El rendimiento de un proceso químico se midió utilizando cinco lotes de materia prima, cinco concentraciones del ácido, cinco tiempo de procesamiento (A, B, C, D, y E) y cinco concentraciones del catalizador (a, b, c, d, e). Se utilizó el cuadrado grecolatino siguiente. Analizar los datos de este experimento (alpha = 0.05) y sacar conclusiones.
df<-read.csv("https://raw.githubusercontent.com/A14Reyes/Diseno_Experimental/main/PROB%204-22%20-%20Hoja%201.csv")
df$Lote=factor(df$Lote)
df$Conc=factor(df$Conc)
df$Trat1=factor(df$Trat1)
df$Trat2=factor(df$Trat2)
df$Y=as.numeric(df$Y)
df
## Lote Conc Trat1 Trat2 Y
## 1 1 1 A a 26
## 2 1 2 B b 16
## 3 1 3 C c 19
## 4 1 4 D d 16
## 5 1 5 E e 13
## 6 2 1 B c 18
## 7 2 2 C d 21
## 8 2 3 D e 18
## 9 2 4 E a 11
## 10 2 5 A b 21
## 11 3 1 C e 20
## 12 3 2 D a 12
## 13 3 3 E b 16
## 14 3 4 A c 25
## 15 3 5 B d 13
## 16 4 1 D b 15
## 17 4 2 E c 15
## 18 4 3 A d 22
## 19 4 4 B e 14
## 20 4 5 C a 17
## 21 5 1 E d 10
## 22 5 2 A e 24
## 23 5 3 B a 17
## 24 5 4 C b 17
## 25 5 5 D c 14
modelo<-lm(Y~Lote+Conc+Trat1+Trat2,data=df)
anova<-aov(modelo)
summary(anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## Lote 4 10.0 2.50 0.427 0.785447
## Conc 4 24.4 6.10 1.043 0.442543
## Trat1 4 342.8 85.70 14.650 0.000941 ***
## Trat2 4 12.0 3.00 0.513 0.728900
## Residuals 8 46.8 5.85
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qqnorm(modelo$residuals)
qqline(modelo$residuals)
boxplot(Y~Trat1,data = df)
boxplot(Y~Trat2,data = df)
library(agricolae)
LSD<-LSD.test(y=anova,trt="Trat1",group=T,console=T)
##
## Study: anova ~ "Trat1"
##
## LSD t Test for Y
##
## Mean Square Error: 5.85
##
## Trat1, means and individual ( 95 %) CI
##
## Y std r LCL UCL Min Max
## A 23.6 2.073644 5 21.10568 26.09432 21 26
## B 15.6 2.073644 5 13.10568 18.09432 13 18
## C 18.8 1.788854 5 16.30568 21.29432 17 21
## D 15.0 2.236068 5 12.50568 17.49432 12 18
## E 13.0 2.549510 5 10.50568 15.49432 10 16
##
## Alpha: 0.05 ; DF Error: 8
## Critical Value of t: 2.306004
##
## least Significant Difference: 3.527508
##
## Treatments with the same letter are not significantly different.
##
## Y groups
## A 23.6 a
## C 18.8 b
## B 15.6 bc
## D 15.0 c
## E 13.0 c
bar.group(x=LSD$groups,horiz=T,col="blue",xlim=c(0,50), xlab="Rendimiento", ylab="Tiempos de Procesamiento", main="Tiempos vs Rendimiento")
LSD<-LSD.test(y=anova,trt="Trat2",group=T,console=T)
##
## Study: anova ~ "Trat2"
##
## LSD t Test for Y
##
## Mean Square Error: 5.85
##
## Trat2, means and individual ( 95 %) CI
##
## Y std r LCL UCL Min Max
## a 16.6 5.941380 5 14.10568 19.09432 11 26
## b 17.0 2.345208 5 14.50568 19.49432 15 21
## c 18.2 4.324350 5 15.70568 20.69432 14 25
## d 16.4 5.128353 5 13.90568 18.89432 10 22
## e 17.8 4.494441 5 15.30568 20.29432 13 24
##
## Alpha: 0.05 ; DF Error: 8
## Critical Value of t: 2.306004
##
## least Significant Difference: 3.527508
##
## Treatments with the same letter are not significantly different.
##
## Y groups
## c 18.2 a
## e 17.8 a
## b 17.0 a
## a 16.6 a
## d 16.4 a
bar.group(x=LSD$groups,horiz=T,col="skyblue",xlim=c(0,50),xlab="Rendimiento", ylab="Concentración del catalizador", main="Concentración vs Rendimiento")
Duncan<-duncan.test(anova,"Trat1", group=T, console=T)
##
## Study: anova ~ "Trat1"
##
## Duncan's new multiple range test
## for Y
##
## Mean Square Error: 5.85
##
## Trat1, means
##
## Y std r Min Max
## A 23.6 2.073644 5 21 26
## B 15.6 2.073644 5 13 18
## C 18.8 1.788854 5 17 21
## D 15.0 2.236068 5 12 18
## E 13.0 2.549510 5 10 16
##
## Alpha: 0.05 ; DF Error: 8
##
## Critical Range
## 2 3 4 5
## 3.527508 3.675996 3.758993 3.808753
##
## Means with the same letter are not significantly different.
##
## Y groups
## A 23.6 a
## C 18.8 b
## B 15.6 bc
## D 15.0 c
## E 13.0 c
bar.group(x=Duncan$groups,horiz=T,col="red",xlim=c(0,50), xlab="Rendimiento", ylab="Tiempos de Procesamiento", main="Tiempos vs Rendimiento")
Duncan<-duncan.test(anova,"Trat2", group=T, console=T)
##
## Study: anova ~ "Trat2"
##
## Duncan's new multiple range test
## for Y
##
## Mean Square Error: 5.85
##
## Trat2, means
##
## Y std r Min Max
## a 16.6 5.941380 5 11 26
## b 17.0 2.345208 5 15 21
## c 18.2 4.324350 5 14 25
## d 16.4 5.128353 5 10 22
## e 17.8 4.494441 5 13 24
##
## Alpha: 0.05 ; DF Error: 8
##
## Critical Range
## 2 3 4 5
## 3.527508 3.675996 3.758993 3.808753
##
## Means with the same letter are not significantly different.
##
## Y groups
## c 18.2 a
## e 17.8 a
## b 17.0 a
## a 16.6 a
## d 16.4 a
bar.group(x=Duncan$groups,horiz=T,col="pink",xlim=c(0,50), xlab="Rendimiento", ylab="Concentración del catalizador", main="Concentración vs Rendimiento")
library(car)
## Loading required package: carData
##
## Attaching package: 'carData'
## The following object is masked _by_ '.GlobalEnv':
##
## Duncan
leveneTest(df$Y~df$Trat1)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 4 0.1791 0.9465
## 20
leveneTest(df$Y~df$Trat2)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 4 0.7247 0.5853
## 20
plot(anova$residuals)
abline(h=0)