library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.4 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
library(fpp3)
## -- Attaching packages -------------------------------------------- fpp3 0.4.0 --
## v lubridate 1.7.10 v feasts 0.2.2
## v tsibble 1.0.1.9999 v fable 0.3.1
## v tsibbledata 0.3.0.9000
## -- Conflicts ------------------------------------------------- fpp3_conflicts --
## x lubridate::date() masks base::date()
## x dplyr::filter() masks stats::filter()
## x kableExtra::group_rows() masks dplyr::group_rows()
## x tsibble::intersect() masks base::intersect()
## x tsibble::interval() masks lubridate::interval()
## x dplyr::lag() masks stats::lag()
## x tsibble::setdiff() masks base::setdiff()
## x tsibble::union() masks base::union()
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
Consider the the number of pigs slaughtered in Victoria, available in the aus_livestock dataset.
vicPig <- aus_livestock %>% filter(State=='Victoria' & Animal == 'Pigs' )%>% fill_gaps(.full=TRUE)
Use the ETS() function to estimate the equivalent model for simple exponential smoothing. Find the optimal values of
α and
â„“ 0 , and generate forecasts for the next four months. Compute a 95% prediction interval for the first forecast using
^ y ± 1.96 s where
s is the standard deviation of the residuals. Compare your interval with the interval produced by R.
fit<-vicPig %>% model(ETS(Count ~ error("A") + trend("N") + season("N")))
fit%>%report
## Series: Count
## Model: ETS(A,N,N)
## Smoothing parameters:
## alpha = 0.3221247
##
## Initial states:
## l[0]
## 100646.6
##
## sigma^2: 87480760
##
## AIC AICc BIC
## 13737.10 13737.14 13750.07
pigSigma<-sqrt(fit[[3]][[1]]$fit$fit[[1]])
print(paste("Sigma ", pigSigma))
## [1] "Sigma 9353.11499902547"
fc<- fit%>% forecast(h=4)
fc%>% autoplot(vicPig)
We see an alpha of .3221247 and an l of 100647 sigma of 9353 Our CI
fc$Count[[1]][[1]] + c(-1,1) * 1.96 * pigSigma
## [1] 76854.45 113518.66
R model
hilo(fc$Count)
## <hilo[4]>
## [1] [76854.79, 113518.3]95 [75927.17, 114445.9]95 [75042.22, 115330.9]95
## [4] [74194.54, 116178.6]95
They are quite close given our imprecise distribution.
Data set global_economy contains the annual Exports from many countries. Select one country to analyse.
set.seed(1072021)
ourCountry <- global_economy %>% filter(Code == sample(global_economy$Code,1))
Our country is France.
ourCountry%>% autoplot(vars(Exports))
We see the tail end of the Trente Glorieuses (the thirty post war years renowned for their growth), but it was obviously not an export based boom. The data starts from 1960 on a downbeat, with a massive increase in 1967. The trend is upwards until, there is a sharp drop post 1983, followed by an even sharper recovery. While it can on the whole actually be reasonably accurately modeled with a simple drift trend line, there are substantial variations.
fit <-ourCountry %>% filter(Year<2000)%>% model(ETS(Exports ~ error("A") + trend("N") + season("N")))
fc<- fit%>% forecast(h=10)
fc%>% autoplot(ourCountry%>%filter(Year<2000) )
fc%>% accuracy(ourCountry)
## # A tibble: 1 x 11
## .model Country .type ME RMSE MAE MPE MAPE MASE RMSSE ACF1
## <chr> <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 "ETS(Exports ~~ France Test 1.20 1.63 1.45 4.23 5.23 1.80 1.49 0.0852
1.632346
fit <- ourCountry %>% filter(Year<2000)%>%
model(
AAN = ETS(Exports ~ error("A") + trend("A") + season("N"))
)
fc <- fit %>% forecast(h = 10)
fc%>% autoplot(ourCountry %>% filter(Year<2000))
fc%>% accuracy(ourCountry)
## # A tibble: 1 x 11
## .model Country .type ME RMSE MAE MPE MAPE MASE RMSSE ACF1
## <chr> <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAN France Test -0.414 1.70 1.29 -1.75 4.86 1.61 1.55 0.290
1.704769
Somewhat surprisingly the non trend model is ever so slightly better
That said the trended model is probably better over more cut points, given the underlying data does have a trend
Forecast the Chinese GDP from the global_economy data set using an ETS model. Experiment with the various options in the ETS() function to see how much the forecasts change with damped trend, or with a Box-Cox transformation. Try to develop an intuition of what each is doing to the forecasts.
chinaCountry <- global_economy %>% filter(Country=='China')
fit<- chinaCountry %>% model(
nonDamped = ETS(GDP ~ error("A") + trend("A") +
season("N")),
damped = ETS(GDP ~ error("M") + trend("Ad") +
season("N")),
)
fc<- fit%>% forecast(h=20)
fc%>% autoplot(chinaCountry) +
guides(colour = guide_legend(title = "Forecast"))
Given a very large predictor we see that damped is very conservative, almost laughably so as far as the CI goes (which would have the GDP be massively negative). ## 8.7
Find an ETS model for the Gas data from aus_production and forecast the next few years. Why is multiplicative seasonality necessary here? Experiment with making the trend damped. Does it improve the forecasts?
fit<- aus_production %>% model(
nonSeason = ETS(Gas ~ error("A") + trend("A") +
season("N")),
multiplicative = ETS(Gas ~ error("M") + trend("A") +
season("M"))
)
fc<- fit%>% forecast(h=20)
fc%>% autoplot(aus_production) +
guides(colour = guide_legend(title = "Forecast"))
fit<- aus_production %>% model(
nonDamped = ETS(Gas ~ error("A") + trend("A") +
season("M")),
multiplicative = ETS(Gas ~ error("M") + trend("Ad") +
season("M"))
)
fc<- fit%>% forecast(h=20)
fc%>% autoplot(aus_production) +
guides(colour = guide_legend(title = "Forecast")) + labs(title='Damped')
## 8.8
Recall your retail time series data (from Exercise 8 in Section 2.10).
set.seed(12345678-4321)
myseries <- aus_retail %>%
filter(`Series ID` == sample(aus_retail$`Series ID`,1))
myseriestrain <- myseries %>% filter(year(Month) < 2015)
The seasonality is inconstant. Were the time period shorter it would be less of an issue, but the seasonal variation eventually exceeds the absolute entire market value of 40 years ago.
fit<- myseriestrain %>% model(
nonDamped = ETS(Turnover ~ error("A") + trend("A") +
season("M")),
multiplicative = ETS(Turnover ~ error("M") + trend("Ad") +
season("M"))
)
fc<- fit%>% forecast(h=20)
fc%>% autoplot(myseriestrain)
fc%>% accuracy(myseries)
## # A tibble: 2 x 12
## .model State Industry .type ME RMSE MAE MPE MAPE MASE RMSSE ACF1
## <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 multip~ New S~ Clothin~ Test 24.2 29.8 24.2 5.00 5.00 1.31 1.23 0.105
## 2 nonDam~ New S~ Clothin~ Test 22.7 28.5 22.8 4.68 4.70 1.23 1.17 0.0269
The non damped seems to have a better RMSE/MAE. It seems reasonable to use the non damped one.
checkresiduals(fit$nonDamped[[1]]$fit)
## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.
Residuals look mostly random, though there are some lags.
myseriestrain <- myseries %>% filter(year(Month) < 2011)
fit<- myseriestrain %>% model(
nonDamped = ETS(Turnover ~ error("A") + trend("A") +
season("M")),
SeasonNaive = SNAIVE(Turnover) )
fc<- fit%>% forecast(h=20)
fc%>%autoplot(myseriestrain)
fc%>%accuracy(myseries)
## # A tibble: 2 x 12
## .model State Industry .type ME RMSE MAE MPE MAPE MASE RMSSE ACF1
## <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 nonDam~ New S~ Clothing~ Test -8.39 15.2 11.1 -2.61 3.40 0.671 0.718 0.656
## 2 Season~ New S~ Clothing~ Test 6.47 19.2 16.8 1.91 5.18 1.01 0.906 0.784
Yes, it is handily beaten ## 8.9
For the same retail data, try an STL decomposition applied to the Box-Cox transformed series, followed by ETS on the seasonally adjusted data. How does that compare with your best previous forecasts on the test set?
myseriestraints <- myseries %>% filter(year(Month) < 2011) %>% select(Turnover) %>% as.ts
l <- BoxCox.lambda(myseriestraints)
fit<- myseriestraints %>% stlm( lambda=l )
fc<- fit%>% forecast(h=20)
fc%>%autoplot()
fc%>%accuracy(myseries%>%select(Turnover)%>%as.ts)
## ME RMSE MAE MPE MAPE MASE
## Training set -0.03884369 10.72156 7.928534 -0.1239748 3.831106 0.4779511
## Test set -13.66822722 17.96061 13.935265 -4.1362662 4.219689 0.8400513
## ACF1 Theil's U
## Training set 0.06826631 NA
## Test set 0.55564333 0.2934094
In this case it did improve the RMSE/MAE, and so probably should be used.