Page 303 Problem 11

Problem 10 in the book tells us that the density for the minimum value has mean of mu/n. In this case is 1,000 hours and n is the number of light bulbs: 100. So the expected time for the first of these bulbs is 10 hours.

mu <- 1000
n <- 100
mu/n
## [1] 10

Page 303 Problem 14

\[ f_{X_{1}}(x) = f_{X_{2}}(x) = \begin{cases} \lambda e^{-\lambda x}, & x\geq 0, \\ 0, & otherwise; \end{cases} \] \[ f_{Z}(z) = \int_{-\infty}^{\infty} f_{X_{1}} (x_{2}-y)f_{X_{2}}(x_{2})dx_{2} \] subbing in these variables gives us

\[ = \int_{-\infty}^{\infty} \lambda e ^{-\lambda(x_{2}-z)} \lambda e^{-\lambda x_2} \] now we need to simplify this

\[ = \int_{-\infty}^{\infty} \lambda^2 e^{\lambda(z-x_{2})-\lambda x_2} \] \[ = \int_{-\infty}^{\infty} \lambda^2 e^{\lambda (z -2 x_2)} \] x2 = x1-z \[ = \int_{-\infty}^{\infty} \lambda^2 e^{\lambda (z -2 x_1)} \]

solving via wolframalpha gives

\[ = \frac{1}{2} \lambda e^{-\lambda |z|} \]

Page 320 Problem 1

P( | X - 10 | >= 2)

var <- 100 / 3
stdev <- sqrt(var)
mu <- 10

k <- 2/stdev
up <- 1/k^2
up
## [1] 8.333333

P( | X - 10 | >= 5)

k <- 5/stdev
up <- 1/k^2
up
## [1] 1.333333

P( | X - 10 | >= 9)

k <- 9/stdev
up <- 1/k^2
up
## [1] 0.4115226

P( | X - 10 | >= 20)

k <- 20/stdev
up <- 1/k^2
up
## [1] 0.08333333