237229 0.29957043
## 373  0.897127273  1.39790909  4.89590909 0.13245349 0.14904446 0.29808658
## 374  0.917470707  1.43984949  4.98009394 0.12813923 0.14572229 0.29641840
## 375  0.937814141  1.48178990  5.06427879 0.12394542 0.14241004 0.29456994
## 376  0.958157576  1.52373030  5.14846364 0.11987000 0.13911176 0.29254562
## 377  0.978501010  1.56567071  5.23264848 0.11591085 0.13583129 0.29035028
## 378  0.998844444  1.60761111  5.31683333 0.11206582 0.13257226 0.28798909
## 379  1.019187879  1.64955152  5.40101818 0.10833270 0.12933812 0.28546755
## 380  1.039531313  1.69149192  5.48520303 0.10470928 0.12613207 0.28279150
## 381  1.059874747  1.73343232  5.56938788 0.10119330 0.12295713 0.27996703
## 382  1.080218182  1.77537273  5.65357273 0.09778248 0.11981608 0.27700051
## 383  1.100561616  1.81731313  5.73775758 0.09447455 0.11671154 0.27389852
## 384  1.120905051  1.85925354  5.82194242 0.09126720 0.11364589 0.27066785
## 385  1.141248485  1.90119394  5.90612727 0.08815813 0.11062133 0.26731546
## 386  1.161591919  1.94313434  5.99031212 0.08514506 0.10763986 0.26384844
## 387  1.181935354  1.98507475  6.07449697 0.08222568 0.10470330 0.26027402
## 388  1.202278788  2.02701515  6.15868182 0.07939771 0.10181327 0.25659948
## 389  1.222622222  2.06895556  6.24286667 0.07665887 0.09897123 0.25283219
## 390  1.242965657  2.11089596  6.32705152 0.07400692 0.09617847 0.24897952
## 391  1.263309091  2.15283636  6.41123636 0.07143962 0.09343609 0.24504887
## 392  1.283652525  2.19477677  6.49542121 0.06895474 0.09074506 0.24104760
## 393  1.303995960  2.23671717  6.57960606 0.06655010 0.08810619 0.23698302
## 394  1.324339394  2.27865758  6.66379091 0.06422353 0.08552015 0.23286239
## 395  1.344682828  2.32059798  6.74797576 0.06197289 0.08298745 0.22869285
## 396  1.365026263  2.36253838  6.83216061 0.05979609 0.08050851 0.22448144
## 397  1.385369697  2.40447879  6.91634545 0.05769104 0.07808360 0.22023507
## 398  1.405713131  2.44641919  7.00053030 0.05565572 0.07571288 0.21596049
## 399  1.426056566  2.48835960  7.08471515 0.05368811 0.07339639 0.21166428
## 400  1.446400000  2.53030000  7.16890000 0.05178624 0.07113410 0.20735283
##      Str disag pred.prob
## 1   0.04468304 Str agree
## 2   0.04633679 Str agree
## 3   0.04804866 Str agree
## 4   0.04982048 Str agree
## 5   0.05165408 Str agree
## 6   0.05355137 Str agree
## 7   0.05551426 Str agree
## 8   0.05754473 Str agree
## 9   0.05964477 Str agree
## 10  0.06181643 Str agree
## 11  0.06406177 Str agree
## 12  0.06638289 Str agree
## 13  0.06878194 Str agree
## 14  0.07126107 Str agree
## 15  0.07382247 Str agree
## 16  0.07646836 Str agree
## 17  0.07920097 Str agree
## 18  0.08202255 Str agree
## 19  0.08493539 Str agree
## 20  0.08794176 Str agree
## 21  0.09104395 Str agree
## 22  0.09424427 Str agree
## 23  0.09754501 Str agree
## 24  0.10094847 Str agree
## 25  0.10445694 Str agree
## 26  0.10807268 Str agree
## 27  0.11179796 Str agree
## 28  0.11563500 Str agree
## 29  0.11958600 Str agree
## 30  0.12365312 Str agree
## 31  0.12783849 Str agree
## 32  0.13214415 Str agree
## 33  0.13657212 Str agree
## 34  0.14112434 Str agree
## 35  0.14580268 Str agree
## 36  0.15060890 Str agree
## 37  0.15554471 Str agree
## 38  0.16061169 Str agree
## 39  0.16581132 Str agree
## 40  0.17114496 Str agree
## 41  0.17661384 Str agree
## 42  0.18221906 Str agree
## 43  0.18796157 Str agree
## 44  0.19384215 Str agree
## 45  0.19986142 Str agree
## 46  0.20601985 Str agree
## 47  0.21231768 Str agree
## 48  0.21875499 Str agree
## 49  0.22533164     Disag
## 50  0.23204728     Disag
## 51  0.23890135     Disag
## 52  0.24589305     Disag
## 53  0.25302134     Disag
## 54  0.26028495     Disag
## 55  0.26768236     Disag
## 56  0.27521178     Disag
## 57  0.28287119     Disag
## 58  0.29065828     Disag
## 59  0.29857049     Disag
## 60  0.30660498 Str disag
## 61  0.31475866 Str disag
## 62  0.32302816 Str disag
## 63  0.33140985 Str disag
## 64  0.33989982 Str disag
## 65  0.34849392 Str disag
## 66  0.35718773 Str disag
## 67  0.36597660 Str disag
## 68  0.37485561 Str disag
## 69  0.38381963 Str disag
## 70  0.39286330 Str disag
## 71  0.40198104 Str disag
## 72  0.41116709 Str disag
## 73  0.42041547 Str disag
## 74  0.42972007 Str disag
## 75  0.43907460 Str disag
## 76  0.44847262 Str disag
## 77  0.45790758 Str disag
## 78  0.46737283 Str disag
## 79  0.47686163 Str disag
## 80  0.48636715 Str disag
## 81  0.49588255 Str disag
## 82  0.50540093 Str disag
## 83  0.51491540 Str disag
## 84  0.52441907 Str disag
## 85  0.53390508 Str disag
## 86  0.54336664 Str disag
## 87  0.55279701 Str disag
## 88  0.56218954 Str disag
## 89  0.57153771 Str disag
## 90  0.58083509 Str disag
## 91  0.59007543 Str disag
## 92  0.59925260 Str disag
## 93  0.60836069 Str disag
## 94  0.61739394 Str disag
## 95  0.62634680 Str disag
## 96  0.63521395 Str disag
## 97  0.64399028 Str disag
## 98  0.65267092 Str disag
## 99  0.66125123 Str disag
## 100 0.66972683 Str disag
## 101 0.04468304 Str agree
## 102 0.04633679 Str agree
## 103 0.04804866 Str agree
## 104 0.04982048 Str agree
## 105 0.05165408 Str agree
## 106 0.05355137 Str agree
## 107 0.05551426 Str agree
## 108 0.05754473 Str agree
## 109 0.05964477 Str agree
## 110 0.06181643 Str agree
## 111 0.06406177 Str agree
## 112 0.06638289 Str agree
## 113 0.06878194 Str agree
## 114 0.07126107 Str agree
## 115 0.07382247 Str agree
## 116 0.07646836 Str agree
## 117 0.07920097 Str agree
## 118 0.08202255 Str agree
## 119 0.08493539 Str agree
## 120 0.08794176 Str agree
## 121 0.09104395 Str agree
## 122 0.09424427 Str agree
## 123 0.09754501 Str agree
## 124 0.10094847 Str agree
## 125 0.10445694 Str agree
## 126 0.10807268 Str agree
## 127 0.11179796 Str agree
## 128 0.11563500 Str agree
## 129 0.11958600 Str agree
## 130 0.12365312 Str agree
## 131 0.12783849 Str agree
## 132 0.13214415 Str agree
## 133 0.13657212 Str agree
## 134 0.14112434 Str agree
## 135 0.14580268 Str agree
## 136 0.15060890 Str agree
## 137 0.15554471 Str agree
## 138 0.16061169 Str agree
## 139 0.16581132 Str agree
## 140 0.17114496 Str agree
## 141 0.17661384 Str agree
## 142 0.18221906 Str agree
## 143 0.18796157 Str agree
## 144 0.19384215 Str agree
## 145 0.19986142 Str agree
## 146 0.20601985 Str agree
## 147 0.21231768 Str agree
## 148 0.21875499 Str agree
## 149 0.22533164     Disag
## 150 0.23204728     Disag
## 151 0.23890135     Disag
## 152 0.24589305     Disag
## 153 0.25302134     Disag
## 154 0.26028495     Disag
## 155 0.26768236     Disag
## 156 0.27521178     Disag
## 157 0.28287119     Disag
## 158 0.29065828     Disag
## 159 0.29857049     Disag
## 160 0.30660498 Str disag
## 161 0.31475866 Str disag
## 162 0.32302816 Str disag
## 163 0.33140985 Str disag
## 164 0.33989982 Str disag
## 165 0.34849392 Str disag
## 166 0.35718773 Str disag
## 167 0.36597660 Str disag
## 168 0.37485561 Str disag
## 169 0.38381963 Str disag
## 170 0.39286330 Str disag
## 171 0.40198104 Str disag
## 172 0.41116709 Str disag
## 173 0.42041547 Str disag
## 174 0.42972007 Str disag
## 175 0.43907460 Str disag
## 176 0.44847262 Str disag
## 177 0.45790758 Str disag
## 178 0.46737283 Str disag
## 179 0.47686163 Str disag
## 180 0.48636715 Str disag
## 181 0.49588255 Str disag
## 182 0.50540093 Str disag
## 183 0.51491540 Str disag
## 184 0.52441907 Str disag
## 185 0.53390508 Str disag
## 186 0.54336664 Str disag
## 187 0.55279701 Str disag
## 188 0.56218954 Str disag
## 189 0.57153771 Str disag
## 190 0.58083509 Str disag
## 191 0.59007543 Str disag
## 192 0.59925260 Str disag
## 193 0.60836069 Str disag
## 194 0.61739394 Str disag
## 195 0.62634680 Str disag
## 196 0.63521395 Str disag
## 197 0.64399028 Str disag
## 198 0.65267092 Str disag
## 199 0.66125123 Str disag
## 200 0.66972683 Str disag
## 201 0.04468304 Str agree
## 202 0.04633679 Str agree
## 203 0.04804866 Str agree
## 204 0.04982048 Str agree
## 205 0.05165408 Str agree
## 206 0.05355137 Str agree
## 207 0.05551426 Str agree
## 208 0.05754473 Str agree
## 209 0.05964477 Str agree
## 210 0.06181643 Str agree
## 211 0.06406177 Str agree
## 212 0.06638289 Str agree
## 213 0.06878194 Str agree
## 214 0.07126107 Str agree
## 215 0.07382247 Str agree
## 216 0.07646836 Str agree
## 217 0.07920097 Str agree
## 218 0.08202255 Str agree
## 219 0.08493539 Str agree
## 220 0.08794176 Str agree
## 221 0.09104395 Str agree
## 222 0.09424427 Str agree
## 223 0.09754501 Str agree
## 224 0.10094847 Str agree
## 225 0.10445694 Str agree
## 226 0.10807268 Str agree
## 227 0.11179796 Str agree
## 228 0.11563500 Str agree
## 229 0.11958600 Str agree
## 230 0.12365312 Str agree
## 231 0.12783849 Str agree
## 232 0.13214415 Str agree
## 233 0.13657212 Str agree
## 234 0.14112434 Str agree
## 235 0.14580268 Str agree
## 236 0.15060890 Str agree
## 237 0.15554471 Str agree
## 238 0.16061169 Str agree
## 239 0.16581132 Str agree
## 240 0.17114496 Str agree
## 241 0.17661384 Str agree
## 242 0.18221906 Str agree
## 243 0.18796157 Str agree
## 244 0.19384215 Str agree
## 245 0.19986142 Str agree
## 246 0.20601985 Str agree
## 247 0.21231768 Str agree
## 248 0.21875499 Str agree
## 249 0.22533164     Disag
## 250 0.23204728     Disag
## 251 0.23890135     Disag
## 252 0.24589305     Disag
## 253 0.25302134     Disag
## 254 0.26028495     Disag
## 255 0.26768236     Disag
## 256 0.27521178     Disag
## 257 0.28287119     Disag
## 258 0.29065828     Disag
## 259 0.29857049     Disag
## 260 0.30660498 Str disag
## 261 0.31475866 Str disag
## 262 0.32302816 Str disag
## 263 0.33140985 Str disag
## 264 0.33989982 Str disag
## 265 0.34849392 Str disag
## 266 0.35718773 Str disag
## 267 0.36597660 Str disag
## 268 0.37485561 Str disag
## 269 0.38381963 Str disag
## 270 0.39286330 Str disag
## 271 0.40198104 Str disag
## 272 0.41116709 Str disag
## 273 0.42041547 Str disag
## 274 0.42972007 Str disag
## 275 0.43907460 Str disag
## 276 0.44847262 Str disag
## 277 0.45790758 Str disag
## 278 0.46737283 Str disag
## 279 0.47686163 Str disag
## 280 0.48636715 Str disag
## 281 0.49588255 Str disag
## 282 0.50540093 Str disag
## 283 0.51491540 Str disag
## 284 0.52441907 Str disag
## 285 0.53390508 Str disag
## 286 0.54336664 Str disag
## 287 0.55279701 Str disag
## 288 0.56218954 Str disag
## 289 0.57153771 Str disag
## 290 0.58083509 Str disag
## 291 0.59007543 Str disag
## 292 0.59925260 Str disag
## 293 0.60836069 Str disag
## 294 0.61739394 Str disag
## 295 0.62634680 Str disag
## 296 0.63521395 Str disag
## 297 0.64399028 Str disag
## 298 0.65267092 Str disag
## 299 0.66125123 Str disag
## 300 0.66972683 Str disag
## 301 0.04468304 Str agree
## 302 0.04633679 Str agree
## 303 0.04804866 Str agree
## 304 0.04982048 Str agree
## 305 0.05165408 Str agree
## 306 0.05355137 Str agree
## 307 0.05551426 Str agree
## 308 0.05754473 Str agree
## 309 0.05964477 Str agree
## 310 0.06181643 Str agree
## 311 0.06406177 Str agree
## 312 0.06638289 Str agree
## 313 0.06878194 Str agree
## 314 0.07126107 Str agree
## 315 0.07382247 Str agree
## 316 0.07646836 Str agree
## 317 0.07920097 Str agree
## 318 0.08202255 Str agree
## 319 0.08493539 Str agree
## 320 0.08794176 Str agree
## 321 0.09104395 Str agree
## 322 0.09424427 Str agree
## 323 0.09754501 Str agree
## 324 0.10094847 Str agree
## 325 0.10445694 Str agree
## 326 0.10807268 Str agree
## 327 0.11179796 Str agree
## 328 0.11563500 Str agree
## 329 0.11958600 Str agree
## 330 0.12365312 Str agree
## 331 0.12783849 Str agree
## 332 0.13214415 Str agree
## 333 0.13657212 Str agree
## 334 0.14112434 Str agree
## 335 0.14580268 Str agree
## 336 0.15060890 Str agree
## 337 0.15554471 Str agree
## 338 0.16061169 Str agree
## 339 0.16581132 Str agree
## 340 0.17114496 Str agree
## 341 0.17661384 Str agree
## 342 0.18221906 Str agree
## 343 0.18796157 Str agree
## 344 0.19384215 Str agree
## 345 0.19986142 Str agree
## 346 0.20601985 Str agree
## 347 0.21231768 Str agree
## 348 0.21875499 Str agree
## 349 0.22533164     Disag
## 350 0.23204728     Disag
## 351 0.23890135     Disag
## 352 0.24589305     Disag
## 353 0.25302134     Disag
## 354 0.26028495     Disag
## 355 0.26768236     Disag
## 356 0.27521178     Disag
## 357 0.28287119     Disag
## 358 0.29065828     Disag
## 359 0.29857049     Disag
## 360 0.30660498 Str disag
## 361 0.31475866 Str disag
## 362 0.32302816 Str disag
## 363 0.33140985 Str disag
## 364 0.33989982 Str disag
## 365 0.34849392 Str disag
## 366 0.35718773 Str disag
## 367 0.36597660 Str disag
## 368 0.37485561 Str disag
## 369 0.38381963 Str disag
## 370 0.39286330 Str disag
## 371 0.40198104 Str disag
## 372 0.41116709 Str disag
## 373 0.42041547 Str disag
## 374 0.42972007 Str disag
## 375 0.43907460 Str disag
## 376 0.44847262 Str disag
## 377 0.45790758 Str disag
## 378 0.46737283 Str disag
## 379 0.47686163 Str disag
## 380 0.48636715 Str disag
## 381 0.49588255 Str disag
## 382 0.50540093 Str disag
## 383 0.51491540 Str disag
## 384 0.52441907 Str disag
## 385 0.53390508 Str disag
## 386 0.54336664 Str disag
## 387 0.55279701 Str disag
## 388 0.56218954 Str disag
## 389 0.57153771 Str disag
## 390 0.58083509 Str disag
## 391 0.59007543 Str disag
## 392 0.59925260 Str disag
## 393 0.60836069 Str disag
## 394 0.61739394 Str disag
## 395 0.62634680 Str disag
## 396 0.63521395 Str disag
## 397 0.64399028 Str disag
## 398 0.65267092 Str disag
## 399 0.66125123 Str disag
## 400 0.66972683 Str disag
## Plot for probability
# x1
p<-ggplot(lnewdat, aes(x=x1, y=Probability, group=Level)) +
  geom_line(aes(color=Level))+
  geom_point(aes(color=Level))
p 

############################################################
### Conditional logit data analysis example: Travel Mode ###
############################################################

# Number of obs: 840

# mode = air/ train/ bus/ car

# choice =   yes/ no

# wait = terminal waiting time for plane, train and bus (minutes); 0 for car
# vcost = in vehicle cost for all stages (dollars)
# travel = travel time (in-vehicle time) for all stages (minutes)
# gcst = generalized cost measure: invc+(invc*value of travel time savings)(dollars)
# income = household income ($1000s)
# size = traveling group size in mode chosen (number)

## Load package and data
library(mlogit)
## Warning: package 'mlogit' was built under R version 4.1.1
## Loading required package: dfidx
## Warning: package 'dfidx' was built under R version 4.1.1
## 
## Attaching package: 'dfidx'
## The following object is masked from 'package:MASS':
## 
##     select
## The following object is masked from 'package:stats':
## 
##     filter
data("TravelMode",package="AER")

summary(cl.TM <- mlogit(choice ~ wait + vcost + travel, TravelMode))
## 
## Call:
## mlogit(formula = choice ~ wait + vcost + travel, data = TravelMode, 
##     method = "nr")
## 
## Frequencies of alternatives:choice
##     air   train     bus     car 
## 0.27619 0.30000 0.14286 0.28095 
## 
## nr method
## 5 iterations, 0h:0m:0s 
## g'(-H)^-1g = 0.000192 
## successive function values within tolerance limits 
## 
## Coefficients :
##                      Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept):train -0.78666667  0.60260733 -1.3054   0.19174    
## (Intercept):bus   -1.43363372  0.68071345 -2.1061   0.03520 *  
## (Intercept):car   -4.73985647  0.86753178 -5.4636 4.665e-08 ***
## wait              -0.09688675  0.01034202 -9.3683 < 2.2e-16 ***
## vcost             -0.01391160  0.00665133 -2.0916   0.03648 *  
## travel            -0.00399468  0.00084915 -4.7043 2.547e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log-Likelihood: -192.89
## McFadden R^2:  0.32024 
## Likelihood ratio test : chisq = 181.74 (p.value = < 2.22e-16)