This code provides a general protocol to build a tidy biodiversity report from Snapshot Camera Trap records. This consists of a series of general analysis including, species richness, relative abundance index and useful visualizations. If you want only the results in a tidy html, please refer to “3b_clean_biodiv_report” script. Other useful visualizations can be found in 2_species_exploration
For more specific biodiversity analysis use script “biodiversity analysis”. the input data is a species records table either with Zooniverse format or manually created with Digikam.
OBJ: 1. clean table with standard sp names, cols and values 2. calculate independence and create a temp file to get RAIs 3. create plots (richness, RAI, etc)
It is important to familiarized with the customized functions in 1_SNAPSHOT_source_functions, there might be some extra steps that need to be done by researches to accommodate data and also to double check. For example, if the researcher needs very detailed number of individuals and sex they must explore and adapt raw data accordingly. For instance, due to the uncertainty of counting individuals by volunteers there are some strings including a range of values (e.g. 11-51”. Since for this code we need a single number, the formulation takes the minimum number, but it is responsibility of the researcher to check this and adapt the code according to their ecological system and needs.
This is a sample script using a snapshot report from Mountain Zebra S1. In order to use this script for other sites, you have to adapt certain names in the arguments, but specially in the outputs (e.g. csv tables, figures, etc). It is important to have a clear idea of the sampling periods…see also 2_species_exploration.
Please give credit to Lain E. Pardo, Snapshot Safari or WildEco Lab at Nelson Mandela University if you use this tool.
This is a work in progress if you want to contribute or find any issues please let us know.
library(readr) #read cols as character ## Warning: package 'readr' was built under R version 4.0.5
library(readxl)
library(tidyverse)## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v dplyr 1.0.7
## v tibble 3.1.4 v stringr 1.4.0
## v tidyr 1.1.3 v forcats 0.5.1
## v purrr 0.3.4
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggplot2)
library(hrbrthemes)
library(lubridate)## Warning: package 'lubridate' was built under R version 4.0.5
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(viridis)## Warning: package 'viridis' was built under R version 4.0.5
## Loading required package: viridisLite
## Warning: package 'viridisLite' was built under R version 4.0.5
library(camtrapR) #for camera op matrix needed for other analysis
source("1_SNAPSHOT_source_functions.R") # customized functions are store here, this must be included in the working directorynote: if report comes from DIGIKAM start from : “# For roaming sites and reports coming from DIGIKAM” start from lines xxx
rep_sp1 <- read_csv("data_in/MTZ_S1_full_report_0-50%_agreement_corrected_fin.csv") ## New names:
## * `` -> ...27
## * `` -> ...28
## * `` -> ...29
## * `` -> ...30
## * `` -> ...31
## * ...
## Rows: 5629 Columns: 36
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (11): capture_id, season, site, capture_time_local, zooniverse_url_0, z...
## dbl (14): roll, capture, subject_id, question__standing, question__resting,...
## lgl (10): ...27, ...28, ...29, ...30, ...31, ...32, ...33, ...34, ...35, ...36
## date (1): capture_date_local
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
#check names quickly
unique(rep_sp1$question__species)## [1] "zebramountain" "ostrich"
## [3] "jackalblackbacked" "baboon"
## [5] "birdother" "springbok"
## [7] "eland" "hare"
## [9] "lionfemale" "lionmale"
## [11] "porcupine" "hartebeestred"
## [13] "gemsbokoryx" "buffalo"
## [15] "tortoise" "kudu"
## [17] "secretarybird" "cheetah"
## [19] "hyenabrown" "genetcommonsmallspotted"
## [21] "wildebeestblack" "birdsofprey"
## [23] "blesbok" "rhinocerosblack"
## [25] "aardwolf" "monkeyvervet"
## [27] "rhebokgrey" "bushpig"
## [29] "foxcape" "unresolvable"
## [31] "duikercommongrey" "aardvarkantbear"
## [33] "steenbok" "caracal"
## [35] "reptilesamphibians" "warthog"
## [37] "reedbuckmountain" "foxbateared"
## [39] "mongooseyellow" "blank"
## [41] "bustardludwigs" "craneblue"
## [43] "bushbuck" "unidentifiable"
## [45] "harespring"
#standardize col number and names from original report before cbind
rep_sp <- cols_snap_std(rep_sp1)
names(rep_sp)## [1] "capture_id" "season"
## [3] "site" "roll"
## [5] "capture" "capture_date_local"
## [7] "capture_time_local" "zooniverse_url_0"
## [9] "zooniverse_url_1" "zooniverse_url_2"
## [11] "subject_id" "question__species"
## [13] "question__count_max" "question__count_median"
## [15] "question__count_min" "question__standing"
## [17] "question__resting" "question__moving"
## [19] "question__eating" "question__interacting"
## [21] "question__young_present" "question__horns_count_max"
## [23] "question__horns_count_median" "question__horns_count_min"
## [25] "p_users_identified_this_species" "pielous_evenness_index"
class(rep_sp$question__count_median)## [1] "character"
class(rep_sp$question__count_median)## [1] "character"
unique(rep_sp$site)## [1] "B04" "B05" "C04" "C06" "C07" "C08" "D03" "D04" "D05" "D06" "D07" "E03"
## [13] "E04" "E05" "E06" "F04" "F05" "G04" "B08"
# check some columns, if there are or different strings to those in the snapshot source functions amend accordingly
colSums(is.na(rep_sp))## Warning: One or more parsing issues, see `problems()` for details
## capture_id season
## 0 0
## site roll
## 0 0
## capture capture_date_local
## 0 0
## capture_time_local zooniverse_url_0
## 0 0
## zooniverse_url_1 zooniverse_url_2
## 5465 5467
## subject_id question__species
## 0 0
## question__count_max question__count_median
## 7 7
## question__count_min question__standing
## 7 7
## question__resting question__moving
## 7 7
## question__eating question__interacting
## 7 7
## question__young_present question__horns_count_max
## 54 5409
## question__horns_count_median question__horns_count_min
## 5523 5560
## p_users_identified_this_species pielous_evenness_index
## 0 0
unique(rep_sp$question__count_median)## [1] "1" "2" "3" "4" "8" "10" "5" "6"
## [9] "9" "7" "Nov-50" NA
unique(rep_sp$question__count_max) # ## [1] "1" "3" "2" "Nov-50" "4" "6" "5" "7"
## [9] "10" "8" "9" "51+" NA
#deal with NA
#THIS IS ASSUMING NA =1, please adapt according to your needs.
# important: Create DateTimeOriginal column for clean_table and other functions to work
rep_sp <-rep_sp %>%
mutate(question__count_median =replace_na(question__count_median, 1),
question__count_max = replace_na(question__count_max,1)) %>%
mutate(DateTimeOriginal = paste(capture_date_local, capture_time_local))
write.csv(rep_sp, "temp_rep_sp.csv")df <- standardise_names(rep_sp)
unique(df$question__species)## [1] "zebramountain" "ostrich"
## [3] "jackalblackbacked" "baboon"
## [5] "birdother" "springbok"
## [7] "eland" "hare"
## [9] "lion" "porcupine"
## [11] "hartebeestred" "gemsbokoryx"
## [13] "buffalo" "tortoise"
## [15] "kudu" "secretarybird"
## [17] "cheetah" "hyenabrown"
## [19] "genetcommonsmallspotted" "wildebeestblack"
## [21] "birdofprey" "blesbok"
## [23] "rhinocerosblack" "aardwolf"
## [25] "monkeyvervet" "rhebokgrey"
## [27] "bushpig" "foxcape"
## [29] "unresolvable" "duikercommon"
## [31] "aardvarkantbear" "steenbok"
## [33] "caracal" "reptilesamphibians"
## [35] "warthog" "reedbuckmountain"
## [37] "foxbateared" "mongooseyellow"
## [39] "blank" "bustardludwigs"
## [41] "craneblue" "bushbuck"
## [43] "harespring"
There might be some things more to check in the values or strings of some columns. Although in function clean_table we deal with a lot of this SNAPSHOT_source_functions.You might want to double check generic terms such as “zebra” or “antelope” and change accordingly
Here we standardize species names, filter out no animals (e.g. fire), arrange some cols, force some strings to useful values, etc. There are two arguments here, you can include by_catch data by adding FALSE to rm_bycatch (birds etc, see formulation in the source functions to know what criteria was used), and you can also put only presence absence
df.clean <- clean_table(df, rm_bycatch = FALSE, pres_abs = FALSE)
unique(df.clean$question__species)## [1] zebramountain ostrich jackalblackbacked
## [4] baboon birdother springbok
## [7] eland hare lion
## [10] porcupine hartebeestred gemsbokoryx
## [13] buffalo tortoise kudu
## [16] secretarybird cheetah hyenabrown
## [19] genetcommonsmallspotted wildebeestblack birdofprey
## [22] blesbok rhinocerosblack aardwolf
## [25] monkeyvervet rhebokgrey bushpig
## [28] foxcape duikercommon aardvarkantbear
## [31] steenbok caracal reptilesamphibians
## [34] warthog reedbuckmountain foxbateared
## [37] mongooseyellow bustardludwigs craneblue
## [40] bushbuck harespring
## 41 Levels: aardvarkantbear aardwolf baboon birdofprey birdother ... zebramountain
# before reorder chronologically in case, so:
df.clean <- df.clean %>% dplyr::arrange(site, DateTimeOriginal)
indep_records <- indep60(df.clean) #this takes time depending on the size of your file
#save
write.csv(indep_records, "data_out/MTZ_clean_indep_report_snap_form.csv")#check spp again
unique(indep_records$site)## [1] "B04" "B05" "B08" "C04" "C06" "C07" "C08" "D03" "D04" "D05" "D06" "D07"
## [13] "E03" "E04" "E05" "E06" "F04" "F05" "G04"
unique(indep_records$question__species)## [1] zebramountain ostrich jackalblackbacked
## [4] baboon birdother springbok
## [7] hartebeestred eland hare
## [10] lion porcupine gemsbokoryx
## [13] buffalo hyenabrown tortoise
## [16] kudu secretarybird cheetah
## [19] genetcommonsmallspotted harespring wildebeestblack
## [22] birdofprey blesbok rhebokgrey
## [25] rhinocerosblack monkeyvervet aardwolf
## [28] bushbuck reedbuckmountain bushpig
## [31] foxcape duikercommon aardvarkantbear
## [34] steenbok caracal reptilesamphibians
## [37] warthog foxbateared mongooseyellow
## [40] bustardludwigs craneblue
## 41 Levels: aardvarkantbear aardwolf baboon birdofprey birdother ... zebramountain
names(indep_records)## [1] "capture_id" "season"
## [3] "site" "roll"
## [5] "capture" "capture_date_local"
## [7] "capture_time_local" "zooniverse_url_0"
## [9] "zooniverse_url_1" "zooniverse_url_2"
## [11] "subject_id" "question__species"
## [13] "question__count_max" "question__count_median"
## [15] "question__count_min" "question__standing"
## [17] "question__resting" "question__moving"
## [19] "question__eating" "question__interacting"
## [21] "question__young_present" "question__horns_count_max"
## [23] "question__horns_count_median" "question__horns_count_min"
## [25] "p_users_identified_this_species" "pielous_evenness_index"
## [27] "DateTimeOriginal" "row_id"
df1 <- separate(indep_records,season, c("code_loc", "season1"), sep = "_")
df2 <-unite(df1, site_ID, code_loc, site, sep = "_",remove =FALSE) #
df2$site_ID <- as.factor(df2$site_ID) # need to convert to factor again
nlevels(df2$site_ID)## [1] 19
names(df2)## [1] "capture_id" "site_ID"
## [3] "code_loc" "season1"
## [5] "site" "roll"
## [7] "capture" "capture_date_local"
## [9] "capture_time_local" "zooniverse_url_0"
## [11] "zooniverse_url_1" "zooniverse_url_2"
## [13] "subject_id" "question__species"
## [15] "question__count_max" "question__count_median"
## [17] "question__count_min" "question__standing"
## [19] "question__resting" "question__moving"
## [21] "question__eating" "question__interacting"
## [23] "question__young_present" "question__horns_count_max"
## [25] "question__horns_count_median" "question__horns_count_min"
## [27] "p_users_identified_this_species" "pielous_evenness_index"
## [29] "DateTimeOriginal" "row_id"
unique(df2$site_ID)## [1] MTZ_B04 MTZ_B05 MTZ_B08 MTZ_C04 MTZ_C06 MTZ_C07 MTZ_C08 MTZ_D03 MTZ_D04
## [10] MTZ_D05 MTZ_D06 MTZ_D07 MTZ_E03 MTZ_E04 MTZ_E05 MTZ_E06 MTZ_F04 MTZ_F05
## [19] MTZ_G04
## 19 Levels: MTZ_B04 MTZ_B05 MTZ_B08 MTZ_C04 MTZ_C06 MTZ_C07 MTZ_C08 ... MTZ_G04
#read file with traits that also contains the scientific names to be pulled
scient_name <- read_csv("data_in/+traits_in_sp_records_updated.csv")## Rows: 91 Columns: 14
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (12): Scien.Code, Comm.Code, Snapshot.Name, Common.Name, Scientific.Name...
## dbl (2): id, Mass.kg
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
# --- Merge tables
# Select a subset of columns from scient_name table
scient_name_sub <- scient_name %>% dplyr::select(Snapshot.Name, Scientific.Name)
#add a common column to join
scient_name_sub$question__species <- scient_name_sub$Snapshot.Name
# Merge the 2 tables, keeping all data in new filtered report (df.filtered) in the left hand side table (data table 'table")
df2$question__species <- as.character(df2$question__species)
mergenames <- dplyr::left_join(df2, scient_name_sub, by = "question__species")
mergenames$question__species <- as.factor(mergenames$question__species) # coerce back to factors
names(mergenames)## [1] "capture_id" "site_ID"
## [3] "code_loc" "season1"
## [5] "site" "roll"
## [7] "capture" "capture_date_local"
## [9] "capture_time_local" "zooniverse_url_0"
## [11] "zooniverse_url_1" "zooniverse_url_2"
## [13] "subject_id" "question__species"
## [15] "question__count_max" "question__count_median"
## [17] "question__count_min" "question__standing"
## [19] "question__resting" "question__moving"
## [21] "question__eating" "question__interacting"
## [23] "question__young_present" "question__horns_count_max"
## [25] "question__horns_count_median" "question__horns_count_min"
## [27] "p_users_identified_this_species" "pielous_evenness_index"
## [29] "DateTimeOriginal" "row_id"
## [31] "Snapshot.Name" "Scientific.Name"
final.df <- cols_need(mergenames) #final clean df with independent records only, clear column names ready for use
names(final.df)## [1] "Reserve.Location" "Camera.Site" "Common.Name"
## [4] "Scientific.Name" "Photo.Date" "Photo.Time"
## [7] "Number.of.Individuals" "Photo.ID" "Season"
## [10] "Roll" "Zooniverse.Url.1" "Zooniverse.Url.2"
## [13] "Zooniverse.Url.3" "Consensus" "DateTimeOriginal"
#quickly inspect sp
(spmergedrep <- unique(final.df$Common.Name))## [1] zebramountain ostrich jackalblackbacked
## [4] baboon birdother springbok
## [7] hartebeestred eland hare
## [10] lion porcupine gemsbokoryx
## [13] buffalo hyenabrown tortoise
## [16] kudu secretarybird cheetah
## [19] genetcommonsmallspotted harespring wildebeestblack
## [22] birdofprey blesbok rhebokgrey
## [25] rhinocerosblack monkeyvervet aardwolf
## [28] bushbuck reedbuckmountain bushpig
## [31] foxcape duikercommon aardvarkantbear
## [34] steenbok caracal reptilesamphibians
## [37] warthog foxbateared mongooseyellow
## [40] bustardludwigs craneblue
## 41 Levels: aardvarkantbear aardwolf baboon birdofprey birdother ... zebramountain
# save doc
write.csv(final.df,"data_out/MTZ_final_sp_rep_ind60_S_merged.csv")FOR THE REPORTS WE NEED TO FILTER HERE WITHOUT THE BYCATCH…. and then run the other part of the script
basically the matrix of the design (cameras and days..) need: df with sites, coordinates, start and end day of survey (minimum): the metadata or covariates, need the species records cleaned
We will use the metadata table for this to put cam days and start, end of survey. All sites must be there but will better filter by reserve probably
cameras <- read_csv("data_in/1_Metadata_all_fixed_as_snapshot_TEMP_CSV.csv") #contains the covars/metadata too## New names:
## * Visib.1 -> Visib.1...24
## * Visib.1 -> Visib.1...25
## * Visib.1 -> Visib.1...26
## Rows: 711 Columns: 53
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (46): Reserve.Location, Code.Loc.Snap, Site.Original, Camera.Site.Conca...
## dbl (4): id, Lat_Y, Long_X, Elevation
## lgl (1): other.cols.in.metadata2
## date (1): Setup.Date
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(cameras)## spec_tbl_df [711 x 53] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ id : num [1:711] 1 2 3 4 5 6 7 8 9 10 ...
## $ Reserve.Location : chr [1:711] "Augrabies" "Augrabies" "Augrabies" "Augrabies" ...
## $ Code.Loc.Snap : chr [1:711] "AUG" "AUG" "AUG" "AUG" ...
## $ Site.Original : chr [1:711] "B02" "B03" "B04" "B06" ...
## $ Camera.Site.Concatenate: chr [1:711] "AUG_B02" "AUG_B03" "AUG_B04" "AUG_B06" ...
## $ Camera.Site.Std : chr [1:711] "AUG_B02" "AUG_B03" "AUG_B04" "AUG_B06" ...
## $ Setup.Date : Date[1:711], format: "2018-11-25" "2018-11-25" ...
## $ Setup.Time : chr [1:711] "9:21" "8:50" "9:52" "10:34" ...
## $ Lat_Y : num [1:711] -28.5 -28.5 -28.5 -28.5 -28.5 ...
## $ Long_X : num [1:711] 20 20 20.1 20.1 20 ...
## $ Cam.Brand : chr [1:711] "Cuddeback" "Cuddeback" "Cuddeback" "Cuddeback" ...
## $ Flash : chr [1:711] "IR - Black" "IR - Black" "IR - Black" "IR - Black" ...
## $ Cam.Serial.No : chr [1:711] NA NA NA NA ...
## $ Height : chr [1:711] "50" "50" "50" "40" ...
## $ Fixture : chr [1:711] "Pole" "Pole" "Pole" "Pole" ...
## $ DRXN : chr [1:711] "NW" "SE" "E" "S" ...
## $ IMG# N : chr [1:711] "5622" "5617" "5627" "5582" ...
## $ IMG# E : chr [1:711] "5623" "5618" "5628" "5583" ...
## $ IMG# S : chr [1:711] "5624" "5619" "5629" "5584" ...
## $ IMG# W : chr [1:711] "5625" "5620" "5630" "5585" ...
## $ IMG# CT : chr [1:711] "5626" "5621" "5631" "5586" ...
## $ Habitat.Descriptor : chr [1:711] "Dry river bed" "Dry river bed" "Dry river bed" "Drainage line" ...
## $ Shade : chr [1:711] "0" "1" "0" "1" ...
## $ Visib.1...24 : chr [1:711] "10" "26" "12" "16" ...
## $ Visib.1...25 : num [1:711] 1 8 4 3 18 7 3 4 1 3 ...
## $ Visib.1...26 : chr [1:711] "3" "4" "12" "11" ...
## $ SITE_ID : chr [1:711] "B02" "B03" "B04" "B06" ...
## $ Dist.Tree.1 : chr [1:711] "1" "1" "1" "3" ...
## $ Dist.Tree.2 : chr [1:711] "1" "2" "2" "1" ...
## $ Dist.Tree.3 : chr [1:711] "3" "8" "8" "6" ...
## $ Dist.Tree.4 : chr [1:711] "5" "4" "9" "5" ...
## $ Dist.Tree.5 : chr [1:711] "4" "13" "3" "7" ...
## $ Dist.Tree.6 : chr [1:711] "5" "13" "3" "5" ...
## $ Dist.Tree.7 : chr [1:711] "8" "21" "5" "8" ...
## $ Dist.Tree.8 : chr [1:711] "6" "13" "7" "9" ...
## $ Dist.Tree.9 : chr [1:711] "13" "16" "10" "10" ...
## $ Dist.Tree.10 : chr [1:711] "14" "17" "15" "12" ...
## $ Dist.Road : chr [1:711] "253" "100" "128" "260" ...
## $ Dist.Water : chr [1:711] NA NA NA NA ...
## $ Dist.Outcrop : chr [1:711] "220" "140" "180" "200" ...
## $ Dist.Trail : chr [1:711] NA NA NA NA ...
## $ Gral.Comments : chr [1:711] NA NA NA NA ...
## $ other.cols.WATER (Km)P : chr [1:711] NA NA NA NA ...
## $ other.cols.in.metadata2: logi [1:711] NA NA NA NA NA NA ...
## $ Setup.Date.Original : chr [1:711] "25-Nov-2018" "25-Nov-2018" "25-Nov-2018" "24-Nov-2018" ...
## $ Management.Type : chr [1:711] "National Park" "National Park" "National Park" "National Park" ...
## $ Official.Name : chr [1:711] "Augrabies Falls National Park" "Augrabies Falls National Park" "Augrabies Falls National Park" "Augrabies Falls National Park" ...
## $ Country : chr [1:711] "South Africa" "South Africa" "South Africa" "South Africa" ...
## $ Province : chr [1:711] "Northern Cape" "Northern Cape" "Northern Cape" "Northern Cape" ...
## $ Municipality : chr [1:711] "Kai !Garib" "Kai !Garib" "Kai !Garib" "Kai !Garib" ...
## $ Vegetation : chr [1:711] "NAMAQUALAND BROKEN VELD" "NAMAQUALAND BROKEN VELD" "NAMAQUALAND BROKEN VELD" "NAMAQUALAND BROKEN VELD" ...
## $ Biome : chr [1:711] "Nama Karoo" "Nama Karoo" "Nama Karoo" "Nama Karoo" ...
## $ Elevation : num [1:711] 713 713 713 637 713 713 713 713 637 637 ...
## - attr(*, "spec")=
## .. cols(
## .. id = col_double(),
## .. Reserve.Location = col_character(),
## .. Code.Loc.Snap = col_character(),
## .. Site.Original = col_character(),
## .. Camera.Site.Concatenate = col_character(),
## .. Camera.Site.Std = col_character(),
## .. Setup.Date = col_date(format = ""),
## .. Setup.Time = col_character(),
## .. Lat_Y = col_double(),
## .. Long_X = col_double(),
## .. Cam.Brand = col_character(),
## .. Flash = col_character(),
## .. Cam.Serial.No = col_character(),
## .. Height = col_character(),
## .. Fixture = col_character(),
## .. DRXN = col_character(),
## .. `IMG# N` = col_character(),
## .. `IMG# E` = col_character(),
## .. `IMG# S` = col_character(),
## .. `IMG# W` = col_character(),
## .. `IMG# CT` = col_character(),
## .. Habitat.Descriptor = col_character(),
## .. Shade = col_character(),
## .. Visib.1...24 = col_character(),
## .. Visib.1...25 = col_number(),
## .. Visib.1...26 = col_character(),
## .. SITE_ID = col_character(),
## .. Dist.Tree.1 = col_character(),
## .. Dist.Tree.2 = col_character(),
## .. Dist.Tree.3 = col_character(),
## .. Dist.Tree.4 = col_character(),
## .. Dist.Tree.5 = col_character(),
## .. Dist.Tree.6 = col_character(),
## .. Dist.Tree.7 = col_character(),
## .. Dist.Tree.8 = col_character(),
## .. Dist.Tree.9 = col_character(),
## .. Dist.Tree.10 = col_character(),
## .. Dist.Road = col_character(),
## .. Dist.Water = col_character(),
## .. Dist.Outcrop = col_character(),
## .. Dist.Trail = col_character(),
## .. Gral.Comments = col_character(),
## .. `other.cols.WATER (Km)P` = col_character(),
## .. other.cols.in.metadata2 = col_logical(),
## .. Setup.Date.Original = col_character(),
## .. Management.Type = col_character(),
## .. Official.Name = col_character(),
## .. Country = col_character(),
## .. Province = col_character(),
## .. Municipality = col_character(),
## .. Vegetation = col_character(),
## .. Biome = col_character(),
## .. Elevation = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
#unique(cameras$Camera.Site.Concatenate)#read file (fixed report)
spp_rec <- final.df
#or load it from the file we created (some times is better to avoid issues)
#spp_rec <- read_csv("data_out/MTZ_final_sp_rep_ind60_S_merged.csv") #quick explo
str(spp_rec)## tibble [1,986 x 15] (S3: tbl_df/tbl/data.frame)
## $ Reserve.Location : chr [1:1986] "MTZ" "MTZ" "MTZ" "MTZ" ...
## $ Camera.Site : Factor w/ 19 levels "MTZ_B04","MTZ_B05",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Common.Name : Factor w/ 41 levels "aardvarkantbear",..: 41 29 29 41 24 24 29 3 24 41 ...
## $ Scientific.Name : chr [1:1986] "Equus zebra" NA NA "Equus zebra" ...
## $ Photo.Date : POSIXct[1:1986], format: "2017-08-23 19:00:00" "2017-08-26 19:00:00" ...
## $ Photo.Time : chr [1:1986] "12:18:04" "15:17:05" "16:24:15" "18:04:31" ...
## $ Number.of.Individuals: num [1:1986] 1 1 1 3 1 1 2 2 1 3 ...
## $ Photo.ID : num [1:1986] 31547018 30785302 30119622 30782166 32731999 ...
## $ Season : chr [1:1986] "S1" "S1" "S1" "S1" ...
## $ Roll : num [1:1986] 1 1 1 1 1 1 1 1 1 1 ...
## $ Zooniverse.Url.1 : chr [1:1986] "https://panoptes-uploads.zooniverse.org/production/subject_location/efd7b1d6-5dbd-4729-92a1-45d4cfaf2caf.jpeg" "https://panoptes-uploads.zooniverse.org/production/subject_location/ac9468de-6b08-40a2-ad5c-a41327f1e30a.jpeg" "https://panoptes-uploads.zooniverse.org/production/subject_location/a8cdf34a-74be-4084-b30a-743954f93ee7.jpeg" "https://panoptes-uploads.zooniverse.org/production/subject_location/a888f549-b8bf-41b2-b4be-3ad5ee097029.jpeg" ...
## $ Zooniverse.Url.2 : chr [1:1986] NA NA NA NA ...
## $ Zooniverse.Url.3 : chr [1:1986] NA NA NA NA ...
## $ Consensus : num [1:1986] 0.78 0.91 1 0.89 1 1 1 0.8 0.6 0.7 ...
## $ DateTimeOriginal : POSIXct[1:1986], format: "2017-08-24 12:18:04" "2017-08-27 15:17:05" ...
class(spp_rec$Photo.Date)## [1] "POSIXct" "POSIXt"
unique(spp_rec$Camera.Site)## [1] MTZ_B04 MTZ_B05 MTZ_B08 MTZ_C04 MTZ_C06 MTZ_C07 MTZ_C08 MTZ_D03 MTZ_D04
## [10] MTZ_D05 MTZ_D06 MTZ_D07 MTZ_E03 MTZ_E04 MTZ_E05 MTZ_E06 MTZ_F04 MTZ_F05
## [19] MTZ_G04
## 19 Levels: MTZ_B04 MTZ_B05 MTZ_B08 MTZ_C04 MTZ_C06 MTZ_C07 MTZ_C08 ... MTZ_G04
unique(spp_rec$Common.Name)## [1] zebramountain ostrich jackalblackbacked
## [4] baboon birdother springbok
## [7] hartebeestred eland hare
## [10] lion porcupine gemsbokoryx
## [13] buffalo hyenabrown tortoise
## [16] kudu secretarybird cheetah
## [19] genetcommonsmallspotted harespring wildebeestblack
## [22] birdofprey blesbok rhebokgrey
## [25] rhinocerosblack monkeyvervet aardwolf
## [28] bushbuck reedbuckmountain bushpig
## [31] foxcape duikercommon aardvarkantbear
## [34] steenbok caracal reptilesamphibians
## [37] warthog foxbateared mongooseyellow
## [40] bustardludwigs craneblue
## 41 Levels: aardvarkantbear aardwolf baboon birdofprey birdother ... zebramountain
so work only with mammals for reports
BYCATCH <- c("birdofprey", "birdother", "bustardkori", "bustardludwigs", "guineafowl",
"squirreltree", "reptilesamphibians", "human", "bustarddenhams",
"secretarybird","tortoise", "domesticanimal", "ostrich", "bat", "reptilesamphibians", "fowlguinea","spider", "reptile", "insect", "bustardludwig's","craneblue", "horse")
mammals <- filter(spp_rec,
!(Common.Name %in% BYCATCH))
unique(mammals$Common.Name)## [1] zebramountain jackalblackbacked baboon
## [4] springbok hartebeestred eland
## [7] hare lion porcupine
## [10] gemsbokoryx buffalo hyenabrown
## [13] kudu cheetah genetcommonsmallspotted
## [16] harespring wildebeestblack blesbok
## [19] rhebokgrey rhinocerosblack monkeyvervet
## [22] aardwolf bushbuck reedbuckmountain
## [25] bushpig foxcape duikercommon
## [28] aardvarkantbear steenbok caracal
## [31] warthog foxbateared mongooseyellow
## 41 Levels: aardvarkantbear aardwolf baboon birdofprey birdother ... zebramountain
spp_rec <- mammalsspp_rec$Photo.Date <- as.Date(spp_rec$Photo.Date, format="%Y-%m-%d")
spp_rec$DateTimeOriginal <- as.POSIXct(spp_rec$DateTimeOriginal)
class(spp_rec$Photo.Date)## [1] "Date"
max(spp_rec$Photo.Date)## [1] "2018-07-17"
min(spp_rec$Photo.Date)## [1] "2017-08-23"
max(spp_rec$Photo.Date)## [1] "2018-07-17"
#using final spp report file cleaned with good var
unique(spp_rec$Reserve.Location)## [1] "MTZ"
table(spp_rec$Camera.Site) ##
## MTZ_B04 MTZ_B05 MTZ_B08 MTZ_C04 MTZ_C06 MTZ_C07 MTZ_C08 MTZ_D03 MTZ_D04 MTZ_D05
## 209 179 4 15 126 53 100 30 145 17
## MTZ_D06 MTZ_D07 MTZ_E03 MTZ_E04 MTZ_E05 MTZ_E06 MTZ_F04 MTZ_F05 MTZ_G04
## 52 102 55 164 145 122 168 26 120
# getting last picture date for all sites as end date of survey, if this is not the case, change
#tibble with new cols of survey period
surv_lenght <- survey_period(spp_rec) #IF UNSURE ABOUT STARTING DATES
surv_lenght## # A tibble: 19 x 4
## Camera.Site First.Photo.Date Last.Photo.Date Act.Days
## <fct> <date> <date> <drtn>
## 1 MTZ_B04 2017-08-24 2018-07-04 314 days
## 2 MTZ_B05 2017-09-01 2018-05-03 244 days
## 3 MTZ_B08 2018-05-03 2018-05-13 10 days
## 4 MTZ_C04 2017-08-26 2018-06-26 304 days
## 5 MTZ_C06 2017-08-23 2018-07-13 324 days
## 6 MTZ_C07 2017-09-03 2018-07-09 309 days
## 7 MTZ_C08 2018-03-28 2018-06-19 83 days
## 8 MTZ_D03 2018-03-28 2018-05-07 40 days
## 9 MTZ_D04 2017-08-23 2018-07-15 326 days
## 10 MTZ_D05 2017-08-24 2017-10-01 38 days
## 11 MTZ_D06 2017-08-27 2017-11-01 66 days
## 12 MTZ_D07 2017-08-25 2018-04-05 223 days
## 13 MTZ_E03 2018-03-28 2018-05-15 48 days
## 14 MTZ_E04 2017-08-24 2018-04-01 220 days
## 15 MTZ_E05 2017-08-23 2018-04-02 222 days
## 16 MTZ_E06 2017-08-24 2018-06-12 292 days
## 17 MTZ_F04 2017-08-24 2018-07-07 317 days
## 18 MTZ_F05 2017-11-02 2017-11-27 25 days
## 19 MTZ_G04 2017-08-24 2018-07-17 327 days
#surv_lenght <- survey_period2(spp_rec) note: if you are sure about the starting date then don´t use “min(photo.date)as start date, use”Setup.Date” from cameras filter by site (e.g.MTZ_Cams); use function “survey_period2”, then manually add start date en mutate for subtraction to cam days, for example:
Working with the survey period demands deep exploration of data, be mindful that there might be gaps between rolls, within roles or between seasons and within seasons, so use exploration code for some visualizations and set the begin and end of survey correctly
now merge this info (first,last photo,cam days as a column into the cameras doc (metadata) explore this part carefully, there might be dates that don´t match and errors can occur
#1. rename col Camera.Site to join with camera df (Camera.Site.Concatenate which is the one in cameras)
surv_lengh2 <- surv_lenght %>% rename(Camera.Site.Concatenate = Camera.Site)
# 2. standardize dates in cameras
names(cameras)## [1] "id" "Reserve.Location"
## [3] "Code.Loc.Snap" "Site.Original"
## [5] "Camera.Site.Concatenate" "Camera.Site.Std"
## [7] "Setup.Date" "Setup.Time"
## [9] "Lat_Y" "Long_X"
## [11] "Cam.Brand" "Flash"
## [13] "Cam.Serial.No" "Height"
## [15] "Fixture" "DRXN"
## [17] "IMG# N" "IMG# E"
## [19] "IMG# S" "IMG# W"
## [21] "IMG# CT" "Habitat.Descriptor"
## [23] "Shade" "Visib.1...24"
## [25] "Visib.1...25" "Visib.1...26"
## [27] "SITE_ID" "Dist.Tree.1"
## [29] "Dist.Tree.2" "Dist.Tree.3"
## [31] "Dist.Tree.4" "Dist.Tree.5"
## [33] "Dist.Tree.6" "Dist.Tree.7"
## [35] "Dist.Tree.8" "Dist.Tree.9"
## [37] "Dist.Tree.10" "Dist.Road"
## [39] "Dist.Water" "Dist.Outcrop"
## [41] "Dist.Trail" "Gral.Comments"
## [43] "other.cols.WATER (Km)P" "other.cols.in.metadata2"
## [45] "Setup.Date.Original" "Management.Type"
## [47] "Official.Name" "Country"
## [49] "Province" "Municipality"
## [51] "Vegetation" "Biome"
## [53] "Elevation"
class(cameras$Setup.Date)## [1] "Date"
unique(cameras$Setup.Date)## [1] "2018-11-25" "2018-11-24" "2018-11-23" "2018-11-22" "2018-07-21"
## [6] "2018-07-22" "2018-07-20" "2018-07-24" "2018-07-25" "2019-10-18"
## [11] "2019-10-19" "2018-09-06" "2018-09-07" NA "2018-09-05"
## [16] "2018-09-04" "2018-09-08" "2018-12-03" "2018-12-04" "2019-03-04"
## [21] "2019-03-05" "2018-05-22" "2018-11-13" "2018-05-21" "2018-05-23"
## [26] "2018-11-27" "2019-01-12" "2018-11-28" "2019-01-15" "2019-01-16"
## [31] "2018-07-19" "2019-07-20" "2018-06-12" "2018-06-13" "2018-06-11"
## [36] "2018-06-14" "2018-06-21" "2018-06-20" "2019-01-20" "2018-06-24"
## [41] "2018-06-25" "2018-06-23" "2018-03-27" "2018-03-26" "2018-03-28"
## [46] "2019-02-27" "2019-02-28" "2019-02-05" "2019-06-17" "2019-06-18"
## [51] "2019-06-19" "2018-11-18" "2018-11-19" "2018-11-20" "2017-10-07"
## [56] "2018-05-31" "2018-06-02" "2019-07-21" "2019-08-14" "2019-08-17"
## [61] "2019-08-10" "2019-08-01" "2018-06-05" "2018-06-06" "2018-06-04"
## [66] "2018-06-01" "2018-06-07" "2018-06-09" "2017-04-16" "2017-04-11"
## [71] "2019-02-14" "2018-06-18" "2019-06-14" "2019-08-07" "2019-06-16"
## [76] "2019-08-09" "2019-09-04" "2019-08-27" "2019-09-06" "2019-08-16"
## [81] "2017-06-28" "2017-06-29" "2017-06-30" "2017-07-01" "2017-07-02"
## [86] "2017-07-03" "2017-07-04" "2017-07-05" "2017-07-06" "2017-07-07"
## [91] "2017-07-08" "2017-07-09" "2017-07-10" "2017-07-11" "2017-07-12"
## [96] "2017-07-13" "2018-07-13" "2018-10-02" "2018-10-01" "2018-08-31"
## [101] "2018-08-30" "2018-09-01" "2017-12-15" "2017-12-14" "2017-12-10"
## [106] "2019-10-05" "2019-10-06" "2019-10-07" "2019-10-08" "2020-03-07"
#cameras$parse_Setup_date <- lubridate::parse_date_time(x = cameras$Setup.Date,
# order = c("dmY", "Ymd","dmy"))#now done from input file..no need here
# join
join <- dplyr::left_join(cameras, surv_lengh2, by = "Camera.Site.Concatenate") #there are some NA as soon as I have all sites, there should be no NA
#here we have to filter by the reserve to avoid NA and other stuff in future analysis
MTZ_cams <- join %>%
filter(Code.Loc.Snap == "MTZ") # object to work with
colSums(is.na(MTZ_cams)) #for Somkhanda, there are 11 sites with 0 nights!!## id Reserve.Location Code.Loc.Snap
## 0 0 0
## Site.Original Camera.Site.Concatenate Camera.Site.Std
## 0 0 0
## Setup.Date Setup.Time Lat_Y
## 0 0 0
## Long_X Cam.Brand Flash
## 0 0 1
## Cam.Serial.No Height Fixture
## 2 0 0
## DRXN IMG# N IMG# E
## 0 0 0
## IMG# S IMG# W IMG# CT
## 0 0 0
## Habitat.Descriptor Shade Visib.1...24
## 0 0 0
## Visib.1...25 Visib.1...26 SITE_ID
## 0 0 0
## Dist.Tree.1 Dist.Tree.2 Dist.Tree.3
## 0 0 0
## Dist.Tree.4 Dist.Tree.5 Dist.Tree.6
## 0 0 0
## Dist.Tree.7 Dist.Tree.8 Dist.Tree.9
## 0 0 0
## Dist.Tree.10 Dist.Road Dist.Water
## 0 0 19
## Dist.Outcrop Dist.Trail Gral.Comments
## 0 1 19
## other.cols.WATER (Km)P other.cols.in.metadata2 Setup.Date.Original
## 19 19 0
## Management.Type Official.Name Country
## 0 0 0
## Province Municipality Vegetation
## 0 0 0
## Biome Elevation First.Photo.Date
## 0 0 0
## Last.Photo.Date Act.Days
## 0 0
MTZ_cams <-MTZ_cams %>%
filter(!is.na(MTZ_cams$Act.Days))
names(MTZ_cams)## [1] "id" "Reserve.Location"
## [3] "Code.Loc.Snap" "Site.Original"
## [5] "Camera.Site.Concatenate" "Camera.Site.Std"
## [7] "Setup.Date" "Setup.Time"
## [9] "Lat_Y" "Long_X"
## [11] "Cam.Brand" "Flash"
## [13] "Cam.Serial.No" "Height"
## [15] "Fixture" "DRXN"
## [17] "IMG# N" "IMG# E"
## [19] "IMG# S" "IMG# W"
## [21] "IMG# CT" "Habitat.Descriptor"
## [23] "Shade" "Visib.1...24"
## [25] "Visib.1...25" "Visib.1...26"
## [27] "SITE_ID" "Dist.Tree.1"
## [29] "Dist.Tree.2" "Dist.Tree.3"
## [31] "Dist.Tree.4" "Dist.Tree.5"
## [33] "Dist.Tree.6" "Dist.Tree.7"
## [35] "Dist.Tree.8" "Dist.Tree.9"
## [37] "Dist.Tree.10" "Dist.Road"
## [39] "Dist.Water" "Dist.Outcrop"
## [41] "Dist.Trail" "Gral.Comments"
## [43] "other.cols.WATER (Km)P" "other.cols.in.metadata2"
## [45] "Setup.Date.Original" "Management.Type"
## [47] "Official.Name" "Country"
## [49] "Province" "Municipality"
## [51] "Vegetation" "Biome"
## [53] "Elevation" "First.Photo.Date"
## [55] "Last.Photo.Date" "Act.Days"
class(MTZ_cams$Last.Photo.Date)## [1] "Date"
class(MTZ_cams$First.Photo.Date)## [1] "Date"
class(MTZ_cams$Camera.Site.Concatenate)## [1] "character"
#Rename back MTZ_CAMS FOR Camera.Site
MTZ_cams <- MTZ_cams %>% rename(Camera.Site = Camera.Site.Concatenate)
class(MTZ_cams$Camera.Site)## [1] "character"
unique(spp_rec$Common.Name) ### [1] zebramountain jackalblackbacked baboon
## [4] springbok hartebeestred eland
## [7] hare lion porcupine
## [10] gemsbokoryx buffalo hyenabrown
## [13] kudu cheetah genetcommonsmallspotted
## [16] harespring wildebeestblack blesbok
## [19] rhebokgrey rhinocerosblack monkeyvervet
## [22] aardwolf bushbuck reedbuckmountain
## [25] bushpig foxcape duikercommon
## [28] aardvarkantbear steenbok caracal
## [31] warthog foxbateared mongooseyellow
## 41 Levels: aardvarkantbear aardwolf baboon birdofprey birdother ... zebramountain
#temp file one reserve only with survey length and previous metadata
#write.csv(MTZ_cams, "data_out/MTZ/MTZ_cams.csv")
#MTZ_cams <- read_csv("data_out/MTZ/MTZ_cams.csv")
# name of stations
unique(MTZ_cams$Camera.Site) ## [1] "MTZ_B04" "MTZ_B05" "MTZ_B08" "MTZ_C04" "MTZ_C06" "MTZ_C07" "MTZ_C08"
## [8] "MTZ_D03" "MTZ_D04" "MTZ_D05" "MTZ_D06" "MTZ_D07" "MTZ_E03" "MTZ_E04"
## [15] "MTZ_E05" "MTZ_E06" "MTZ_F04" "MTZ_F05" "MTZ_G04"
unique(spp_rec$Camera.Site)## [1] MTZ_B04 MTZ_B05 MTZ_B08 MTZ_C04 MTZ_C06 MTZ_C07 MTZ_C08 MTZ_D03 MTZ_D04
## [10] MTZ_D05 MTZ_D06 MTZ_D07 MTZ_E03 MTZ_E04 MTZ_E05 MTZ_E06 MTZ_F04 MTZ_F05
## [19] MTZ_G04
## 19 Levels: MTZ_B04 MTZ_B05 MTZ_B08 MTZ_C04 MTZ_C06 MTZ_C07 MTZ_C08 ... MTZ_G04
Check “2_species_exploration” of records for better plots
cam_op <- cameraOperation(CTtable = MTZ_cams,
setupCol = "First.Photo.Date",
retrievalCol = "Last.Photo.Date",
stationCol = "Camera.Site",
writecsv = T,
hasProblems = FALSE,
outDir = "data_out")## CTtable was converted from tibble to data.frame
camopPlot <- function(camOp){
which.tmp <- grep(as.Date(colnames(camOp)), pattern = "01$")
label.tmp <- format(as.Date(colnames(camOp))[which.tmp], "%Y-%m")
at.tmp <- which.tmp / ncol(camOp)
image(t(as.matrix(camOp)), xaxt = "n", yaxt = "n", col = c("blue", "grey70"))
axis(1, at = at.tmp, labels = label.tmp)
axis(2, at = seq(from = 0, to = 1, length.out = nrow(camOp)), labels = rownames(camOp), cex.axis=0.6,
las = 1, xlab = "wt", ylab = "mpg")
abline(v = at.tmp, col = rgb(0,0,0, 0.2))
box()
}
jpeg(file="MTZ_camplot.jpeg", width =571, height = 421, res = 96)
#check main folder for image and copy
camopPlot(cam_op)
#dev.off()survey_rep <- surveyReport(recordTable = spp_rec,
CTtable = MTZ_cams,
speciesCol = "Common.Name",
stationCol = "Camera.Site",
setupCol = "First.Photo.Date",
retrievalCol = "Last.Photo.Date",
recordDateTimeCol = "DateTimeOriginal",
CTHasProblems = F,
makezip = F, #
sinkpath = "data_out") # ## CTtable was converted from tibble to data.frame
## recordTable was converted from tibble to data.frame
## saved output to file
## data_out/survey_report_2021-10-08.txt
Be careful, values in CTtable vs recordTable (stationcol) should match if there are problems you can try:
# show all unique entries of the sites ID in spp records that are not in the _cams (cameras base)
del_cams <-unique(spp_rec$Camera.Site)[!unique(spp_rec$Camera.Site) %in% MTZ_cams$Camera.Site]survey_rep[[1]] #camera trap operation (similar to input but with effort) survey_rep[[2]] #numMTZ of species by station!! IMPORMTZT survey_rep[[3]] #numMTZ of events and numMTZ of stations by species (rememMTZ not standardise by effort) survey_rep[[4]] #numMTZ of species and events by station survey_rep[[5]] #equal to 4 except for the fat that it contains unobserved species with n_eMTZts = 0
So save them to be able to retrieve them afterwards.
write.csv(survey_rep[[1]], "data_out/details_indiv_reports/1.MTZ_camtrap_operation.csv")
write.csv(survey_rep[[2]], "data_out/details_indiv_reports/2.MTZ_#spp_by_station.csv")
write.csv(survey_rep[[3]], "data_out/details_indiv_reports/3.MTZ_events+#station_by_spp.csv")
write.csv(survey_rep[[4]], "data_out/details_indiv_reports/4.MTZ_#spp+#events_by_station.csv")
write.csv(survey_rep[[5]], "data_out/details_indiv_reports/5.MTZ_#obs¬obsspp+#events_by_station.csv")r2 <- survey_rep[[2]]
ggplot(r2, aes(x = "", y= n_species)) +
geom_boxplot(alpha=0.3, width = 0.5, color = "blue",fill = "lightblue") +
theme(legend.position="none") +
ggtitle("Boxplot of observed species across sites") +
geom_jitter(color="black", size=1, alpha=0.9) +
labs(y="Number of species", x = "") +
theme(plot.margin = unit(c(0.5,0.5,0.5,0.5),"cm")) ggsave((filename = "figures/MTZ_boxplot_sp_richness.jpg"))## Saving 7 x 5 in image
(fig_r2 <- spp_station_r2(r2))ggsave(filename = "figures/MTZ_barplot_sp_per_cam.jpg")## Saving 7 x 5 in image
r3 <-survey_rep[[3]]
(fig_r3 <- station_spp_r3(r3))ggsave(filename = "figures/MTZ_barplot_cams_per_species.jpg")## Saving 7 x 5 in image
r3 <-survey_rep[[3]]
(fig_r3 <- events_spp_r3(r3))ggsave(filename = "figures/MTZ_barplot_events_per_species.jpg")## Saving 7 x 5 in image
the CTtable (cameras) must be just for each reserve otherwise will graph all sites untidy
1st we need to have each site with its corresponding coordinates. #so lets use report 2 (2.#spp_by_station)
spp_rich <- read.csv("data_out/details_indiv_reports/2.MTZ_#spp_by_station.csv", stringsAsFactors = FALSE) #add the location col from cameras/metadata (per reserve) #MTZ_cams <- read.csv(“data_out/MTZ/MTZ_cams.csv”)
lat.long <- select(MTZ_cams, "Camera.Site", "Lat_Y", "Long_X")
head(lat.long)## # A tibble: 6 x 3
## Camera.Site Lat_Y Long_X
## <chr> <dbl> <dbl>
## 1 MTZ_B04 -32.2 25.4
## 2 MTZ_B05 -32.2 25.4
## 3 MTZ_B08 -32.3 25.4
## 4 MTZ_C04 -32.2 25.4
## 5 MTZ_C06 -32.2 25.4
## 6 MTZ_C07 -32.3 25.4
#merge by sites
mergesites <- dplyr::left_join(spp_rich, lat.long, by = "Camera.Site", row.names=NULL)
#mergesites$Camera.Site <- as.factor(mergesites$Camera.Site) # coerce back to factors
str(mergesites)## 'data.frame': 19 obs. of 5 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Camera.Site: chr "MTZ_B04" "MTZ_B05" "MTZ_B08" "MTZ_C04" ...
## $ n_species : int 15 9 1 8 15 6 13 6 18 8 ...
## $ Lat_Y : num -32.2 -32.2 -32.3 -32.2 -32.2 ...
## $ Long_X : num 25.4 25.4 25.4 25.4 25.4 ...
#delete NA row
#mergesites <-mergesites %>% #kruger had NA in coordinates one site
#filter(!is.na(mergesites$Long_X))
#write.csv(mergesites, "data_out/MTZ/details_indiv_reports/2.MTZ_#spp_by_station+coord.csv", row.names = FALSE)
#mergesites <- read.csv("data_out/MTZ/2.#spp_by_station+coord.csv", row.names = 1)
min(mergesites$Long_X) # ## [1] 25.41295
max(mergesites$Long_X) ### [1] 25.51562
min(mergesites$Lat_Y)## [1] -32.28169
max(mergesites$Lat_Y)## [1] -32.15953
(basic scatter plot but tidy) To put a google maps in the background see 1_species_exploration
(spp_richnes_plot<- fig_sp_richness(mergesites))ggsave(filename = "figures/MTZ_Sp_richnes_cams.jpg")## Saving 7 x 5 in image
CAPTURE FREQUENCIES OR RAI (RELATIVE ABUNDANCE INDEX) STANDARIZED BY EFFORT (OF STUDY AREA) we need the cam operation and rep5
effort<- read.csv("data_out/details_indiv_reports/1.MTZ_camtrap_operation.csv", header = TRUE)
rep5 <- read.csv("data_out/details_indiv_reports/5.MTZ_#obs¬obsspp+#events_by_station.csv", header = TRUE)
str(effort)## 'data.frame': 19 obs. of 9 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Camera.Site : chr "MTZ_B04" "MTZ_B05" "MTZ_B08" "MTZ_C04" ...
## $ setup_date : chr "2017-08-24" "2017-09-01" "2018-05-03" "2017-08-26" ...
## $ first_image_date: chr "2017-08-24" "2017-09-01" "2018-05-03" "2017-08-26" ...
## $ last_image_date : chr "2018-07-04" "2018-05-03" "2018-05-13" "2018-06-26" ...
## $ retrieval_date : chr "2018-07-04" "2018-05-03" "2018-05-13" "2018-06-26" ...
## $ n_nights_total : int 314 244 10 304 324 309 83 40 326 38 ...
## $ n_nights_active : int 314 244 10 304 324 309 83 40 326 38 ...
## $ n_cameras : int 1 1 1 1 1 1 1 1 1 1 ...
effort <- effort[,-1]
effort <- effort%>%
filter(n_nights_active >0)
rep5 <- rep5[,-1]
#merge
new.mat <- merge(x = effort, y = rep5, by = "Camera.Site", all = TRUE)
write.csv(new.mat, "data_out/details_indiv_reports/MTZ_new.mat_for_RAI.csv")
#new.mat <- read.csv("data_out/MTZ/MTZ_new.mat_for_RAI")This table include information about Relative Abundance Index or capture frequencies standardized by effort at the grid level (RAI.Gral) and by each camera trap effort (RAImean), as well as number of sites occupied (Sites.Occ) and naive occupancy (Occ.Naive)
Here we have a df with important summary information, including richness, events, naive occupancy, etc
#new.mat <- read_csv("data_out/MTZ_new.mat_for_RAI")
# compute RAI´S, occ, and other in one go
#RAI() = events (not real abundance col)
RAI_calc_table <- RAI_events(new.mat)
library(kableExtra)##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
RAI_calc_table %>%
kbl() %>%
kable_paper("hover", full_width = F)| Common.Name | Total.Cam.Sites | Cam.Days | Total.Count | RAI.Gral | RAImean | RAI.sd | Sites.Occ | Occ.Naive |
|---|---|---|---|---|---|---|---|---|
| aardvarkantbear | 19 | 3732 | 7 | 0.19 | 0.22 | 0.51 | 5 | 0.26 |
| aardwolf | 19 | 3732 | 36 | 0.96 | 0.97 | 2.20 | 5 | 0.26 |
| baboon | 19 | 3732 | 106 | 2.84 | 3.04 | 3.44 | 14 | 0.74 |
| blesbok | 19 | 3732 | 5 | 0.13 | 0.11 | 0.47 | 1 | 0.05 |
| buffalo | 19 | 3732 | 35 | 0.94 | 0.84 | 1.13 | 10 | 0.53 |
| bushbuck | 19 | 3732 | 3 | 0.08 | 0.05 | 0.16 | 2 | 0.11 |
| bushpig | 19 | 3732 | 3 | 0.08 | 0.14 | 0.55 | 2 | 0.11 |
| caracal | 19 | 3732 | 2 | 0.05 | 0.03 | 0.10 | 2 | 0.11 |
| cheetah | 19 | 3732 | 3 | 0.08 | 0.05 | 0.22 | 1 | 0.05 |
| duikercommon | 19 | 3732 | 43 | 1.15 | 1.50 | 3.37 | 5 | 0.26 |
| eland | 19 | 3732 | 52 | 1.39 | 1.86 | 2.85 | 13 | 0.68 |
| foxbateared | 19 | 3732 | 13 | 0.35 | 0.23 | 0.81 | 2 | 0.11 |
| foxcape | 19 | 3732 | 1 | 0.03 | 0.06 | 0.28 | 1 | 0.05 |
| gemsbokoryx | 19 | 3732 | 34 | 0.91 | 1.02 | 1.63 | 8 | 0.42 |
| genetcommonsmallspotted | 19 | 3732 | 9 | 0.24 | 0.31 | 0.76 | 5 | 0.26 |
| hare | 19 | 3732 | 44 | 1.18 | 2.50 | 7.33 | 9 | 0.47 |
| harespring | 19 | 3732 | 2 | 0.05 | 0.05 | 0.14 | 2 | 0.11 |
| hartebeestred | 19 | 3732 | 79 | 2.12 | 2.26 | 3.24 | 13 | 0.68 |
| hyenabrown | 19 | 3732 | 12 | 0.32 | 0.25 | 0.42 | 6 | 0.32 |
| jackalblackbacked | 19 | 3732 | 197 | 5.28 | 7.44 | 14.11 | 15 | 0.79 |
| kudu | 19 | 3732 | 178 | 4.77 | 7.86 | 10.10 | 16 | 0.84 |
| lion | 19 | 3732 | 22 | 0.59 | 0.49 | 1.16 | 5 | 0.26 |
| mongooseyellow | 19 | 3732 | 2 | 0.05 | 0.05 | 0.21 | 1 | 0.05 |
| monkeyvervet | 19 | 3732 | 110 | 2.95 | 3.84 | 7.68 | 10 | 0.53 |
| porcupine | 19 | 3732 | 53 | 1.42 | 1.65 | 2.39 | 11 | 0.58 |
| reedbuckmountain | 19 | 3732 | 2 | 0.05 | 0.13 | 0.48 | 2 | 0.11 |
| rhebokgrey | 19 | 3732 | 20 | 0.54 | 2.71 | 9.25 | 4 | 0.21 |
| rhinocerosblack | 19 | 3732 | 29 | 0.78 | 1.14 | 2.34 | 10 | 0.53 |
| springbok | 19 | 3732 | 148 | 3.97 | 3.27 | 5.81 | 9 | 0.47 |
| steenbok | 19 | 3732 | 4 | 0.11 | 0.16 | 0.51 | 2 | 0.11 |
| warthog | 19 | 3732 | 41 | 1.10 | 0.98 | 3.14 | 2 | 0.11 |
| wildebeestblack | 19 | 3732 | 117 | 3.14 | 2.54 | 7.81 | 5 | 0.26 |
| zebramountain | 19 | 3732 | 420 | 11.25 | 12.26 | 11.22 | 17 | 0.89 |
write.csv(RAI_calc_table, "data_out/+MTZ_final_table_Calc.csv", row.names = FALSE)This plot shows the Relative abundance index (better called capture frequencies) of all species, using the total camera days so comparison should be taken cautiously
(fig_RAIgral <- RAI_gral_barplot(RAI_calc_table))ggsave(filename = "figures/MTZ_barplot_RAI.Gral_per_species.jpg")## Saving 7 x 5 in image
names(new.mat)## [1] "Camera.Site" "setup_date" "first_image_date" "last_image_date"
## [5] "retrieval_date" "n_nights_total" "n_nights_active" "n_cameras"
## [9] "Common.Name" "n_events"
RAIalt <- with(new.mat, round((n_events/n_nights_active)*100, 2))
table.2 <- cbind(new.mat, RAIalt)
table.2## Camera.Site setup_date first_image_date last_image_date retrieval_date
## 1 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 2 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 3 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 4 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 5 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 6 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 7 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 8 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 9 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 10 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 11 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 12 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 13 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 14 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 15 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 16 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 17 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 18 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 19 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 20 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 21 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 22 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 23 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 24 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 25 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 26 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 27 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 28 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 29 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 30 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 31 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 32 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 33 MTZ_B04 2017-08-24 2017-08-24 2018-07-04 2018-07-04
## 34 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 35 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 36 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 37 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 38 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 39 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 40 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 41 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 42 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 43 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 44 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 45 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 46 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 47 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 48 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 49 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 50 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 51 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 52 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 53 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 54 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 55 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 56 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 57 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 58 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 59 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 60 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 61 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 62 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 63 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 64 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 65 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 66 MTZ_B05 2017-09-01 2017-09-01 2018-05-03 2018-05-03
## 67 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 68 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 69 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 70 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 71 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 72 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 73 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 74 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 75 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 76 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 77 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 78 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 79 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 80 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 81 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 82 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 83 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 84 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 85 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 86 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 87 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 88 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 89 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 90 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 91 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 92 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 93 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 94 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 95 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 96 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 97 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 98 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 99 MTZ_B08 2018-05-03 2018-05-03 2018-05-13 2018-05-13
## 100 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 101 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 102 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 103 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 104 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 105 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 106 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 107 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 108 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 109 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 110 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 111 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 112 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 113 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 114 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 115 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 116 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 117 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 118 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 119 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 120 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 121 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 122 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 123 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 124 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 125 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 126 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 127 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 128 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 129 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 130 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 131 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 132 MTZ_C04 2017-08-26 2017-08-26 2018-06-26 2018-06-26
## 133 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 134 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 135 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 136 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 137 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 138 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 139 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 140 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 141 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 142 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 143 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 144 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 145 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 146 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 147 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 148 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 149 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 150 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 151 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 152 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 153 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 154 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 155 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 156 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 157 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 158 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 159 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 160 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 161 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 162 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 163 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 164 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 165 MTZ_C06 2017-08-23 2017-08-23 2018-07-13 2018-07-13
## 166 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 167 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 168 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 169 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 170 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 171 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 172 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 173 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 174 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 175 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 176 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 177 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 178 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 179 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 180 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 181 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 182 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 183 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 184 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 185 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 186 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 187 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 188 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 189 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 190 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 191 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 192 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 193 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 194 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 195 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 196 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 197 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 198 MTZ_C07 2017-09-03 2017-09-03 2018-07-09 2018-07-09
## 199 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 200 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 201 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 202 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 203 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 204 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 205 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 206 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 207 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 208 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 209 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 210 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 211 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 212 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 213 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 214 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 215 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 216 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 217 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 218 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 219 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 220 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 221 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 222 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 223 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 224 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 225 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 226 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 227 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 228 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 229 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 230 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 231 MTZ_C08 2018-03-28 2018-03-28 2018-06-19 2018-06-19
## 232 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 233 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 234 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 235 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 236 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 237 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 238 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 239 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 240 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 241 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 242 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 243 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 244 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 245 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 246 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 247 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 248 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 249 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 250 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 251 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 252 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 253 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 254 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 255 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 256 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 257 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 258 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 259 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 260 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 261 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 262 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 263 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 264 MTZ_D03 2018-03-28 2018-03-28 2018-05-07 2018-05-07
## 265 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 266 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 267 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 268 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 269 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 270 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 271 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 272 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 273 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 274 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 275 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 276 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 277 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 278 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 279 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 280 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 281 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 282 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 283 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 284 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 285 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 286 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 287 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 288 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 289 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 290 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 291 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 292 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 293 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 294 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 295 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 296 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 297 MTZ_D04 2017-08-23 2017-08-23 2018-07-15 2018-07-15
## 298 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 299 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 300 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 301 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 302 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 303 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 304 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 305 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 306 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 307 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 308 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 309 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 310 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 311 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 312 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 313 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 314 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 315 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 316 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 317 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 318 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 319 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 320 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 321 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 322 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 323 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 324 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 325 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 326 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 327 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 328 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 329 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 330 MTZ_D05 2017-08-24 2017-08-24 2017-10-01 2017-10-01
## 331 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 332 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 333 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 334 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 335 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 336 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 337 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 338 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 339 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 340 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 341 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 342 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 343 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 344 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 345 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 346 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 347 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 348 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 349 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 350 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 351 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 352 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 353 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 354 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 355 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 356 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 357 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 358 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 359 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 360 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 361 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 362 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 363 MTZ_D06 2017-08-27 2017-08-27 2017-11-01 2017-11-01
## 364 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 365 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 366 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 367 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 368 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 369 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 370 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 371 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 372 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 373 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 374 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 375 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 376 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 377 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 378 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 379 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 380 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 381 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 382 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 383 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 384 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 385 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 386 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 387 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 388 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 389 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 390 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 391 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 392 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 393 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 394 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 395 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 396 MTZ_D07 2017-08-25 2017-08-25 2018-04-05 2018-04-05
## 397 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 398 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 399 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 400 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 401 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 402 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 403 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 404 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 405 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 406 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 407 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 408 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 409 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 410 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 411 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 412 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 413 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 414 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 415 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 416 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 417 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 418 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 419 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 420 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 421 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 422 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 423 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 424 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 425 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 426 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 427 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 428 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 429 MTZ_E03 2018-03-28 2018-03-28 2018-05-15 2018-05-15
## 430 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 431 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 432 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 433 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 434 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 435 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 436 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 437 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 438 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 439 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 440 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 441 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 442 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 443 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 444 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 445 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 446 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 447 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 448 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 449 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 450 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 451 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 452 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 453 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 454 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 455 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 456 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 457 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 458 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 459 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 460 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 461 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 462 MTZ_E04 2017-08-24 2017-08-24 2018-04-01 2018-04-01
## 463 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 464 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 465 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 466 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 467 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 468 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 469 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 470 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 471 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 472 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 473 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 474 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 475 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 476 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 477 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 478 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 479 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 480 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 481 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 482 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 483 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 484 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 485 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 486 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 487 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 488 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 489 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 490 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 491 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 492 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 493 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 494 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 495 MTZ_E05 2017-08-23 2017-08-23 2018-04-02 2018-04-02
## 496 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 497 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 498 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 499 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 500 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 501 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 502 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 503 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 504 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 505 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 506 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 507 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 508 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 509 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 510 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 511 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 512 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 513 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 514 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 515 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 516 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 517 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 518 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 519 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 520 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 521 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 522 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 523 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 524 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 525 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 526 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 527 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 528 MTZ_E06 2017-08-24 2017-08-24 2018-06-12 2018-06-12
## 529 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 530 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 531 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 532 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 533 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 534 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 535 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 536 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 537 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 538 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 539 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 540 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 541 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 542 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 543 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 544 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 545 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 546 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 547 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 548 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 549 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 550 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 551 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 552 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 553 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 554 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 555 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 556 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 557 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 558 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 559 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 560 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 561 MTZ_F04 2017-08-24 2017-08-24 2018-07-07 2018-07-07
## 562 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 563 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 564 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 565 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 566 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 567 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 568 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 569 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 570 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 571 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 572 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 573 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 574 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 575 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 576 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 577 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 578 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 579 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 580 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 581 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 582 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 583 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 584 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 585 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 586 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 587 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 588 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 589 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 590 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 591 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 592 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 593 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 594 MTZ_F05 2017-11-02 2017-11-02 2017-11-27 2017-11-27
## 595 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 596 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 597 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 598 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 599 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 600 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 601 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 602 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 603 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 604 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 605 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 606 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 607 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 608 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 609 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 610 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 611 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 612 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 613 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 614 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 615 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 616 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 617 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 618 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 619 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 620 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 621 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 622 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 623 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 624 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 625 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 626 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## 627 MTZ_G04 2017-08-24 2017-08-24 2018-07-17 2018-07-17
## n_nights_total n_nights_active n_cameras Common.Name n_events
## 1 314 314 1 aardvarkantbear 0
## 2 314 314 1 aardwolf 0
## 3 314 314 1 baboon 14
## 4 314 314 1 blesbok 0
## 5 314 314 1 buffalo 1
## 6 314 314 1 bushbuck 0
## 7 314 314 1 bushpig 0
## 8 314 314 1 caracal 0
## 9 314 314 1 cheetah 3
## 10 314 314 1 duikercommon 0
## 11 314 314 1 eland 10
## 12 314 314 1 foxbateared 0
## 13 314 314 1 foxcape 0
## 14 314 314 1 gemsbokoryx 1
## 15 314 314 1 genetcommonsmallspotted 1
## 16 314 314 1 hare 3
## 17 314 314 1 harespring 0
## 18 314 314 1 hartebeestred 6
## 19 314 314 1 hyenabrown 3
## 20 314 314 1 jackalblackbacked 11
## 21 314 314 1 kudu 2
## 22 314 314 1 lion 1
## 23 314 314 1 mongooseyellow 0
## 24 314 314 1 monkeyvervet 0
## 25 314 314 1 porcupine 15
## 26 314 314 1 reedbuckmountain 0
## 27 314 314 1 rhebokgrey 0
## 28 314 314 1 rhinocerosblack 0
## 29 314 314 1 springbok 13
## 30 314 314 1 steenbok 0
## 31 314 314 1 warthog 0
## 32 314 314 1 wildebeestblack 0
## 33 314 314 1 zebramountain 125
## 34 244 244 1 aardvarkantbear 0
## 35 244 244 1 aardwolf 0
## 36 244 244 1 baboon 0
## 37 244 244 1 blesbok 5
## 38 244 244 1 buffalo 6
## 39 244 244 1 bushbuck 0
## 40 244 244 1 bushpig 0
## 41 244 244 1 caracal 0
## 42 244 244 1 cheetah 0
## 43 244 244 1 duikercommon 0
## 44 244 244 1 eland 0
## 45 244 244 1 foxbateared 0
## 46 244 244 1 foxcape 0
## 47 244 244 1 gemsbokoryx 0
## 48 244 244 1 genetcommonsmallspotted 0
## 49 244 244 1 hare 17
## 50 244 244 1 harespring 1
## 51 244 244 1 hartebeestred 2
## 52 244 244 1 hyenabrown 0
## 53 244 244 1 jackalblackbacked 4
## 54 244 244 1 kudu 0
## 55 244 244 1 lion 0
## 56 244 244 1 mongooseyellow 0
## 57 244 244 1 monkeyvervet 0
## 58 244 244 1 porcupine 0
## 59 244 244 1 reedbuckmountain 0
## 60 244 244 1 rhebokgrey 0
## 61 244 244 1 rhinocerosblack 0
## 62 244 244 1 springbok 48
## 63 244 244 1 steenbok 0
## 64 244 244 1 warthog 0
## 65 244 244 1 wildebeestblack 82
## 66 244 244 1 zebramountain 14
## 67 10 10 1 aardvarkantbear 0
## 68 10 10 1 aardwolf 0
## 69 10 10 1 baboon 0
## 70 10 10 1 blesbok 0
## 71 10 10 1 buffalo 0
## 72 10 10 1 bushbuck 0
## 73 10 10 1 bushpig 0
## 74 10 10 1 caracal 0
## 75 10 10 1 cheetah 0
## 76 10 10 1 duikercommon 0
## 77 10 10 1 eland 0
## 78 10 10 1 foxbateared 0
## 79 10 10 1 foxcape 0
## 80 10 10 1 gemsbokoryx 0
## 81 10 10 1 genetcommonsmallspotted 0
## 82 10 10 1 hare 0
## 83 10 10 1 harespring 0
## 84 10 10 1 hartebeestred 0
## 85 10 10 1 hyenabrown 0
## 86 10 10 1 jackalblackbacked 0
## 87 10 10 1 kudu 0
## 88 10 10 1 lion 0
## 89 10 10 1 mongooseyellow 0
## 90 10 10 1 monkeyvervet 0
## 91 10 10 1 porcupine 0
## 92 10 10 1 reedbuckmountain 0
## 93 10 10 1 rhebokgrey 4
## 94 10 10 1 rhinocerosblack 0
## 95 10 10 1 springbok 0
## 96 10 10 1 steenbok 0
## 97 10 10 1 warthog 0
## 98 10 10 1 wildebeestblack 0
## 99 10 10 1 zebramountain 0
## 100 304 304 1 aardvarkantbear 0
## 101 304 304 1 aardwolf 0
## 102 304 304 1 baboon 6
## 103 304 304 1 blesbok 0
## 104 304 304 1 buffalo 0
## 105 304 304 1 bushbuck 0
## 106 304 304 1 bushpig 0
## 107 304 304 1 caracal 0
## 108 304 304 1 cheetah 0
## 109 304 304 1 duikercommon 0
## 110 304 304 1 eland 1
## 111 304 304 1 foxbateared 0
## 112 304 304 1 foxcape 0
## 113 304 304 1 gemsbokoryx 0
## 114 304 304 1 genetcommonsmallspotted 0
## 115 304 304 1 hare 1
## 116 304 304 1 harespring 0
## 117 304 304 1 hartebeestred 0
## 118 304 304 1 hyenabrown 0
## 119 304 304 1 jackalblackbacked 1
## 120 304 304 1 kudu 1
## 121 304 304 1 lion 0
## 122 304 304 1 mongooseyellow 0
## 123 304 304 1 monkeyvervet 1
## 124 304 304 1 porcupine 0
## 125 304 304 1 reedbuckmountain 0
## 126 304 304 1 rhebokgrey 0
## 127 304 304 1 rhinocerosblack 1
## 128 304 304 1 springbok 0
## 129 304 304 1 steenbok 0
## 130 304 304 1 warthog 0
## 131 304 304 1 wildebeestblack 0
## 132 304 304 1 zebramountain 3
## 133 324 324 1 aardvarkantbear 0
## 134 324 324 1 aardwolf 26
## 135 324 324 1 baboon 8
## 136 324 324 1 blesbok 0
## 137 324 324 1 buffalo 0
## 138 324 324 1 bushbuck 2
## 139 324 324 1 bushpig 0
## 140 324 324 1 caracal 0
## 141 324 324 1 cheetah 0
## 142 324 324 1 duikercommon 0
## 143 324 324 1 eland 5
## 144 324 324 1 foxbateared 0
## 145 324 324 1 foxcape 0
## 146 324 324 1 gemsbokoryx 5
## 147 324 324 1 genetcommonsmallspotted 1
## 148 324 324 1 hare 4
## 149 324 324 1 harespring 0
## 150 324 324 1 hartebeestred 5
## 151 324 324 1 hyenabrown 3
## 152 324 324 1 jackalblackbacked 27
## 153 324 324 1 kudu 9
## 154 324 324 1 lion 0
## 155 324 324 1 mongooseyellow 0
## 156 324 324 1 monkeyvervet 3
## 157 324 324 1 porcupine 3
## 158 324 324 1 reedbuckmountain 0
## 159 324 324 1 rhebokgrey 0
## 160 324 324 1 rhinocerosblack 3
## 161 324 324 1 springbok 0
## 162 324 324 1 steenbok 0
## 163 324 324 1 warthog 0
## 164 324 324 1 wildebeestblack 0
## 165 324 324 1 zebramountain 22
## 166 309 309 1 aardvarkantbear 0
## 167 309 309 1 aardwolf 0
## 168 309 309 1 baboon 7
## 169 309 309 1 blesbok 0
## 170 309 309 1 buffalo 0
## 171 309 309 1 bushbuck 0
## 172 309 309 1 bushpig 0
## 173 309 309 1 caracal 0
## 174 309 309 1 cheetah 0
## 175 309 309 1 duikercommon 0
## 176 309 309 1 eland 0
## 177 309 309 1 foxbateared 0
## 178 309 309 1 foxcape 0
## 179 309 309 1 gemsbokoryx 0
## 180 309 309 1 genetcommonsmallspotted 0
## 181 309 309 1 hare 0
## 182 309 309 1 harespring 0
## 183 309 309 1 hartebeestred 0
## 184 309 309 1 hyenabrown 0
## 185 309 309 1 jackalblackbacked 0
## 186 309 309 1 kudu 3
## 187 309 309 1 lion 0
## 188 309 309 1 mongooseyellow 0
## 189 309 309 1 monkeyvervet 0
## 190 309 309 1 porcupine 1
## 191 309 309 1 reedbuckmountain 1
## 192 309 309 1 rhebokgrey 8
## 193 309 309 1 rhinocerosblack 0
## 194 309 309 1 springbok 0
## 195 309 309 1 steenbok 0
## 196 309 309 1 warthog 0
## 197 309 309 1 wildebeestblack 0
## 198 309 309 1 zebramountain 33
## 199 83 83 1 aardvarkantbear 0
## 200 83 83 1 aardwolf 4
## 201 83 83 1 baboon 2
## 202 83 83 1 blesbok 0
## 203 83 83 1 buffalo 1
## 204 83 83 1 bushbuck 0
## 205 83 83 1 bushpig 2
## 206 83 83 1 caracal 0
## 207 83 83 1 cheetah 0
## 208 83 83 1 duikercommon 0
## 209 83 83 1 eland 0
## 210 83 83 1 foxbateared 0
## 211 83 83 1 foxcape 1
## 212 83 83 1 gemsbokoryx 0
## 213 83 83 1 genetcommonsmallspotted 0
## 214 83 83 1 hare 0
## 215 83 83 1 harespring 0
## 216 83 83 1 hartebeestred 2
## 217 83 83 1 hyenabrown 1
## 218 83 83 1 jackalblackbacked 51
## 219 83 83 1 kudu 2
## 220 83 83 1 lion 1
## 221 83 83 1 mongooseyellow 0
## 222 83 83 1 monkeyvervet 0
## 223 83 83 1 porcupine 5
## 224 83 83 1 reedbuckmountain 0
## 225 83 83 1 rhebokgrey 7
## 226 83 83 1 rhinocerosblack 0
## 227 83 83 1 springbok 0
## 228 83 83 1 steenbok 0
## 229 83 83 1 warthog 0
## 230 83 83 1 wildebeestblack 0
## 231 83 83 1 zebramountain 21
## 232 40 40 1 aardvarkantbear 0
## 233 40 40 1 aardwolf 0
## 234 40 40 1 baboon 0
## 235 40 40 1 blesbok 0
## 236 40 40 1 buffalo 0
## 237 40 40 1 bushbuck 0
## 238 40 40 1 bushpig 0
## 239 40 40 1 caracal 0
## 240 40 40 1 cheetah 0
## 241 40 40 1 duikercommon 0
## 242 40 40 1 eland 1
## 243 40 40 1 foxbateared 0
## 244 40 40 1 foxcape 0
## 245 40 40 1 gemsbokoryx 2
## 246 40 40 1 genetcommonsmallspotted 0
## 247 40 40 1 hare 0
## 248 40 40 1 harespring 0
## 249 40 40 1 hartebeestred 5
## 250 40 40 1 hyenabrown 0
## 251 40 40 1 jackalblackbacked 0
## 252 40 40 1 kudu 11
## 253 40 40 1 lion 0
## 254 40 40 1 mongooseyellow 0
## 255 40 40 1 monkeyvervet 0
## 256 40 40 1 porcupine 0
## 257 40 40 1 reedbuckmountain 0
## 258 40 40 1 rhebokgrey 0
## 259 40 40 1 rhinocerosblack 4
## 260 40 40 1 springbok 0
## 261 40 40 1 steenbok 0
## 262 40 40 1 warthog 0
## 263 40 40 1 wildebeestblack 0
## 264 40 40 1 zebramountain 7
## 265 326 326 1 aardvarkantbear 3
## 266 326 326 1 aardwolf 2
## 267 326 326 1 baboon 3
## 268 326 326 1 blesbok 0
## 269 326 326 1 buffalo 3
## 270 326 326 1 bushbuck 0
## 271 326 326 1 bushpig 0
## 272 326 326 1 caracal 1
## 273 326 326 1 cheetah 0
## 274 326 326 1 duikercommon 1
## 275 326 326 1 eland 5
## 276 326 326 1 foxbateared 0
## 277 326 326 1 foxcape 0
## 278 326 326 1 gemsbokoryx 13
## 279 326 326 1 genetcommonsmallspotted 0
## 280 326 326 1 hare 3
## 281 326 326 1 harespring 0
## 282 326 326 1 hartebeestred 15
## 283 326 326 1 hyenabrown 3
## 284 326 326 1 jackalblackbacked 27
## 285 326 326 1 kudu 10
## 286 326 326 1 lion 0
## 287 326 326 1 mongooseyellow 0
## 288 326 326 1 monkeyvervet 8
## 289 326 326 1 porcupine 3
## 290 326 326 1 reedbuckmountain 0
## 291 326 326 1 rhebokgrey 0
## 292 326 326 1 rhinocerosblack 0
## 293 326 326 1 springbok 3
## 294 326 326 1 steenbok 3
## 295 326 326 1 warthog 0
## 296 326 326 1 wildebeestblack 0
## 297 326 326 1 zebramountain 39
## 298 38 38 1 aardvarkantbear 0
## 299 38 38 1 aardwolf 0
## 300 38 38 1 baboon 0
## 301 38 38 1 blesbok 0
## 302 38 38 1 buffalo 0
## 303 38 38 1 bushbuck 0
## 304 38 38 1 bushpig 0
## 305 38 38 1 caracal 0
## 306 38 38 1 cheetah 0
## 307 38 38 1 duikercommon 0
## 308 38 38 1 eland 1
## 309 38 38 1 foxbateared 0
## 310 38 38 1 foxcape 0
## 311 38 38 1 gemsbokoryx 0
## 312 38 38 1 genetcommonsmallspotted 1
## 313 38 38 1 hare 1
## 314 38 38 1 harespring 0
## 315 38 38 1 hartebeestred 0
## 316 38 38 1 hyenabrown 0
## 317 38 38 1 jackalblackbacked 4
## 318 38 38 1 kudu 6
## 319 38 38 1 lion 0
## 320 38 38 1 mongooseyellow 0
## 321 38 38 1 monkeyvervet 1
## 322 38 38 1 porcupine 0
## 323 38 38 1 reedbuckmountain 0
## 324 38 38 1 rhebokgrey 0
## 325 38 38 1 rhinocerosblack 1
## 326 38 38 1 springbok 0
## 327 38 38 1 steenbok 0
## 328 38 38 1 warthog 0
## 329 38 38 1 wildebeestblack 0
## 330 38 38 1 zebramountain 2
## 331 66 66 1 aardvarkantbear 0
## 332 66 66 1 aardwolf 0
## 333 66 66 1 baboon 7
## 334 66 66 1 blesbok 0
## 335 66 66 1 buffalo 2
## 336 66 66 1 bushbuck 0
## 337 66 66 1 bushpig 0
## 338 66 66 1 caracal 0
## 339 66 66 1 cheetah 0
## 340 66 66 1 duikercommon 1
## 341 66 66 1 eland 8
## 342 66 66 1 foxbateared 0
## 343 66 66 1 foxcape 0
## 344 66 66 1 gemsbokoryx 0
## 345 66 66 1 genetcommonsmallspotted 0
## 346 66 66 1 hare 0
## 347 66 66 1 harespring 0
## 348 66 66 1 hartebeestred 0
## 349 66 66 1 hyenabrown 0
## 350 66 66 1 jackalblackbacked 0
## 351 66 66 1 kudu 11
## 352 66 66 1 lion 0
## 353 66 66 1 mongooseyellow 0
## 354 66 66 1 monkeyvervet 0
## 355 66 66 1 porcupine 0
## 356 66 66 1 reedbuckmountain 0
## 357 66 66 1 rhebokgrey 0
## 358 66 66 1 rhinocerosblack 0
## 359 66 66 1 springbok 0
## 360 66 66 1 steenbok 0
## 361 66 66 1 warthog 0
## 362 66 66 1 wildebeestblack 0
## 363 66 66 1 zebramountain 23
## 364 223 223 1 aardvarkantbear 1
## 365 223 223 1 aardwolf 0
## 366 223 223 1 baboon 11
## 367 223 223 1 blesbok 0
## 368 223 223 1 buffalo 5
## 369 223 223 1 bushbuck 0
## 370 223 223 1 bushpig 0
## 371 223 223 1 caracal 0
## 372 223 223 1 cheetah 0
## 373 223 223 1 duikercommon 15
## 374 223 223 1 eland 1
## 375 223 223 1 foxbateared 0
## 376 223 223 1 foxcape 0
## 377 223 223 1 gemsbokoryx 0
## 378 223 223 1 genetcommonsmallspotted 5
## 379 223 223 1 hare 0
## 380 223 223 1 harespring 0
## 381 223 223 1 hartebeestred 1
## 382 223 223 1 hyenabrown 0
## 383 223 223 1 jackalblackbacked 5
## 384 223 223 1 kudu 19
## 385 223 223 1 lion 0
## 386 223 223 1 mongooseyellow 0
## 387 223 223 1 monkeyvervet 24
## 388 223 223 1 porcupine 0
## 389 223 223 1 reedbuckmountain 0
## 390 223 223 1 rhebokgrey 1
## 391 223 223 1 rhinocerosblack 1
## 392 223 223 1 springbok 0
## 393 223 223 1 steenbok 0
## 394 223 223 1 warthog 13
## 395 223 223 1 wildebeestblack 0
## 396 223 223 1 zebramountain 0
## 397 48 48 1 aardvarkantbear 1
## 398 48 48 1 aardwolf 0
## 399 48 48 1 baboon 0
## 400 48 48 1 blesbok 0
## 401 48 48 1 buffalo 0
## 402 48 48 1 bushbuck 0
## 403 48 48 1 bushpig 0
## 404 48 48 1 caracal 0
## 405 48 48 1 cheetah 0
## 406 48 48 1 duikercommon 5
## 407 48 48 1 eland 2
## 408 48 48 1 foxbateared 0
## 409 48 48 1 foxcape 0
## 410 48 48 1 gemsbokoryx 2
## 411 48 48 1 genetcommonsmallspotted 0
## 412 48 48 1 hare 0
## 413 48 48 1 harespring 0
## 414 48 48 1 hartebeestred 0
## 415 48 48 1 hyenabrown 0
## 416 48 48 1 jackalblackbacked 1
## 417 48 48 1 kudu 17
## 418 48 48 1 lion 0
## 419 48 48 1 mongooseyellow 0
## 420 48 48 1 monkeyvervet 15
## 421 48 48 1 porcupine 1
## 422 48 48 1 reedbuckmountain 1
## 423 48 48 1 rhebokgrey 0
## 424 48 48 1 rhinocerosblack 0
## 425 48 48 1 springbok 0
## 426 48 48 1 steenbok 1
## 427 48 48 1 warthog 0
## 428 48 48 1 wildebeestblack 0
## 429 48 48 1 zebramountain 9
## 430 220 220 1 aardvarkantbear 1
## 431 220 220 1 aardwolf 0
## 432 220 220 1 baboon 1
## 433 220 220 1 blesbok 0
## 434 220 220 1 buffalo 1
## 435 220 220 1 bushbuck 0
## 436 220 220 1 bushpig 0
## 437 220 220 1 caracal 0
## 438 220 220 1 cheetah 0
## 439 220 220 1 duikercommon 21
## 440 220 220 1 eland 6
## 441 220 220 1 foxbateared 0
## 442 220 220 1 foxcape 0
## 443 220 220 1 gemsbokoryx 4
## 444 220 220 1 genetcommonsmallspotted 0
## 445 220 220 1 hare 0
## 446 220 220 1 harespring 0
## 447 220 220 1 hartebeestred 7
## 448 220 220 1 hyenabrown 0
## 449 220 220 1 jackalblackbacked 3
## 450 220 220 1 kudu 34
## 451 220 220 1 lion 1
## 452 220 220 1 mongooseyellow 0
## 453 220 220 1 monkeyvervet 25
## 454 220 220 1 porcupine 0
## 455 220 220 1 reedbuckmountain 0
## 456 220 220 1 rhebokgrey 0
## 457 220 220 1 rhinocerosblack 7
## 458 220 220 1 springbok 4
## 459 220 220 1 steenbok 0
## 460 220 220 1 warthog 28
## 461 220 220 1 wildebeestblack 0
## 462 220 220 1 zebramountain 21
## 463 222 222 1 aardvarkantbear 0
## 464 222 222 1 aardwolf 0
## 465 222 222 1 baboon 10
## 466 222 222 1 blesbok 0
## 467 222 222 1 buffalo 0
## 468 222 222 1 bushbuck 0
## 469 222 222 1 bushpig 0
## 470 222 222 1 caracal 0
## 471 222 222 1 cheetah 0
## 472 222 222 1 duikercommon 0
## 473 222 222 1 eland 1
## 474 222 222 1 foxbateared 2
## 475 222 222 1 foxcape 0
## 476 222 222 1 gemsbokoryx 3
## 477 222 222 1 genetcommonsmallspotted 0
## 478 222 222 1 hare 1
## 479 222 222 1 harespring 1
## 480 222 222 1 hartebeestred 5
## 481 222 222 1 hyenabrown 0
## 482 222 222 1 jackalblackbacked 18
## 483 222 222 1 kudu 20
## 484 222 222 1 lion 8
## 485 222 222 1 mongooseyellow 2
## 486 222 222 1 monkeyvervet 22
## 487 222 222 1 porcupine 8
## 488 222 222 1 reedbuckmountain 0
## 489 222 222 1 rhebokgrey 0
## 490 222 222 1 rhinocerosblack 2
## 491 222 222 1 springbok 23
## 492 222 222 1 steenbok 0
## 493 222 222 1 warthog 0
## 494 222 222 1 wildebeestblack 0
## 495 222 222 1 zebramountain 19
## 496 292 292 1 aardvarkantbear 0
## 497 292 292 1 aardwolf 3
## 498 292 292 1 baboon 7
## 499 292 292 1 blesbok 0
## 500 292 292 1 buffalo 10
## 501 292 292 1 bushbuck 0
## 502 292 292 1 bushpig 0
## 503 292 292 1 caracal 1
## 504 292 292 1 cheetah 0
## 505 292 292 1 duikercommon 0
## 506 292 292 1 eland 10
## 507 292 292 1 foxbateared 0
## 508 292 292 1 foxcape 0
## 509 292 292 1 gemsbokoryx 0
## 510 292 292 1 genetcommonsmallspotted 0
## 511 292 292 1 hare 6
## 512 292 292 1 harespring 0
## 513 292 292 1 hartebeestred 2
## 514 292 292 1 hyenabrown 1
## 515 292 292 1 jackalblackbacked 31
## 516 292 292 1 kudu 18
## 517 292 292 1 lion 11
## 518 292 292 1 mongooseyellow 0
## 519 292 292 1 monkeyvervet 1
## 520 292 292 1 porcupine 1
## 521 292 292 1 reedbuckmountain 0
## 522 292 292 1 rhebokgrey 0
## 523 292 292 1 rhinocerosblack 5
## 524 292 292 1 springbok 1
## 525 292 292 1 steenbok 0
## 526 292 292 1 warthog 0
## 527 292 292 1 wildebeestblack 1
## 528 292 292 1 zebramountain 13
## 529 317 317 1 aardvarkantbear 0
## 530 317 317 1 aardwolf 0
## 531 317 317 1 baboon 8
## 532 317 317 1 blesbok 0
## 533 317 317 1 buffalo 2
## 534 317 317 1 bushbuck 1
## 535 317 317 1 bushpig 1
## 536 317 317 1 caracal 0
## 537 317 317 1 cheetah 0
## 538 317 317 1 duikercommon 0
## 539 317 317 1 eland 0
## 540 317 317 1 foxbateared 11
## 541 317 317 1 foxcape 0
## 542 317 317 1 gemsbokoryx 0
## 543 317 317 1 genetcommonsmallspotted 0
## 544 317 317 1 hare 0
## 545 317 317 1 harespring 0
## 546 317 317 1 hartebeestred 2
## 547 317 317 1 hyenabrown 0
## 548 317 317 1 jackalblackbacked 5
## 549 317 317 1 kudu 1
## 550 317 317 1 lion 0
## 551 317 317 1 mongooseyellow 0
## 552 317 317 1 monkeyvervet 0
## 553 317 317 1 porcupine 3
## 554 317 317 1 reedbuckmountain 0
## 555 317 317 1 rhebokgrey 0
## 556 317 317 1 rhinocerosblack 2
## 557 317 317 1 springbok 48
## 558 317 317 1 steenbok 0
## 559 317 317 1 warthog 0
## 560 317 317 1 wildebeestblack 27
## 561 317 317 1 zebramountain 57
## 562 25 25 1 aardvarkantbear 0
## 563 25 25 1 aardwolf 1
## 564 25 25 1 baboon 3
## 565 25 25 1 blesbok 0
## 566 25 25 1 buffalo 0
## 567 25 25 1 bushbuck 0
## 568 25 25 1 bushpig 0
## 569 25 25 1 caracal 0
## 570 25 25 1 cheetah 0
## 571 25 25 1 duikercommon 0
## 572 25 25 1 eland 0
## 573 25 25 1 foxbateared 0
## 574 25 25 1 foxcape 0
## 575 25 25 1 gemsbokoryx 0
## 576 25 25 1 genetcommonsmallspotted 0
## 577 25 25 1 hare 8
## 578 25 25 1 harespring 0
## 579 25 25 1 hartebeestred 1
## 580 25 25 1 hyenabrown 0
## 581 25 25 1 jackalblackbacked 5
## 582 25 25 1 kudu 0
## 583 25 25 1 lion 0
## 584 25 25 1 mongooseyellow 0
## 585 25 25 1 monkeyvervet 0
## 586 25 25 1 porcupine 2
## 587 25 25 1 reedbuckmountain 0
## 588 25 25 1 rhebokgrey 0
## 589 25 25 1 rhinocerosblack 0
## 590 25 25 1 springbok 2
## 591 25 25 1 steenbok 0
## 592 25 25 1 warthog 0
## 593 25 25 1 wildebeestblack 1
## 594 25 25 1 zebramountain 3
## 595 327 327 1 aardvarkantbear 1
## 596 327 327 1 aardwolf 0
## 597 327 327 1 baboon 19
## 598 327 327 1 blesbok 0
## 599 327 327 1 buffalo 4
## 600 327 327 1 bushbuck 0
## 601 327 327 1 bushpig 0
## 602 327 327 1 caracal 0
## 603 327 327 1 cheetah 0
## 604 327 327 1 duikercommon 0
## 605 327 327 1 eland 1
## 606 327 327 1 foxbateared 0
## 607 327 327 1 foxcape 0
## 608 327 327 1 gemsbokoryx 4
## 609 327 327 1 genetcommonsmallspotted 1
## 610 327 327 1 hare 0
## 611 327 327 1 harespring 0
## 612 327 327 1 hartebeestred 26
## 613 327 327 1 hyenabrown 1
## 614 327 327 1 jackalblackbacked 4
## 615 327 327 1 kudu 14
## 616 327 327 1 lion 0
## 617 327 327 1 mongooseyellow 0
## 618 327 327 1 monkeyvervet 10
## 619 327 327 1 porcupine 11
## 620 327 327 1 reedbuckmountain 0
## 621 327 327 1 rhebokgrey 0
## 622 327 327 1 rhinocerosblack 3
## 623 327 327 1 springbok 6
## 624 327 327 1 steenbok 0
## 625 327 327 1 warthog 0
## 626 327 327 1 wildebeestblack 6
## 627 327 327 1 zebramountain 9
## RAIalt
## 1 0.00
## 2 0.00
## 3 4.46
## 4 0.00
## 5 0.32
## 6 0.00
## 7 0.00
## 8 0.00
## 9 0.96
## 10 0.00
## 11 3.18
## 12 0.00
## 13 0.00
## 14 0.32
## 15 0.32
## 16 0.96
## 17 0.00
## 18 1.91
## 19 0.96
## 20 3.50
## 21 0.64
## 22 0.32
## 23 0.00
## 24 0.00
## 25 4.78
## 26 0.00
## 27 0.00
## 28 0.00
## 29 4.14
## 30 0.00
## 31 0.00
## 32 0.00
## 33 39.81
## 34 0.00
## 35 0.00
## 36 0.00
## 37 2.05
## 38 2.46
## 39 0.00
## 40 0.00
## 41 0.00
## 42 0.00
## 43 0.00
## 44 0.00
## 45 0.00
## 46 0.00
## 47 0.00
## 48 0.00
## 49 6.97
## 50 0.41
## 51 0.82
## 52 0.00
## 53 1.64
## 54 0.00
## 55 0.00
## 56 0.00
## 57 0.00
## 58 0.00
## 59 0.00
## 60 0.00
## 61 0.00
## 62 19.67
## 63 0.00
## 64 0.00
## 65 33.61
## 66 5.74
## 67 0.00
## 68 0.00
## 69 0.00
## 70 0.00
## 71 0.00
## 72 0.00
## 73 0.00
## 74 0.00
## 75 0.00
## 76 0.00
## 77 0.00
## 78 0.00
## 79 0.00
## 80 0.00
## 81 0.00
## 82 0.00
## 83 0.00
## 84 0.00
## 85 0.00
## 86 0.00
## 87 0.00
## 88 0.00
## 89 0.00
## 90 0.00
## 91 0.00
## 92 0.00
## 93 40.00
## 94 0.00
## 95 0.00
## 96 0.00
## 97 0.00
## 98 0.00
## 99 0.00
## 100 0.00
## 101 0.00
## 102 1.97
## 103 0.00
## 104 0.00
## 105 0.00
## 106 0.00
## 107 0.00
## 108 0.00
## 109 0.00
## 110 0.33
## 111 0.00
## 112 0.00
## 113 0.00
## 114 0.00
## 115 0.33
## 116 0.00
## 117 0.00
## 118 0.00
## 119 0.33
## 120 0.33
## 121 0.00
## 122 0.00
## 123 0.33
## 124 0.00
## 125 0.00
## 126 0.00
## 127 0.33
## 128 0.00
## 129 0.00
## 130 0.00
## 131 0.00
## 132 0.99
## 133 0.00
## 134 8.02
## 135 2.47
## 136 0.00
## 137 0.00
## 138 0.62
## 139 0.00
## 140 0.00
## 141 0.00
## 142 0.00
## 143 1.54
## 144 0.00
## 145 0.00
## 146 1.54
## 147 0.31
## 148 1.23
## 149 0.00
## 150 1.54
## 151 0.93
## 152 8.33
## 153 2.78
## 154 0.00
## 155 0.00
## 156 0.93
## 157 0.93
## 158 0.00
## 159 0.00
## 160 0.93
## 161 0.00
## 162 0.00
## 163 0.00
## 164 0.00
## 165 6.79
## 166 0.00
## 167 0.00
## 168 2.27
## 169 0.00
## 170 0.00
## 171 0.00
## 172 0.00
## 173 0.00
## 174 0.00
## 175 0.00
## 176 0.00
## 177 0.00
## 178 0.00
## 179 0.00
## 180 0.00
## 181 0.00
## 182 0.00
## 183 0.00
## 184 0.00
## 185 0.00
## 186 0.97
## 187 0.00
## 188 0.00
## 189 0.00
## 190 0.32
## 191 0.32
## 192 2.59
## 193 0.00
## 194 0.00
## 195 0.00
## 196 0.00
## 197 0.00
## 198 10.68
## 199 0.00
## 200 4.82
## 201 2.41
## 202 0.00
## 203 1.20
## 204 0.00
## 205 2.41
## 206 0.00
## 207 0.00
## 208 0.00
## 209 0.00
## 210 0.00
## 211 1.20
## 212 0.00
## 213 0.00
## 214 0.00
## 215 0.00
## 216 2.41
## 217 1.20
## 218 61.45
## 219 2.41
## 220 1.20
## 221 0.00
## 222 0.00
## 223 6.02
## 224 0.00
## 225 8.43
## 226 0.00
## 227 0.00
## 228 0.00
## 229 0.00
## 230 0.00
## 231 25.30
## 232 0.00
## 233 0.00
## 234 0.00
## 235 0.00
## 236 0.00
## 237 0.00
## 238 0.00
## 239 0.00
## 240 0.00
## 241 0.00
## 242 2.50
## 243 0.00
## 244 0.00
## 245 5.00
## 246 0.00
## 247 0.00
## 248 0.00
## 249 12.50
## 250 0.00
## 251 0.00
## 252 27.50
## 253 0.00
## 254 0.00
## 255 0.00
## 256 0.00
## 257 0.00
## 258 0.00
## 259 10.00
## 260 0.00
## 261 0.00
## 262 0.00
## 263 0.00
## 264 17.50
## 265 0.92
## 266 0.61
## 267 0.92
## 268 0.00
## 269 0.92
## 270 0.00
## 271 0.00
## 272 0.31
## 273 0.00
## 274 0.31
## 275 1.53
## 276 0.00
## 277 0.00
## 278 3.99
## 279 0.00
## 280 0.92
## 281 0.00
## 282 4.60
## 283 0.92
## 284 8.28
## 285 3.07
## 286 0.00
## 287 0.00
## 288 2.45
## 289 0.92
## 290 0.00
## 291 0.00
## 292 0.00
## 293 0.92
## 294 0.92
## 295 0.00
## 296 0.00
## 297 11.96
## 298 0.00
## 299 0.00
## 300 0.00
## 301 0.00
## 302 0.00
## 303 0.00
## 304 0.00
## 305 0.00
## 306 0.00
## 307 0.00
## 308 2.63
## 309 0.00
## 310 0.00
## 311 0.00
## 312 2.63
## 313 2.63
## 314 0.00
## 315 0.00
## 316 0.00
## 317 10.53
## 318 15.79
## 319 0.00
## 320 0.00
## 321 2.63
## 322 0.00
## 323 0.00
## 324 0.00
## 325 2.63
## 326 0.00
## 327 0.00
## 328 0.00
## 329 0.00
## 330 5.26
## 331 0.00
## 332 0.00
## 333 10.61
## 334 0.00
## 335 3.03
## 336 0.00
## 337 0.00
## 338 0.00
## 339 0.00
## 340 1.52
## 341 12.12
## 342 0.00
## 343 0.00
## 344 0.00
## 345 0.00
## 346 0.00
## 347 0.00
## 348 0.00
## 349 0.00
## 350 0.00
## 351 16.67
## 352 0.00
## 353 0.00
## 354 0.00
## 355 0.00
## 356 0.00
## 357 0.00
## 358 0.00
## 359 0.00
## 360 0.00
## 361 0.00
## 362 0.00
## 363 34.85
## 364 0.45
## 365 0.00
## 366 4.93
## 367 0.00
## 368 2.24
## 369 0.00
## 370 0.00
## 371 0.00
## 372 0.00
## 373 6.73
## 374 0.45
## 375 0.00
## 376 0.00
## 377 0.00
## 378 2.24
## 379 0.00
## 380 0.00
## 381 0.45
## 382 0.00
## 383 2.24
## 384 8.52
## 385 0.00
## 386 0.00
## 387 10.76
## 388 0.00
## 389 0.00
## 390 0.45
## 391 0.45
## 392 0.00
## 393 0.00
## 394 5.83
## 395 0.00
## 396 0.00
## 397 2.08
## 398 0.00
## 399 0.00
## 400 0.00
## 401 0.00
## 402 0.00
## 403 0.00
## 404 0.00
## 405 0.00
## 406 10.42
## 407 4.17
## 408 0.00
## 409 0.00
## 410 4.17
## 411 0.00
## 412 0.00
## 413 0.00
## 414 0.00
## 415 0.00
## 416 2.08
## 417 35.42
## 418 0.00
## 419 0.00
## 420 31.25
## 421 2.08
## 422 2.08
## 423 0.00
## 424 0.00
## 425 0.00
## 426 2.08
## 427 0.00
## 428 0.00
## 429 18.75
## 430 0.45
## 431 0.00
## 432 0.45
## 433 0.00
## 434 0.45
## 435 0.00
## 436 0.00
## 437 0.00
## 438 0.00
## 439 9.55
## 440 2.73
## 441 0.00
## 442 0.00
## 443 1.82
## 444 0.00
## 445 0.00
## 446 0.00
## 447 3.18
## 448 0.00
## 449 1.36
## 450 15.45
## 451 0.45
## 452 0.00
## 453 11.36
## 454 0.00
## 455 0.00
## 456 0.00
## 457 3.18
## 458 1.82
## 459 0.00
## 460 12.73
## 461 0.00
## 462 9.55
## 463 0.00
## 464 0.00
## 465 4.50
## 466 0.00
## 467 0.00
## 468 0.00
## 469 0.00
## 470 0.00
## 471 0.00
## 472 0.00
## 473 0.45
## 474 0.90
## 475 0.00
## 476 1.35
## 477 0.00
## 478 0.45
## 479 0.45
## 480 2.25
## 481 0.00
## 482 8.11
## 483 9.01
## 484 3.60
## 485 0.90
## 486 9.91
## 487 3.60
## 488 0.00
## 489 0.00
## 490 0.90
## 491 10.36
## 492 0.00
## 493 0.00
## 494 0.00
## 495 8.56
## 496 0.00
## 497 1.03
## 498 2.40
## 499 0.00
## 500 3.42
## 501 0.00
## 502 0.00
## 503 0.34
## 504 0.00
## 505 0.00
## 506 3.42
## 507 0.00
## 508 0.00
## 509 0.00
## 510 0.00
## 511 2.05
## 512 0.00
## 513 0.68
## 514 0.34
## 515 10.62
## 516 6.16
## 517 3.77
## 518 0.00
## 519 0.34
## 520 0.34
## 521 0.00
## 522 0.00
## 523 1.71
## 524 0.34
## 525 0.00
## 526 0.00
## 527 0.34
## 528 4.45
## 529 0.00
## 530 0.00
## 531 2.52
## 532 0.00
## 533 0.63
## 534 0.32
## 535 0.32
## 536 0.00
## 537 0.00
## 538 0.00
## 539 0.00
## 540 3.47
## 541 0.00
## 542 0.00
## 543 0.00
## 544 0.00
## 545 0.00
## 546 0.63
## 547 0.00
## 548 1.58
## 549 0.32
## 550 0.00
## 551 0.00
## 552 0.00
## 553 0.95
## 554 0.00
## 555 0.00
## 556 0.63
## 557 15.14
## 558 0.00
## 559 0.00
## 560 8.52
## 561 17.98
## 562 0.00
## 563 4.00
## 564 12.00
## 565 0.00
## 566 0.00
## 567 0.00
## 568 0.00
## 569 0.00
## 570 0.00
## 571 0.00
## 572 0.00
## 573 0.00
## 574 0.00
## 575 0.00
## 576 0.00
## 577 32.00
## 578 0.00
## 579 4.00
## 580 0.00
## 581 20.00
## 582 0.00
## 583 0.00
## 584 0.00
## 585 0.00
## 586 8.00
## 587 0.00
## 588 0.00
## 589 0.00
## 590 8.00
## 591 0.00
## 592 0.00
## 593 4.00
## 594 12.00
## 595 0.31
## 596 0.00
## 597 5.81
## 598 0.00
## 599 1.22
## 600 0.00
## 601 0.00
## 602 0.00
## 603 0.00
## 604 0.00
## 605 0.31
## 606 0.00
## 607 0.00
## 608 1.22
## 609 0.31
## 610 0.00
## 611 0.00
## 612 7.95
## 613 0.31
## 614 1.22
## 615 4.28
## 616 0.00
## 617 0.00
## 618 3.06
## 619 3.36
## 620 0.00
## 621 0.00
## 622 0.92
## 623 1.83
## 624 0.00
## 625 0.00
## 626 1.83
## 627 2.75
names(table.2)## [1] "Camera.Site" "setup_date" "first_image_date" "last_image_date"
## [5] "retrieval_date" "n_nights_total" "n_nights_active" "n_cameras"
## [9] "Common.Name" "n_events" "RAIalt"
write.csv(table.2, "data_out/MTZ_RAIalt_station_events.csv")This plot is probably preferable as now we are accounting for the effort of each camera site, but this depends on tne question. Although comparison between species should still be taken cautiously, this is a good way to see patterns.
plot <- ggplot(table.2, aes(x=Common.Name, y= RAIalt, fill=Common.Name)) +
geom_boxplot(alpha=0.3) +
ylim(0, 50) + # can´t do with function as this y lim will vary easier one by one
theme(legend.position="none") +
theme(axis.text.x = element_text(angle = 90,hjust = 1, vjust = 0.5)) +
ggtitle("RAI alt (std) per species") +
labs(y="RAI alt", x = "Species")
ggsave(filename = "figures/MTZ_boxplot_RAI.alt_per_species.jpg")## Saving 7 x 5 in image
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
plot## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
#bring df with coordinates (from CTtable or metadata for the reserve in previous steps)
#MTZ_cams <- read_csv("data_out/MTZ/MTZ_cams.csv")
lat.long <- select(MTZ_cams, "Camera.Site", "Lat_Y", "Long_X")
mergesites2 <- dplyr::left_join(table.2, lat.long, by = "Camera.Site", row.names=NULL)
str(mergesites2)## 'data.frame': 627 obs. of 13 variables:
## $ Camera.Site : chr "MTZ_B04" "MTZ_B04" "MTZ_B04" "MTZ_B04" ...
## $ setup_date : chr "2017-08-24" "2017-08-24" "2017-08-24" "2017-08-24" ...
## $ first_image_date: chr "2017-08-24" "2017-08-24" "2017-08-24" "2017-08-24" ...
## $ last_image_date : chr "2018-07-04" "2018-07-04" "2018-07-04" "2018-07-04" ...
## $ retrieval_date : chr "2018-07-04" "2018-07-04" "2018-07-04" "2018-07-04" ...
## $ n_nights_total : int 314 314 314 314 314 314 314 314 314 314 ...
## $ n_nights_active : int 314 314 314 314 314 314 314 314 314 314 ...
## $ n_cameras : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Common.Name : chr "aardvarkantbear" "aardwolf" "baboon" "blesbok" ...
## $ n_events : int 0 0 14 0 1 0 0 0 3 0 ...
## $ RAIalt : num 0 0 4.46 0 0.32 0 0 0 0.96 0 ...
## $ Lat_Y : num -32.2 -32.2 -32.2 -32.2 -32.2 ...
## $ Long_X : num 25.4 25.4 25.4 25.4 25.4 ...
write.csv(mergesites2, "data_out/details_indiv_reports/MTZ_RAIalt+coord.csv", row.names = FALSE)
# Bring the IUCN trait file to with RAIalt+coord so we can do selective plots per species or all IUCN cat
# at once
#traits file with scientific names, IUCN cat and others...
IUCN <- read_csv("data_in/+traits_in_sp_records_updated.csv")## Rows: 91 Columns: 14
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (12): Scien.Code, Comm.Code, Snapshot.Name, Common.Name, Scientific.Name...
## dbl (2): id, Mass.kg
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
merged.table <- mergesites2 %>% left_join(IUCN, by = c("Common.Name" = "Snapshot.Name"))
# Select only relevant IUCN categories
df.IUCN <- merged.table %>% dplyr::filter(IUCN.Cat %in% c("VU", "CR", "EN"))
unique(df.IUCN$Common.Name) ### [1] "cheetah" "lion" "reedbuckmountain" "rhinocerosblack"
## [5] "zebramountain"
# which species are threatened?
sel_spp <- IUCN %>%
filter(IUCN.Cat %in% c("VU", "CR", "EN"))
sel_spp## # A tibble: 13 x 14
## id Scien.Code Comm.Code Snapshot.Name Common.Name Scientific.Name Order
## <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 12 FENI CATB catblackfooted Cat (Black-~ Felis nigripes Carni~
## 2 13 ACJU CHEE cheetah Cheetah Acinonyx jubat~ Carni~
## 3 19 LOAF ELEA elephant Elephant (A~ Loxodonta afri~ Probo~
## 4 30 GICA GIRA giraffe Giraffe Giraffa camelo~ Artio~
## 5 38 HIAM HIPO hippopotamus Hippopotamus Hippopotamus a~ Artio~
## 6 47 PAPA LEOP leopard Leopard Panthera pardus Carni~
## 7 48 PALE LION lion Lion Panthera leo Carni~
## 8 64 SMTE PANG pangolin Pangolin (G~ Smutsia temmin~ Pholi~
## 9 68 BUMO RARI rabbitriverine Rabbit (Riv~ Bunolagus mont~ Lagom~
## 10 70 REFU REMO reedbuckmount~ Reedbuck (M~ Redunca fulvor~ Artio~
## 11 72 DIBI RHBL rhinocerosbla~ Rhinoceros ~ Diceros bicorn~ Peris~
## 12 84 LYPI WIDO wilddog Wild dog Lycaon pictus Carni~
## 13 84 EQZE ZEBM zebramountain Zebra (Moun~ Equus zebra Peris~
## # ... with 7 more variables: Family <chr>, IUCN.Cat <chr>, Guild.Realm <chr>,
## # Specif.Guild <chr>, Body.Size.Cat <chr>, Mass.kg <dbl>, Simp.Guild <chr>
#13 spp are threatened should not be more than that ever in the reservesfig_RAI_spp(df.IUCN, species = "zebramountain") ## species is the snapshot name herefor this use the traits doc.
need two files: 1) scientific names and other info like IUCN cat: traits <- read_csv(“data_in/traits_spp_scientif_names_snapshot_names.csv”) and 2. file with RAIalt (created above) function to apply for each spp is fig_RAI_spp This will automatically create a file (jpg) for each threatened species without need of doing it one by one (saved in figures)
# ---- Loop across multiple species and store all graphs in a list
unique_names <- unique(df.IUCN$Common.Name)
grlist <- lapply(unique_names,
function(spp) fig_RAI_spp(df.IUCN, species = spp))
grlist## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
# Name list to access each species easier
# Change it to unique_names
names(grlist) <- unique_names
#unique(grlist)
# ---- Plot just one graph by hand
# grlist[[1]]
# grlist$rabbitriverine # Now works
# ---- Save each graph in a separate file in the current working directory
names <- names(grlist) # Plot all 7 graphs
for(s in names){
g <- grlist[[eval(s)]] # double brackets and store in object g
ggsave(filename = paste0("figures/MTZ_RAIalt_",s, ".jpg"), g) # draw object g #not reading the folder, capy from wd
}## Saving 7 x 5 in image
## Saving 7 x 5 in image
## Saving 7 x 5 in image
## Saving 7 x 5 in image
## Saving 7 x 5 in image
#check main folder and copy```