library(readxl)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.4 v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.0.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x lubridate::as.difftime() masks base::as.difftime()
## x lubridate::date() masks base::date()
## x dplyr::filter() masks stats::filter()
## x lubridate::intersect() masks base::intersect()
## x dplyr::lag() masks stats::lag()
## x lubridate::setdiff() masks base::setdiff()
## x lubridate::union() masks base::union()
sismo_nac<-read.csv("C:\\Users\\divis\\Downloads\\SSNMX_catalogo_19800101_20210924.csv", na=c("*", "N/D", "no calculable"), header = T)
dim(sismo_nac)
## [1] 226771 10
nchar(sismo_nac$Referencia.de.localizacion[1])
## [1] 41
unlist(gregexpr(",", sismo_nac$Referencia.de.localizacion[1]))
## [1] 36
substr(sismo_nac$Referencia.de.localizacion[1],
unlist(gregexpr(",", sismo_nac$Referencia.de.localizacion[1]))+2,
nchar(sismo_nac$Referencia.de.localizacion[1]))
## [1] "MICH"
sismo_nac$Estado<-substr(sismo_nac$Referencia.de.localizacion,
unlist(gregexpr(",", sismo_nac$Referencia.de.localizacion))+2,
nchar(sismo_nac$Referencia.de.localizacion))
head(sismo_nac)
## Fecha Hora Magnitud Latitud Longitud Profundidad
## 1 01/01/1980 04:12:00 NA 16.98 -102.33 33
## 2 01/01/1980 06:02:37 NA 13.50 -91.36 33
## 3 01/01/1980 07:47:55 4.6 13.21 -90.46 59
## 4 01/01/1980 12:30:10 NA 16.37 -97.85 40
## 5 01/01/1980 21:42:37 NA 16.85 -98.52 33
## 6 02/01/1980 11:16:17 NA 16.14 -97.94 77
## Referencia.de.localizacion Fecha.UTC Hora.UTC Estatus
## 1 109 km al SUR de CD LAZARO CARDENAS, MICH 01/01/1980 10:12:00 revisado
## 2 156 km al SURESTE de CD HIDALGO, CHIS 01/01/1980 12:02:37 revisado
## 3 244 km al SURESTE de CD HIDALGO, CHIS 01/01/1980 13:47:55 revisado
## 4 22 km al ESTE de PINOTEPA NACIONAL, OAX 01/01/1980 18:30:10 revisado
## 5 22 km al NOROESTE de OMETEPEC, GRO 02/01/1980 03:42:37 revisado
## 6 25 km al SURESTE de PINOTEPA NACIONAL, OAX 02/01/1980 17:16:17 revisado
## Estado
## 1 MICH
## 2 CHIS
## 3 CHIS
## 4 OAX
## 5 GRO
## 6 OAX
fecha_hora<-paste0(sismo_nac$Fecha, " ", sismo_nac$Hora)
sismo_nac$fecha_hora<-strptime(fecha_hora, format = "%d/%m/%Y %H:%M:%S")
sismo_nac$Fecha<-as.Date(sismo_nac$Fecha, format = "%d/%m/%Y")
sismo_nac$Hora<-strptime(sismo_nac$Hora, format = "%T")
#
sismo_nac$mes<-month(sismo_nac$fecha_hora)
sismo_nac$tots<-rep(1, 226771)
aggregate(tots~mes, sismo_nac, sum)
## mes tots
## 1 1 21195
## 2 2 20644
## 3 3 19155
## 4 4 17959
## 5 5 17807
## 6 6 18129
## 7 7 17633
## 8 8 17827
## 9 9 21497
## 10 10 18254
## 11 11 18094
## 12 12 18570
AGS<-42
BC<-(7517+653)
BCS<-(2784+62)
CAMP<-62
CDMX<-285
CHIH<-400
CHIS<-42095+818
COAH<-109
COL<-5037+251
DGO<-61
GRO<-38322+927
GTO<-54+28
HGO<-536+12
JAL<-6427+405
MEX<-583
MICH<-13097+882
MOR<-233
NAY<-227+36
NL<-423
OAX<-92698+1894
PUE<-1130
QR<-86
QRO<-15
SIN<-920
SLP<-189
SON<-1182+127
TAB<-530
TAMS<-115
TLAX<-120
VER<-5159
YUC<-3
ZAC<-228
TOT_est<-data.frame(AGS,BC,BCS,CAMP,CDMX,CHIH,CHIS,COAH,COL,DGO,GRO,
GTO,HGO,JAL,MEX,MICH,MOR,NAY,NL,OAX,PUE,QR,QRO,SIN,SLP,
SON,TAB,TAMS,TLAX,VER,YUC,ZAC)
Estado2<-c("AGS", "BC", "BCS","CAMP", "CDMX","CHIH", "CHIS","COAH","COL",
"DGO","GRO","GTO","HGO","JAL","MEX","MICH","MOR","NAY", "NL",
"OAX","PUE","QR","QRO", "SIN","SLP","SON", "TAB", "TAMS","TLAX",
"VER","YUC","ZAC")
nt_sis<-c(42, 8170, 2846,62,285,400,42913,109,5288,61,39249,82,548,
6832,583,13979,233,263,423,94592,1130,86,15,920,189,1309,530,
115,120,5159,3,228)
Sismos_x_edo<-data.frame(cbind(Estado2,nt_sis))
Sismos_x_edo[order(as.numeric(Sismos_x_edo$nt_sis), decreasing = T),]
## Estado2 nt_sis
## 20 OAX 94592
## 7 CHIS 42913
## 11 GRO 39249
## 16 MICH 13979
## 2 BC 8170
## 14 JAL 6832
## 9 COL 5288
## 30 VER 5159
## 3 BCS 2846
## 26 SON 1309
## 21 PUE 1130
## 24 SIN 920
## 15 MEX 583
## 13 HGO 548
## 27 TAB 530
## 19 NL 423
## 6 CHIH 400
## 5 CDMX 285
## 18 NAY 263
## 17 MOR 233
## 32 ZAC 228
## 25 SLP 189
## 29 TLAX 120
## 28 TAMS 115
## 8 COAH 109
## 22 QR 86
## 12 GTO 82
## 4 CAMP 62
## 10 DGO 61
## 1 AGS 42
## 23 QRO 15
## 31 YUC 3
sismo_nac$s_hora<-hour(sismo_nac$fecha_hora)
ggplot(sismo_nac)
ggplot(sismo_nac,aes(x=s_hora, y=tots),geom_histogram(), coord_polar())
#1.4
which(sismo_nac$Magnitud>=5)
## [1] 14 23 129 298 601 606 685 698 777 823
## [11] 1047 1095 1123 1156 1180 1337 1346 1367 1368 1456
## [21] 1458 1560 1636 1652 1656 1867 1878 1881 1928 2015
## [31] 2095 2156 2171 2590 2651 2685 2768 2769 2772 2812
## [41] 2850 3064 3095 3110 3146 3243 3276 3360 3405 3809
## [51] 3812 3873 3987 4015 4082 4114 4127 4171 4277 4334
## [61] 4386 4418 4555 4585 4593 4703 4721 4722 4838 4839
## [71] 4931 5019 5082 5087 5095 5104 5126 5149 5215 5242
## [81] 5243 5246 5295 5389 5454 5455 5456 5474 5485 5486
## [91] 5498 5700 5770 5822 5883 6053 6079 6088 6098 6101
## [101] 6190 6218 6222 6299 6306 6589 6592 6732 6747 6749
## [111] 6750 6755 6767 6797 6869 7015 7085 7086 7148 7186
## [121] 7192 7209 7286 7295 7327 7548 7577 7586 7597 7644
## [131] 7669 7675 7678 7704 7890 8128 8170 8175 8217 8703
## [141] 8877 9084 9118 9182 9267 9342 9456 9476 9490 9548
## [151] 9670 9735 9788 9899 9900 9915 10155 10193 10203 10261
## [161] 10283 10317 10480 10524 10589 10591 10592 10671 10702 10800
## [171] 10803 10926 11044 11061 11114 11194 11199 11227 11335 11339
## [181] 11500 11613 11619 11634 11673 11759 11783 11926 12055 12558
## [191] 12565 12579 12768 12840 12970 13073 13077 13173 13260 13277
## [201] 13401 13426 13428 13451 13497 13524 13582 13666 13723 13743
## [211] 13771 13772 13799 13802 13806 13834 13863 13866 13870 13927
## [221] 14086 14152 14172 14386 14569 14572 14583 14616 14634 14641
## [231] 14722 14734 14737 14807 14840 14869 15004 15005 15090 15277
## [241] 15323 15361 15386 15432 15449 15450 15640 15687 15759 15790
## [251] 15827 15923 15925 15946 16032 16040 16050 16051 16077 16078
## [261] 16080 16116 16123 16128 16143 16150 16154 16163 16183 16212
## [271] 16257 16258 16260 16262 16360 16380 16420 16475 16517 16604
## [281] 16705 16706 16707 16718 16743 16745 16766 16789 16849 16851
## [291] 16873 16914 17003 17062 17069 17082 17107 17128 17169 17195
## [301] 17225 17258 17260 17261 17277 17311 17356 17363 17381 17384
## [311] 17459 17483 17488 17532 17565 17577 17578 17635 17673 17693
## [321] 17695 17697 17726 17781 17794 17814 17828 17845 17953 17984
## [331] 18109 18118 18130 18242 18243 18246 18265 18284 18315 18348
## [341] 18362 18405 18442 18443 18447 18452 18478 18587 18649 18661
## [351] 18667 18703 18706 18707 18713 18740 18777 18785 18795 18802
## [361] 18879 18897 18912 18955 18956 18958 18981 19000 19016 19030
## [371] 19044 19045 19057 19079 19094 19108 19111 19149 19192 19207
## [381] 19255 19257 19259 19282 19332 19373 19374 19430 19473 19482
## [391] 19538 19569 19570 19639 19669 19670 19683 19706 19727 19838
## [401] 19839 19847 19889 19918 19962 20003 20017 20021 20047 20069
## [411] 20073 20074 20081 20124 20127 20128 20129 20133 20139 20144
## [421] 20151 20152 20159 20164 20178 20198 20202 20206 20207 20241
## [431] 20244 20248 20274 20293 20305 20309 20335 20388 20404 20549
## [441] 20591 20634 20639 20640 20646 20657 20668 20705 20730 20745
## [451] 20766 20838 20885 20900 20920 20923 20955 20997 21002 21009
## [461] 21061 21069 21078 21081 21085 21104 21163 21165 21170 21223
## [471] 21305 21318 21333 21334 21386 21402 21403 21405 21408 21416
## [481] 21458 21528 21533 21555 21565 21568 21572 21576 21602 21608
## [491] 21627 21634 21640 21670 21684 21685 21769 21770 21771 21776
## [501] 21783 21839 21845 21878 21879 21882 21898 21902 21903 21914
## [511] 21922 21993 22008 22009 22014 22017 22030 22043 22044 22045
## [521] 22056 22100 22148 22266 22313 22325 22392 22422 22436 22458
## [531] 22540 22548 22558 22575 22579 22593 22614 22621 22635 22645
## [541] 22651 22691 22730 22845 22847 22927 22953 22966 22970 22982
## [551] 22984 23008 23016 23153 23211 23240 23315 23330 23342 23374
## [561] 23390 23391 23392 23408 23519 23536 23545 23554 23557 23558
## [571] 23579 23580 23585 23591 23595 23596 23601 23633 23710 23807
## [581] 23811 23813 23825 23862 23944 23946 23973 23979 24014 24015
## [591] 24018 24026 24037 24084 24091 24160 24178 24184 24189 24288
## [601] 24382 24492 24633 24736 24819 24827 24890 24983 24998 25069
## [611] 25109 25140 25241 25293 25323 25429 25532 25612 25670 25731
## [621] 25764 25858 25867 25868 25921 25942 25988 26038 26201 26219
## [631] 26222 26360 26374 26392 26418 26468 26612 26698 26706 26732
## [641] 26735 26806 26823 26830 26837 26848 26880 26902 26933 26936
## [651] 26987 27022 27036 27042 27044 27051 27063 27081 27113 27129
## [661] 27155 27182 27190 27209 27330 27342 27390 27403 27426 27429
## [671] 27488 27664 27683 27800 27834 27896 27939 28022 28066 28140
## [681] 28209 28289 28314 28367 28412 28427 28466 28568 28611 28656
## [691] 28666 28669 28670 28693 28719 28867 28877 28926 28928 28973
## [701] 28996 29003 29132 29155 29255 29267 29358 29373 29386 29425
## [711] 29454 29510 29559 29566 29573 29586 29588 29609 29648 29651
## [721] 29652 29690 29727 29853 29905 29910 29915 29917 29935 29938
## [731] 30004 30029 30046 30086 30195 30278 30480 30494 30638 30682
## [741] 30691 30738 30790 30793 31013 31144 31147 31202 31204 31232
## [751] 31303 31309 31310 31311 31316 31346 31356 31378 31380 31384
## [761] 31405 31429 31541 31546 31583 31584 31589 31633 31662 31731
## [771] 31746 31946 31959 31994 32037 32104 32133 32323 32326 32351
## [781] 32423 32503 32504 32642 32657 32717 32730 32770 32812 32858
## [791] 32864 32893 32975 32991 33068 33223 33383 33645 33708 33832
## [801] 33911 34005 34166 34168 34242 34307 34464 34495 34501 34509
## [811] 34527 34569 34626 34645 34729 34800 34883 34889 35066 35129
## [821] 35224 35248 35284 35292 35311 35355 35387 35400 35465 35466
## [831] 35526 35532 35604 35707 35716 35718 35748 35825 35844 35861
## [841] 35938 35956 36023 36077 36086 36110 36142 36149 36211 36335
## [851] 36372 36429 36430 36601 36607 36766 36790 36794 36955 37097
## [861] 37150 37175 37248 37559 37724 37961 37988 37997 38124 38153
## [871] 38562 38613 38628 38645 38709 38925 39022 39215 39269 39392
## [881] 39396 39444 39445 39474 39642 39646 39650 39699 39831 39832
## [891] 39835 39848 39908 39998 40006 40042 40135 40141 40161 40222
## [901] 40274 40403 40591 40662 40681 40684 40708 40836 40870 40949
## [911] 41086 41207 41208 41370 41474 41587 41717 41760 41801 42305
## [921] 42534 42657 42703 43128 43139 43167 43189 43337 43342 43346
## [931] 43352 43403 43671 43672 43674 43689 43740 43786 44186 44483
## [941] 44504 44784 44804 44861 45022 45023 45188 45343 45625 45641
## [951] 45642 45706 45774 46028 46106 46173 46333 46574 46862 47088
## [961] 47376 47975 47976 48115 48116 48321 48349 48378 48439 48464
## [971] 48493 48771 49092 49172 49180 49181 49216 49447 49512 49513
## [981] 49514 49515 49517 49518 49602 49781 49813 49826 49996 50024
## [991] 50025 50033 50066 50136 50382 50390 51111 51146 51327 51469
## [1001] 51544 51659 51742 51853 51856 51868 51882 51935 52157 52216
## [1011] 52302 52352 52427 52459 52548 52718 52896 52908 52915 53021
## [1021] 53060 53064 53066 53155 53162 53403 53456 53595 53605 53628
## [1031] 53645 53795 53801 53915 53919 53944 53970 54448 54857 54865
## [1041] 54866 54907 55030 55112 55134 55262 55555 55574 56018 56400
## [1051] 56576 56601 56616 56662 56673 56774 56813 56884 56886 57170
## [1061] 57171 57172 57328 57506 57583 57737 57948 58607 58612 58837
## [1071] 59316 59335 59364 59525 60191 60192 60199 60303 60435 60436
## [1081] 60443 60797 60890 61066 61178 61316 61318 61358 61543 61573
## [1091] 61576 61637 61760 61992 62472 62854 62927 63053 63060 63200
## [1101] 63205 63376 63385 63469 63885 64114 64149 64156 64292 64344
## [1111] 64486 64854 64940 64998 65092 65278 65827 65990 66188 66615
## [1121] 66878 67038 67243 67948 68254 68464 68481 68902 69083 70352
## [1131] 70639 70905 72001 72452 72676 72764 73075 73114 73116 73803
## [1141] 73967 74083 74117 74119 74120 74121 74614 74704 74733 75436
## [1151] 76368 76426 77098 77896 77987 78415 79548 80099 80485 80510
## [1161] 81030 81285 81724 81878 81947 82214 82253 82258 82335 83232
## [1171] 83549 83575 83824 83883 83884 84241 84636 85797 85822 85859
## [1181] 85973 86088 86294 87472 88479 89675 90135 90796 92654 93746
## [1191] 94271 95067 95098 96457 96944 97031 98580 98747 98788 98918
## [1201] 98938 99130 99135 99362 99393 99852 99867 99986 100015 100030
## [1211] 100032 100042 100117 100126 103087 103313 103365 103839 104250 104364
## [1221] 104485 104589 104594 104616 104640 104732 104737 104774 104814 104888
## [1231] 104940 105228 105285 105308 105340 105533 105622 105664 105891 106640
## [1241] 106707 106741 106845 107121 107188 107267 107272 107372 107393 107534
## [1251] 107905 108157 108169 108195 108439 108568 109345 109350 109486 111533
## [1261] 112392 113275 113845 114007 115155 115378 115389 115645 118072 118656
## [1271] 119190 119528 121390 122946 123131 123207 123495 123696 123730 123810
## [1281] 124117 124525 124868 125266 125609 128797 128806 130220 130816 133387
## [1291] 133606 133915 137121 137370 137425 138678 138887 139102 139139 139799
## [1301] 140604 141255 142430 142522 143045 143285 143292 143457 143522 143646
## [1311] 143936 143976 145004 146079 147289 149326 150928 151575 151911 152384
## [1321] 152557 152662 152764 152911 155423 155637 155966 157264 158345 158765
## [1331] 159236 159444 160968 160992 161392 161454 161897 161914 162889 163018
## [1341] 163463 163546 164760 165128 165237 166262 166951 167099 169557 170159
## [1351] 170417 170721 171729 172611 173488 173517 173842 174373 174756 175268
## [1361] 176112 176998 177462 177552 177937 178210 179926 181271 181373 182113
## [1371] 183203 185327 186453 186473 187000 187394 187867 188105 188694 189232
## [1381] 189814 191604 191674 191798 193577 193615 193684 194411 195625 196370
## [1391] 197034 197268 199546 201068 201086 201997 203309 208073 211052 211122
## [1401] 212499 212881 213007 215289 216364 218700 219298 219486 220173 220461
## [1411] 222071 222076 222347 222436 222440 223957 224249 224741 224945 224951
## [1421] 224955 224984 226627 226629 226662
sismos_fuertes<-data.frame(cbind(sismo_nac$Estado[which(sismo_nac$Magnitud>=5)],
sismo_nac$tots[which(sismo_nac$Magnitud>=5)]))
fac_sismos_fue<-factor(sismos_fuertes$X1)
summary(fac_sismos_fue)
## BC BCS BCS CHIH CHIS CHIS COL GRO GRO JAL JAL MICH MICH
## 44 114 1 1 493 6 29 181 4 104 1 59 1
## NAY OAX OAX PUE QR SIN SIN SON SON VER VER
## 6 271 1 9 4 50 1 24 2 18 1
nt_sis_fu<-c(115,499,185,105,272)
Estado3<-c( "BCS", "CHIS",
"GRO","JAL",
"OAX")
Sismos_f_x_edo<-data.frame(cbind(Estado3,nt_sis_fu))
Sismos_f_x_edo[order(as.numeric(Sismos_f_x_edo$nt_sis_fu), decreasing = T),]
## Estado3 nt_sis_fu
## 2 CHIS 499
## 5 OAX 272
## 3 GRO 185
## 1 BCS 115
## 4 JAL 105
#1.5
ye_sis<-year(sismo_nac$fecha_hora)
Chiap<-c(which(sismo_nac$Estado=="CHIS"),which(sismo_nac$Estado=="CHIS "))
#
lcs<-read.csv("C:\\Users\\divis\\Downloads\\corazon.csv", na=c("*", "N/D", "no calculable"), header = T)
x<-matrix(c(lcs$biking,lcs$smoking), byrow = F, ncol = 2)
y<-matrix(lcs$heart.disease,ncol = 1)
b<-(t(x)%*%x)^(-1)%*%t(x)%*%y
b
## [,1]
## [1,] 0.4430093
## [2,] 1.0496279