Cuadrado Latino

library(agricolae)
str(design.lsd)
## function (trt, serie = 2, seed = 0, kinds = "Super-Duper", first = TRUE, 
##     randomization = TRUE)
trt<-c("A","B","C","D")
outdesign<-design.lsd(trt=trt,serie=2,seed=563)
print(outdesign$sketch)
##      [,1] [,2] [,3] [,4]
## [1,] "A"  "D"  "C"  "B" 
## [2,] "D"  "C"  "B"  "A" 
## [3,] "C"  "B"  "A"  "D" 
## [4,] "B"  "A"  "D"  "C"
names(outdesign$book)=c("COD","Marca","Prov","Tipo")
outdesign$book
##    COD Marca Prov Tipo
## 1  101     1    1    A
## 2  102     1    2    D
## 3  103     1    3    C
## 4  104     1    4    B
## 5  201     2    1    D
## 6  202     2    2    C
## 7  203     2    3    B
## 8  204     2    4    A
## 9  301     3    1    C
## 10 302     3    2    B
## 11 303     3    3    A
## 12 304     3    4    D
## 13 401     4    1    B
## 14 402     4    2    A
## 15 403     4    3    D
## 16 404     4    4    C
i<-sample(1:16)
outdesign$book[i,]
##    COD Marca Prov Tipo
## 7  203     2    3    B
## 9  301     3    1    C
## 3  103     1    3    C
## 10 302     3    2    B
## 13 401     4    1    B
## 8  204     2    4    A
## 14 402     4    2    A
## 15 403     4    3    D
## 12 304     3    4    D
## 16 404     4    4    C
## 6  202     2    2    C
## 1  101     1    1    A
## 5  201     2    1    D
## 2  102     1    2    D
## 11 303     3    3    A
## 4  104     1    4    B

Ejemplo 4.16

df<-read.csv("https://docs.google.com/spreadsheets/d/1BfrgTXlU0QvacIF5zxyxK0zuKUIjrjf4n3iEpQ686DY/export?format=csv")
df$Lote=factor(df$Lote)
df$Dia=factor(df$Dia)
df$Trat=factor(df$Trat)
df$Y=as.numeric(df$Y)
df
##    Lote Dia Trat  Y
## 1     1   1    A  8
## 2     2   1    C 11
## 3     3   1    B  4
## 4     4   1    D  6
## 5     5   1    E  4
## 6     1   2    B  7
## 7     2   2    E  2
## 8     3   2    A  9
## 9     4   2    C  8
## 10    5   2    D  2
## 11    1   3    D  1
## 12    2   3    A  7
## 13    3   3    C 10
## 14    4   3    E  6
## 15    5   3    B  3
## 16    1   4    C  7
## 17    2   4    D  3
## 18    3   4    E  1
## 19    4   4    B  6
## 20    5   4    A  8
## 21    1   5    E  3
## 22    2   5    B  8
## 23    3   5    D  5
## 24    4   5    A 10
## 25    5   5    C  8
modelo<-lm(Y~Lote+Dia+Trat,data=df)
anova=aov(modelo)
summary(anova)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Lote         4  15.44    3.86   1.235 0.347618    
## Dia          4  12.24    3.06   0.979 0.455014    
## Trat         4 141.44   35.36  11.309 0.000488 ***
## Residuals   12  37.52    3.13                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prueba de Normalidad de los Residuales

qqnorm(anova$residuals)
qqline(anova$residuals)

shapiro.test(anova$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  anova$residuals
## W = 0.96606, p-value = 0.5476
library(car)
## Loading required package: carData
leveneTest(df$Y~df$Trat)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  4  0.4444 0.7751
##       20
boxplot(Y~Trat,data=df)

LSD<-LSD.test(anova,"Trat",group=T,console=T)
## 
## Study: anova ~ "Trat"
## 
## LSD t Test for Y 
## 
## Mean Square Error:  3.126667 
## 
## Trat,  means and individual ( 95 %) CI
## 
##     Y      std r      LCL       UCL Min Max
## A 8.4 1.140175 5 6.677038 10.122962   7  10
## B 5.6 2.073644 5 3.877038  7.322962   3   8
## C 8.8 1.643168 5 7.077038 10.522962   7  11
## D 3.4 2.073644 5 1.677038  5.122962   1   6
## E 3.2 1.923538 5 1.477038  4.922962   1   6
## 
## Alpha: 0.05 ; DF Error: 12
## Critical Value of t: 2.178813 
## 
## least Significant Difference: 2.436636 
## 
## Treatments with the same letter are not significantly different.
## 
##     Y groups
## C 8.8      a
## A 8.4      a
## B 5.6      b
## D 3.4      b
## E 3.2      b
bar.group(x=LSD$groups,horiz=T,col="red",xlim=c(0,12),
          xlab="Catalizador",ylab="Método",main="Prueba de Catalizadores")

plot(anova$residuals)

plot(df$Trat,anova$residuals)

Cuadrado Grecolatino

str(design.graeco)
## function (trt1, trt2, serie = 2, seed = 0, kinds = "Super-Duper", randomization = TRUE)
trt1=1:4
trt2=1:4
outdesign=design.graeco(trt1,trt2,seed=543,serie=2)
print(outdesign$sketch)
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "4 2" "2 4" "1 3" "3 1"
## [2,] "2 3" "4 1" "3 2" "1 4"
## [3,] "1 1" "3 3" "4 4" "2 2"
## [4,] "3 4" "1 2" "2 1" "4 3"
book=outdesign$book
book
##    plots row col trt1 trt2
## 1    101   1   1    4    2
## 2    102   1   2    2    4
## 3    103   1   3    1    3
## 4    104   1   4    3    1
## 5    201   2   1    2    3
## 6    202   2   2    4    1
## 7    203   2   3    3    2
## 8    204   2   4    1    4
## 9    301   3   1    1    1
## 10   302   3   2    3    3
## 11   303   3   3    4    4
## 12   304   3   4    2    2
## 13   401   4   1    3    4
## 14   402   4   2    1    2
## 15   403   4   3    2    1
## 16   404   4   4    4    3
t1<-c("$\\alpha$","$\\beta$","$\\gamma$","$\\delta$")
t2<-LETTERS[1:4]
i=outdesign$book$trt1
j=outdesign$book$trt2
book$trt1=sapply(i,function(i) t1[i])
book$trt2=sapply(j,function(j) t2[j])
knitr::kable(book, align = "lccc",caption = "Diseño de Cuadrado Latino")
Diseño de Cuadrado Latino
plots row col trt1 trt2
101 1 1 \(\delta\) B
102 1 2 \(\beta\) D
103 1 3 \(\alpha\) C
104 1 4 \(\gamma\) A
201 2 1 \(\beta\) C
202 2 2 \(\delta\) A
203 2 3 \(\gamma\) B
204 2 4 \(\alpha\) D
301 3 1 \(\alpha\) A
302 3 2 \(\gamma\) C
303 3 3 \(\delta\) D
304 3 4 \(\beta\) B
401 4 1 \(\gamma\) D
402 4 2 \(\alpha\) B
403 4 3 \(\beta\) A
404 4 4 \(\delta\) C