
Introduction
In the history of data visualization, Florence Nightingale’s Rose Diagram has become one of the most famous data visualizations ever created. The story behind this diagram is fascinating. After witnessing deplorable sanitary conditions in the Crimea War, she wrote several influential texts (Nightingale, 1858, 1859), including polar-area graphs (sometimes called “Coxcombs” or rose diagrams), showing the number of deaths in the Crimean from battle compared to disease or preventable causes that could be reduced by better battlefield nursing care.
When Florence Nightingale returned to England she began a rigorous study of these numbers, numbers that she herself collected at Scutari. She created the Rose Diagram as part of a text, called Contribution to the Sanitary History of the British Army, and later pamphlets that she distributed to influential people in an effort to improve the sanitation conditions in hospitals. Later she focused on the British Army in India where she showed that bad drainage, contaminated water, overcrowding and poor ventilation were causing high death rates. These were the same factors identified and fixed at Scutari by the Sanitation Commission. The final report on India showed that after making these changes the death rate dropped from 69 to 18 per 1,000 soldiers. The following was her Rose Diagram, entitled Diagram of the Causes of Mortality in the Army of the East, in this book:

The graph showed that most of the British soldiers who died during the Crimean War died of sickness rather than of wounds or other causes. It also showed that the death rate was higher in the first year of the war, before a Sanitary Commissioners arrived in March 1855 to improve hygiene in the camps and hospitals.
She was clearly a pioneer, not only in the area of nursing, but also in statistical analysis, and more specifically, in the presentation of the data. She was the first women member of the Royal Statistical Society and an honorary member of the American Statistical Association. Her diagram was ground breaking and clearly effective for its intended purpose at the time.
Recreate Rose Diagram
By using R We can recreate Rose Diagram as follow:

R codes for recreating the plot:
#============================================================================
# R codes for recreating Rose Diagram as designed by Florence Nightingale
#============================================================================
# Clear our R environment:
rm(list = ls())
# Load Nightingale data set:
data("Nightingale", package = "HistData")
# Description about the data set:
?HistData::Nightingale
# Load some R packages:
library(tidyverse) # for data manipulation and visualization.
library(stringr) # for text prcessing.
library(lubridate) # for date-time processing.
library(hrbrthemes) # For using black theme.
# Convert to long form and processing for some columns:
Nightingale %>%
select(Date, Disease.rate, Wounds.rate, Other.rate) %>%
gather(Cause, Deaths, -Date) %>%
mutate(Cause = str_replace_all(Cause, "\\.rate", ""), Regime = rep(c("Before", "After"), time = 3, each = 12)) %>%
mutate(Regime = factor(Regime, levels = c("Before", "After"))) %>%
mutate(mo = month(Date, label = TRUE, abbr = TRUE)) -> longForm_data
# Select Ubuntu Condensed font for ploting:
library(showtext)
showtext.auto()
font_add_google(name = "Ubuntu Condensed", family = "ubu")
my_font <- "ubu"
# Recreate Rose Diagram:
longForm_data %>%
ggplot(aes(x = mo, y = Deaths, fill = Cause)) +
geom_col(color = "grey20") +
theme_modern_rc(base_family = my_font, subtitle_family = my_font) +
scale_fill_manual(values = c("firebrick", "orange", "#365181"), name = "") +
scale_y_sqrt() +
facet_wrap(~ Regime) +
coord_equal(ratio = 1) +
coord_polar() +
labs(title = "Causes of Mortality in the Army in the East",
subtitle = "Created by R Statistical Software",
caption = "Data Source: Deaths from various causes in the Crimean War") +
theme(legend.position = "top") +
theme(text = element_text(family = my_font, size = 14)) +
theme(axis.title.y = element_blank()) +
theme(axis.title.x = element_blank()) +
theme(axis.text.y = element_blank()) +
theme(axis.ticks = element_blank()) +
theme(plot.margin = unit(rep(0.7, 4), "cm")) +
theme(plot.title = element_text(color = "white", family = my_font, size = 20)) +
theme(plot.caption = element_text(color = "grey70", family = my_font, size = 11)) +
theme(plot.subtitle = element_text(color = "grey70", size = 13)) +
theme(legend.text = element_text(color = "white", size = 12)) +
theme(strip.text = element_text(color = "white", size = 14, face = "bold", family = my_font, hjust = 0.5))
LS0tDQp0aXRsZTogIkZsb3JlbmNlIE5pZ2h0aW5nYWxlJ3MgUm9zZSBEaWFncmFtIg0KYXV0aG9yOiAnQXV0aG9yOiBOZ3V5ZW4gQ2hpIER1bmcnDQpzdWJ0aXRsZTogIkRhaWx5IEdyYXBoIFNlcmllcyINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDogDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgICMgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgaGlnaGxpZ2h0OiB6ZW5idXJuDQogICAgIyBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRoZW1lOiAiZmxhdGx5Ig0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KLS0tDQoNCmBgYHtyIHNldHVwLGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFLCBjYWNoZSA9IFRSVUUpDQoNCmBgYA0KDQohW10oQzpcVXNlcnNcXEFkbWluXFxEb2N1bWVudHNcXGZsb3JlbmMuanBnKQ0KDQojIEludHJvZHVjdGlvbg0KDQpJbiB0aGUgaGlzdG9yeSBvZiBkYXRhIHZpc3VhbGl6YXRpb24sIEZsb3JlbmNlIE5pZ2h0aW5nYWxlJ3MgUm9zZSBEaWFncmFtIGhhcyBiZWNvbWUgb25lIG9mIHRoZSBtb3N0IGZhbW91cyBkYXRhIHZpc3VhbGl6YXRpb25zIGV2ZXIgY3JlYXRlZC4gVGhlIHN0b3J5IGJlaGluZCB0aGlzIGRpYWdyYW0gaXMgZmFzY2luYXRpbmcuIEFmdGVyIHdpdG5lc3NpbmcgZGVwbG9yYWJsZSBzYW5pdGFyeSBjb25kaXRpb25zIGluIHRoZSBDcmltZWEgV2FyLCBzaGUgd3JvdGUgc2V2ZXJhbCBpbmZsdWVudGlhbCB0ZXh0cyAoTmlnaHRpbmdhbGUsIDE4NTgsIDE4NTkpLCBpbmNsdWRpbmcgcG9sYXItYXJlYSBncmFwaHMgKHNvbWV0aW1lcyBjYWxsZWQgIkNveGNvbWJzIiBvciByb3NlIGRpYWdyYW1zKSwgc2hvd2luZyB0aGUgbnVtYmVyIG9mIGRlYXRocyBpbiB0aGUgQ3JpbWVhbiBmcm9tIGJhdHRsZSBjb21wYXJlZCB0byBkaXNlYXNlIG9yIHByZXZlbnRhYmxlIGNhdXNlcyB0aGF0IGNvdWxkIGJlIHJlZHVjZWQgYnkgYmV0dGVyIGJhdHRsZWZpZWxkIG51cnNpbmcgY2FyZS4NCg0KDQpXaGVuIEZsb3JlbmNlIE5pZ2h0aW5nYWxlIHJldHVybmVkIHRvIEVuZ2xhbmQgc2hlIGJlZ2FuIGEgcmlnb3JvdXMgc3R1ZHkgb2YgdGhlc2UgbnVtYmVycywgbnVtYmVycyB0aGF0IHNoZSBoZXJzZWxmIGNvbGxlY3RlZCBhdCBTY3V0YXJpLiBTaGUgY3JlYXRlZCB0aGUgUm9zZSBEaWFncmFtIGFzIHBhcnQgb2YgYSB0ZXh0LCBjYWxsZWQgKkNvbnRyaWJ1dGlvbiB0byB0aGUgU2FuaXRhcnkgSGlzdG9yeSBvZiB0aGUgQnJpdGlzaCBBcm15KiwgYW5kIGxhdGVyIHBhbXBobGV0cyB0aGF0IHNoZSBkaXN0cmlidXRlZCB0byBpbmZsdWVudGlhbCBwZW9wbGUgaW4gYW4gZWZmb3J0IHRvIGltcHJvdmUgdGhlIHNhbml0YXRpb24gY29uZGl0aW9ucyBpbiBob3NwaXRhbHMuIExhdGVyIHNoZSBmb2N1c2VkIG9uIHRoZSBCcml0aXNoIEFybXkgaW4gSW5kaWEgd2hlcmUgc2hlIHNob3dlZCB0aGF0IGJhZCBkcmFpbmFnZSwgY29udGFtaW5hdGVkIHdhdGVyLCBvdmVyY3Jvd2RpbmcgYW5kIHBvb3IgdmVudGlsYXRpb24gd2VyZSBjYXVzaW5nIGhpZ2ggZGVhdGggcmF0ZXMuIFRoZXNlIHdlcmUgdGhlIHNhbWUgZmFjdG9ycyBpZGVudGlmaWVkIGFuZCBmaXhlZCBhdCBTY3V0YXJpIGJ5IHRoZSBTYW5pdGF0aW9uIENvbW1pc3Npb24uIFRoZSBmaW5hbCByZXBvcnQgb24gSW5kaWEgc2hvd2VkIHRoYXQgYWZ0ZXIgbWFraW5nIHRoZXNlIGNoYW5nZXMgdGhlIGRlYXRoIHJhdGUgZHJvcHBlZCBmcm9tIDY5IHRvIDE4IHBlciAxLDAwMCBzb2xkaWVycy4gDQpUaGUgZm9sbG93aW5nIHdhcyBoZXIgUm9zZSBEaWFncmFtLCBlbnRpdGxlZCAqRGlhZ3JhbSBvZiB0aGUgQ2F1c2VzIG9mIE1vcnRhbGl0eSBpbiB0aGUgQXJteSBvZiB0aGUgRWFzdCosIGluIHRoaXMgYm9vazogDQoNCiFbXShDOi9Vc2Vycy9BZG1pbi9Eb2N1bWVudHMvcm9zZS5qcGcpIA0KDQpUaGUgZ3JhcGggc2hvd2VkIHRoYXQgbW9zdCBvZiB0aGUgQnJpdGlzaCBzb2xkaWVycyB3aG8gZGllZCBkdXJpbmcgdGhlIENyaW1lYW4gV2FyIGRpZWQgb2Ygc2lja25lc3MgcmF0aGVyIHRoYW4gb2Ygd291bmRzIG9yIG90aGVyIGNhdXNlcy4gSXQgYWxzbyBzaG93ZWQgdGhhdCB0aGUgZGVhdGggcmF0ZSB3YXMgaGlnaGVyIGluIHRoZSBmaXJzdCB5ZWFyIG9mIHRoZSB3YXIsIGJlZm9yZSBhIFNhbml0YXJ5IENvbW1pc3Npb25lcnMgYXJyaXZlZCBpbiBNYXJjaCAxODU1IHRvIGltcHJvdmUgaHlnaWVuZSBpbiB0aGUgY2FtcHMgYW5kIGhvc3BpdGFscy4NCg0KU2hlIHdhcyBjbGVhcmx5IGEgcGlvbmVlciwgbm90IG9ubHkgaW4gdGhlIGFyZWEgb2YgbnVyc2luZywgYnV0IGFsc28gaW4gc3RhdGlzdGljYWwgYW5hbHlzaXMsIGFuZCBtb3JlIHNwZWNpZmljYWxseSwgaW4gdGhlIHByZXNlbnRhdGlvbiBvZiB0aGUgZGF0YS4gU2hlIHdhcyB0aGUgZmlyc3Qgd29tZW4gbWVtYmVyIG9mIHRoZSBSb3lhbCBTdGF0aXN0aWNhbCBTb2NpZXR5IGFuZCBhbiBob25vcmFyeSBtZW1iZXIgb2YgdGhlIEFtZXJpY2FuIFN0YXRpc3RpY2FsIEFzc29jaWF0aW9uLiBIZXIgZGlhZ3JhbSB3YXMgZ3JvdW5kIGJyZWFraW5nIGFuZCBjbGVhcmx5IGVmZmVjdGl2ZSBmb3IgaXRzIGludGVuZGVkIHB1cnBvc2UgYXQgdGhlIHRpbWUuDQoNCiMgUmVjcmVhdGUgUm9zZSBEaWFncmFtDQoNCkJ5IHVzaW5nIFIgV2UgY2FuIHJlY3JlYXRlIFJvc2UgRGlhZ3JhbSBhcyBmb2xsb3c6IA0KDQohW10oQzpcXFVzZXJzXFxBZG1pblxcRG9jdW1lbnRzXFxyb3NlUi5qcGcpDQoNClIgY29kZXMgZm9yIHJlY3JlYXRpbmcgdGhlIHBsb3Q6IA0KDQpgYGB7ciwgZXZhbD1GQUxTRX0NCiM9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09DQojICBSIGNvZGVzIGZvciByZWNyZWF0aW5nIFJvc2UgRGlhZ3JhbSBhcyBkZXNpZ25lZCBieSBGbG9yZW5jZSBOaWdodGluZ2FsZQ0KIz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT0NCg0KDQojIENsZWFyIG91ciBSIGVudmlyb25tZW50OiANCnJtKGxpc3QgPSBscygpKQ0KDQojIExvYWQgTmlnaHRpbmdhbGUgZGF0YSBzZXQ6IA0KZGF0YSgiTmlnaHRpbmdhbGUiLCBwYWNrYWdlID0gIkhpc3REYXRhIikNCg0KIyBEZXNjcmlwdGlvbiBhYm91dCB0aGUgZGF0YSBzZXQ6IA0KP0hpc3REYXRhOjpOaWdodGluZ2FsZQ0KDQojIExvYWQgc29tZSBSIHBhY2thZ2VzOiANCmxpYnJhcnkodGlkeXZlcnNlKSAjIGZvciBkYXRhIG1hbmlwdWxhdGlvbiBhbmQgdmlzdWFsaXphdGlvbi4NCmxpYnJhcnkoc3RyaW5ncikgIyBmb3IgdGV4dCBwcmNlc3NpbmcuDQpsaWJyYXJ5KGx1YnJpZGF0ZSkgIyBmb3IgZGF0ZS10aW1lIHByb2Nlc3NpbmcuDQpsaWJyYXJ5KGhyYnJ0aGVtZXMpICMgRm9yIHVzaW5nIGJsYWNrIHRoZW1lLg0KDQojIENvbnZlcnQgdG8gbG9uZyBmb3JtIGFuZCBwcm9jZXNzaW5nIGZvciBzb21lIGNvbHVtbnM6IA0KDQpOaWdodGluZ2FsZSAlPiUgDQogIHNlbGVjdChEYXRlLCBEaXNlYXNlLnJhdGUsIFdvdW5kcy5yYXRlLCBPdGhlci5yYXRlKSAlPiUgDQogIGdhdGhlcihDYXVzZSwgRGVhdGhzLCAtRGF0ZSkgJT4lIA0KICBtdXRhdGUoQ2F1c2UgPSBzdHJfcmVwbGFjZV9hbGwoQ2F1c2UsICJcXC5yYXRlIiwgIiIpLCBSZWdpbWUgPSByZXAoYygiQmVmb3JlIiwgIkFmdGVyIiksIHRpbWUgPSAzLCBlYWNoID0gMTIpKSAlPiUgDQogIG11dGF0ZShSZWdpbWUgPSBmYWN0b3IoUmVnaW1lLCBsZXZlbHMgPSBjKCJCZWZvcmUiLCAiQWZ0ZXIiKSkpICU+JSAgDQogIG11dGF0ZShtbyA9IG1vbnRoKERhdGUsIGxhYmVsID0gVFJVRSwgYWJiciA9IFRSVUUpKSAtPiBsb25nRm9ybV9kYXRhDQoNCiMgU2VsZWN0IFVidW50dSBDb25kZW5zZWQgZm9udCBmb3IgcGxvdGluZzogDQoNCmxpYnJhcnkoc2hvd3RleHQpDQpzaG93dGV4dC5hdXRvKCkNCmZvbnRfYWRkX2dvb2dsZShuYW1lID0gIlVidW50dSBDb25kZW5zZWQiLCBmYW1pbHkgPSAidWJ1IikNCm15X2ZvbnQgPC0gInVidSINCg0KIyBSZWNyZWF0ZSBSb3NlIERpYWdyYW06IA0KICANCg0KbG9uZ0Zvcm1fZGF0YSAlPiUgDQogIGdncGxvdChhZXMoeCA9IG1vLCB5ID0gRGVhdGhzLCBmaWxsID0gQ2F1c2UpKSArDQogIGdlb21fY29sKGNvbG9yID0gImdyZXkyMCIpICsgDQogIHRoZW1lX21vZGVybl9yYyhiYXNlX2ZhbWlseSA9IG15X2ZvbnQsIHN1YnRpdGxlX2ZhbWlseSA9IG15X2ZvbnQpICsgDQogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoImZpcmVicmljayIsICJvcmFuZ2UiLCAiIzM2NTE4MSIpLCBuYW1lID0gIiIpICsNCiAgc2NhbGVfeV9zcXJ0KCkgKw0KICBmYWNldF93cmFwKH4gUmVnaW1lKSArIA0KICBjb29yZF9lcXVhbChyYXRpbyA9IDEpICsgIA0KICBjb29yZF9wb2xhcigpICsNCiAgbGFicyh0aXRsZSA9ICJDYXVzZXMgb2YgTW9ydGFsaXR5IGluIHRoZSBBcm15IGluIHRoZSBFYXN0IiwgDQogICAgICAgc3VidGl0bGUgPSAiQ3JlYXRlZCBieSBSIFN0YXRpc3RpY2FsIFNvZnR3YXJlIiwgDQogICAgICAgY2FwdGlvbiA9ICJEYXRhIFNvdXJjZTogRGVhdGhzIGZyb20gdmFyaW91cyBjYXVzZXMgaW4gdGhlIENyaW1lYW4gV2FyIikgKyANCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gInRvcCIpICsgDQogIHRoZW1lKHRleHQgPSBlbGVtZW50X3RleHQoZmFtaWx5ID0gbXlfZm9udCwgc2l6ZSA9IDE0KSkgKyANCiAgdGhlbWUoYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpKSArIA0KICB0aGVtZShheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCkpICsgDQogIHRoZW1lKGF4aXMudGV4dC55ID0gZWxlbWVudF9ibGFuaygpKSArIA0KICB0aGVtZShheGlzLnRpY2tzID0gZWxlbWVudF9ibGFuaygpKSArIA0KICB0aGVtZShwbG90Lm1hcmdpbiA9IHVuaXQocmVwKDAuNywgNCksICJjbSIpKSArIA0KICB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGNvbG9yID0gIndoaXRlIiwgZmFtaWx5ID0gbXlfZm9udCwgc2l6ZSA9IDIwKSkgKyANCiAgdGhlbWUocGxvdC5jYXB0aW9uID0gZWxlbWVudF90ZXh0KGNvbG9yID0gImdyZXk3MCIsIGZhbWlseSA9IG15X2ZvbnQsIHNpemUgPSAxMSkpICsgDQogIHRoZW1lKHBsb3Quc3VidGl0bGUgPSBlbGVtZW50X3RleHQoY29sb3IgPSAiZ3JleTcwIiwgc2l6ZSA9IDEzKSkgKw0KICB0aGVtZShsZWdlbmQudGV4dCA9IGVsZW1lbnRfdGV4dChjb2xvciA9ICJ3aGl0ZSIsIHNpemUgPSAxMikpICsgDQogIHRoZW1lKHN0cmlwLnRleHQgPSBlbGVtZW50X3RleHQoY29sb3IgPSAid2hpdGUiLCBzaXplID0gMTQsIGZhY2UgPSAiYm9sZCIsIGZhbWlseSA9IG15X2ZvbnQsIGhqdXN0ID0gMC41KSkNCiAgDQoNCmBgYA0KDQojIFJlZmVyZW5jZXMNCg0KTmlnaHRpbmdhbGUsIEYuICgxODU4KSBOb3RlcyBvbiBNYXR0ZXJzIEFmZmVjdGluZyB0aGUgSGVhbHRoLCBFZmZpY2llbmN5LCBhbmQgSG9zcGl0YWwgQWRtaW5pc3RyYXRpb24gb2YgdGhlIEJyaXRpc2ggQXJteSBIYXJyaXNvbiBhbmQgU29ucywgMTg1OA0KDQpOaWdodGluZ2FsZSwgRi4gKDE4NTkpIEEgQ29udHJpYnV0aW9uIHRvIHRoZSBTYW5pdGFyeSBIaXN0b3J5IG9mIHRoZSBCcml0aXNoIEFybXkgZHVyaW5nIHRoZSBMYXRlIFdhciB3aXRoIFJ1c3NpYSBMb25kb246IEpvaG4gVy4gUGFya2VyIGFuZCBTb24uDQoNClNtYWxsLCBILiAoMTk5OCkgRmxvcmVuY2UgTmlnaHRpbmdhbGUncyBzdGF0aXN0aWNhbCBkaWFncmFtcyBodHRwOi8vd3d3LmZsb3JlbmNlLW5pZ2h0aW5nYWxlLWF2ZW5naW5nLWFuZ2VsLmNvLnVrL0dyYXBoaWNzUGFwZXIvR3JhcGhpY3MuaHRtDQoNCkJyYXNzZXVyLCBMLiAoMjAwNSkgRmxvcmVuY2UgTmlnaHRpbmdhbGUncyBWaXN1YWwgUmhldG9yaWMgaW4gdGhlIFJvc2UgRGlhZ3JhbXMgaHR0cHM6Ly93d3cudGFuZGZvbmxpbmUuY29tL2RvaS9hYnMvMTAuMTIwNy9zMTU0Mjc2MjV0Y3ExNDAyXzM/am91cm5hbENvZGU9aHRjcTIwLg0KDQpSaWNoYXJkc29uLCBBLiAoMjAyMCkgRmxvUmVuY2UgTmlnaHRpbmdhbGUgYXQgUkxhZGllcyBDYW5iZXJyYSBNYXJjaCAyMDIwIG1lZXRpbmcgaHR0cHM6Ly93d3cucmVzZWFyY2hnYXRlLm5ldC9wdWJsaWNhdGlvbi8zNDAyOTY0OTdfRmxvUmVuY2VfTmlnaHRpbmdhbGUuDQoNClN5bWFuemlrLCBKLiAoMjAyMCkgVGhlIEdvb2QgU2FtYXJpdGFuOiBIb3cgU3RhdGlzdGljYWwgR3JhcGhpY3MgSGVscGVkIHRvIFNhdmUgTGl2ZXMgaHR0cHM6Ly9tYXRoLnVzdS5lZHUvfnN5bWFuemlrL3RhbGtzLzIwMjBfTkNTVS5wZGYuIA0K