library(foreign)
Biok_vert <- read.spss("Bio_Ketamine_verticAL FILE.sav", use.value.label=TRUE, to.data.frame=TRUE)
## re-encoding from UTF-8
colnames(Biok_vert)
## [1] "Sample_ID" "age" "sex"
## [4] "BMI" "race" "patientno"
## [7] "infusiononeandthree" "infusionno" "Blood_Draw_Event"
## [10] "suicide" "BSS_Score" "MADRS_Score"
## [13] "Remission" "threegroups" "ResponderANDREMITTER"
## [16] "remitternoresponse" "Site_Location" "Batch_Number"
## [19] "PIC_nM" "NIC_nM" "NIC_nM_LLOD"
## [22] "NTA_nM" "QUINPICratio" "Quin_nM"
## [25] "QUINKYNAratio" "three_HK_nM" "five_HT_nM"
## [28] "KYNSERratio" "KYN_nM" "TRP_nM"
## [31] "KYNTRPratio" "KYNA_nM" "AA_nM"
## [34] "IFNy_pg_mL" "IL10_pg_mL" "IL12p70_pg_mL"
## [37] "IL12p70_pg_mL_LLOD" "IL13_pg_mL" "IL13_pg_mL_LLOD"
## [40] "IL1B_pg_mL" "IL1B_pg_mL_LLOD" "IL2_pg_mL"
## [43] "IL2_pg_mL_LLOD" "IL4_pg_mL" "IL4_pg_mL_LLOD"
## [46] "IL6_pg_mL" "IL8_pg_mL" "TNFa_pg_mL"
## [49] "CRP_ng_mL" "SAA_ng_mL" "VCAM_1_ng_mL"
## [52] "ICAM_1_ng_mL" "lnCRP" "lnSAA"
## [55] "lnAA" "lnTNF" "lnICAM"
## [58] "lnVCAM" "lnIFN" "lnIL10"
## [61] "lnIL13" "ln3HK" "lnPIC"
## [64] "lnSER" "lnKYNSER"
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
vars_KP<-c("TRP_nM",
"five_HT_nM",
"KYN_nM",
"three_HK_nM",
"ln3HK",
"KYNA_nM",
"PIC_nM" ,
"lnPIC",
"Quin_nM",
"AA_nM",
"lnAA" ,
"lnSER",
"lnSAA",
"lnKYNSER",
"KYNTRPratio" ,
"KYNSERratio",
"QUINPICratio",
"QUINKYNAratio")
vars_vasc<-c("NIC_nM",
"NIC_nM_LLOD",
"NTA_nM",
"SAA_ng_mL",
"VCAM_1_ng_mL",
"lnVCAM",
"ICAM_1_ng_mL",
"lnICAM")
vars_inflam<-c("IL1B_pg_mL",
"IL1B_pg_mL_LLOD",
"IL2_pg_mL",
"IL2_pg_mL_LLOD",
"IL4_pg_mL",
"IL4_pg_mL_LLOD",
"IL6_pg_mL",
"IL8_pg_mL",
"IL10_pg_mL",
"lnIL10",
"IL12p70_pg_mL",
"IL12p70_pg_mL_LLOD",
"IL13_pg_mL",
"IL13_pg_mL_LLOD",
"lnIL13",
"TNFa_pg_mL",
"lnTNF",
"IFNy_pg_mL",
"lnIFN",
"CRP_ng_mL",
"lnCRP")
vars_demo<-c("patientno","age", "sex", "BMI", "race" )
vars_tx<-c("Site_Location", "infusionno", "Sample_ID", "Batch_Number")
vars_cx<-c("BSS_Score","MADRS_Score", "Remission")
Biok_vert$infusionno<-dplyr::recode_factor(Biok_vert$infusionno, Baseline="BL", `end of first infusion` = "1st", `End of third infusion` = "3rd")
Biok_vert_df<-Biok_vert %>% dplyr::select(all_of(vars_demo),
all_of(vars_tx),
"infusionno",
all_of(vars_cx),
all_of(vars_KP),
all_of(vars_inflam),
all_of(vars_vasc))
M<- sapply(Biok_vert_df, function(x) sum(is.na(x))); M[M>0]
## BSS_Score MADRS_Score Remission IL1B_pg_mL IL2_pg_mL
## 5 1 3 176 66
## IL4_pg_mL IL12p70_pg_mL IL13_pg_mL
## 1 1 3
COMMENTARY: IL1B had highest missingness for some reason
library(ggfortify)
## Loading required package: ggplot2
mod<-lm((TRP_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Observation 119 - high leverage outlier no transformation needed
mod<-lm((five_HT_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm((lnSER)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Log transform looks better. Shapiro-wilk of log transformed still bad p<0.004. Sqrt transform looks worse than log transform Problematic observations: 177, 156
mod<-lm((KYN_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(KYN_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(KYN_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Decision = use raw variable, which looks same as sqrt transform (same shapiro wilke p=0.16) Problematic observation: 42 (persists across transformations)
mod<-lm((three_HK_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
shapiro.test(Biok_vert_df$three_HK_nM)
##
## Shapiro-Wilk normality test
##
## data: Biok_vert_df$three_HK_nM
## W = 0.70678, p-value < 2.2e-16
mod<-lm((ln3HK)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
shapiro.test(Biok_vert_df$ln3HK)
##
## Shapiro-Wilk normality test
##
## data: Biok_vert_df$ln3HK
## W = 0.93953, p-value = 7.335e-08
ln transform of 3HK is definitely better. May improve with box-cox transformation though. Problematic observation: 42
mod<-lm((KYNA_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(KYNA_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(KYNA_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#create log transformation variable
Biok_vert_df$KYNA_nM_log<-log(Biok_vert_df$KYNA_nM)
Going with log transform
mod<-lm((PIC_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
shapiro.test(Biok_vert_df$PIC_nM)
##
## Shapiro-Wilk normality test
##
## data: Biok_vert_df$PIC_nM
## W = 0.53863, p-value < 2.2e-16
mod<-lm((lnPIC)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
shapiro.test(Biok_vert_df$lnPIC)
##
## Shapiro-Wilk normality test
##
## data: Biok_vert_df$lnPIC
## W = 0.96789, p-value = 7.416e-05
lnPic is better than raw. Again point 42 is outlier with high leverage
mod<-lm((Quin_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
shapiro.test(Biok_vert_df$Quin_nM)
##
## Shapiro-Wilk normality test
##
## data: Biok_vert_df$Quin_nM
## W = 0.95595, p-value = 3.027e-06
mod<-lm(log(Quin_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(Quin_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Raw variable looks better than log or sqrt transformed.
mod<-lm((AA_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(AA_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Biok_vert_df$AA_nM_log<-log(Biok_vert_df$AA_nM)
mod<-lm(sqrt(AA_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Log transformed (lnAA) looks best.
mod<-lm((KYNTRPratio)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm((KYNSERratio)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm((QUINPICratio)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm((QUINKYNAratio)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Im unsure if these ratios were computed from raw or transformed values, so we can either recompute for clarity, or wait for feedback on composite variables.
mod<-lm(NIC_nM~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(NIC_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#LLOD
mod<-lm(NIC_nM_LLOD~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(NIC_nM_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Biok_vert_df$NIC_nM_LLOD_log<-log(Biok_vert_df$NIC_nM_LLOD) #creating log transformed variable
mod<-lm(sqrt(NIC_nM_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Raw and LLOD variables look the same; needs tranformation. Raw has 0’s in it so log didn’t work; used sqrt but unhelpful Log transform of LLOD is best option, but still bad. HELP! Consider box-cox…wont work since response variable not positive.. Outliers 10, 82, 15 but low leverage
mod<-lm((NTA_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(NTA_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(NTA_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Biok_vert_df$NTA_nM_sqrt<-sqrt(Biok_vert_df$NTA_nM) #creating sqrt transformed variable
sqrt transformation has better qqplot than raw or log. Will use sqrt here Observation 32 is problematic (likely outlier with lots of pull)
mod<-lm((SAA_ng_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(SAA_ng_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(SAA_ng_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Biok_vert_df$SAA_ng_mL_log<-sqrt(Biok_vert_df$SAA_ng_mL) #creating log transformed variable
Not sure if log or sqrt is better; either qq tail is skewed a bit. Points 104 and 148 are influential outliers just use log
mod<-lm((VCAM_1_ng_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(lnVCAM~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(VCAM_1_ng_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
ln transformed VCAM_1_ng_mL looks best
mod<-lm((ICAM_1_ng_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(lnICAM~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(ICAM_1_ng_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
ln transform of ICAM looks the best Observation 11 and 32 look like influential outliers
mod<-lm(IL1B_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL1B_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL1B_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#LLOD variations
mod<-lm(IL1B_pg_mL_LLOD~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL1B_pg_mL_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL1B_pg_mL_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#Creating log transformed variable
Biok_vert_df$IL1B_pg_mL_log<-log(Biok_vert_df$IL1B_pg_mL_LLOD)
Biok_vert_df$IL1B_pg_mL_LLOD_log<-log(Biok_vert_df$IL1B_pg_mL_LLOD)
log looks best in raw or LLOD LLOD looks better than raw observation 72 and 196 seem problematic unsure how to use LLOD set
mod<-lm(IL4_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL4_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL4_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#LLOD variations
mod<-lm(IL4_pg_mL_LLOD~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL4_pg_mL_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL4_pg_mL_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#Creating log transformed variable
Biok_vert_df$IL4_pg_mL_log<-log(Biok_vert_df$IL4_pg_mL)
Biok_vert_df$IL4_pg_mL_LLOD_log<-log(Biok_vert_df$IL4_pg_mL_LLOD)
Log transformation looks best for both raw and LLOD variables Observations 101 and 119 seem to be influential outliers
mod<-lm(IL6_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL6_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL6_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#Creating log transformed variable
Biok_vert_df$IL6_pg_mL_log<-log(Biok_vert_df$IL6_pg_mL)
Log is best for IL6 Potentially influential outliers 93, 81, 21
mod<-lm(IL8_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL8_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL8_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#Creating log transformed variable
Biok_vert_df$IL8_pg_mL_log<-log(Biok_vert_df$IL8_pg_mL)
log transform of IL8 seems best, probably not good enough
mod<-lm(IL10_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm((lnIL10)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL10_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Raw variable is the best, although all are pretty bad May consider box-cox transformation Observations 45, 118, and 191 are closely clustered outliers, moderate leverage
mod<-lm(IL12p70_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL12p70_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL12p70_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#LLOD
mod<-lm(IL12p70_pg_mL_LLOD~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL12p70_pg_mL_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL12p70_pg_mL_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Raw looks similar to log and sqrt transformations - go with raw Outlier observations: 64, 137, 210 Need help with raw vs. LLOD selection
mod<-lm(IL13_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL13_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL13_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#LLOD
mod<-lm(IL13_pg_mL_LLOD~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL13_pg_mL_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IL13_pg_mL_LLOD)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Untransformed looks best for both raw and LLOD Outliers: 64, 137, 210
mod<-lm(TNFa_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(TNFa_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(TNFa_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#Creating log transformed variable
Biok_vert_df$TNFa_pg_mL_sqrt<-sqrt(Biok_vert_df$TNFa_pg_mL)
sqrt transformation looks slightly better than raw TNF Outliers have lower leverage: 66, 139, 212
mod<-lm(IFNy_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IFNy_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(IFNy_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
log and sqrt transformed qq plots look so bad that a box-cox tranformation might be required here
mod<-lm(CRP_ng_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(CRP_ng_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(sqrt(CRP_ng_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
#Creating log transformed variable
Biok_vert_df$CRP_ng_mL_log<-log(Biok_vert_df$CRP_ng_mL)
log transform looks the best for CRP problematic observations: 11 has high leverage; 137 amd 64 have moderate leverage
#COX BOX TRANFORMATIONS: IFN-gamma
#creating box-cox function
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
bc<-boxcox(IFNy_pg_mL~age, data=Biok_vert_df)
(bc.power<-bc$x[which.max(bc$y)])
## [1] -0.7474747
BCTransform <- function(y, lambda=0) {
if (lambda == 0L) { log(y) }
else { (y^lambda - 1) / lambda }}
BCTransformInverse <- function(yt, lambda=0) {
if (lambda == 0L) { exp(yt) }
else { exp(log(1 + lambda * yt)/lambda) }}
#testing
yt <- BCTransform(Biok_vert_df$IFNy_pg_mL, 0)
yo <- BCTransformInverse(yt, 0)
unique(round(yo-Biok_vert_df$IFNy_pg_mL),8)
## [1] 0
yt <- BCTransform(Biok_vert_df$IFNy_pg_mL, 0.5)
yo <- BCTransformInverse(yt, 0.5)
unique(round(yo-Biok_vert_df$IFNy_pg_mL),8)
## [1] 0
#Box-cox transformations
Biok_vert_df$IFNy_pg_mL_boxcox <- BCTransform(Biok_vert_df$IFNy_pg_mL, bc.power)
#Visualize
mod<-lm(IFNy_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IFNy_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(IFNy_pg_mL_boxcox~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Box cox tranformation looks better than log transform Select box cox for IFNy
http://www.css.cornell.edu/faculty/dgr2/_static/files/R_html/Transformations.html
#COX BOX TRANFORMATIONS: 3HK
#creating box-cox function\
bc<-boxcox(three_HK_nM~age, data=Biok_vert_df)
(bc.power<-bc$x[which.max(bc$y)])
## [1] -0.8686869
BCTransform <- function(y, lambda=0) {
if (lambda == 0L) { log(y) }
else { (y^lambda - 1) / lambda }}
BCTransformInverse <- function(yt, lambda=0) {
if (lambda == 0L) { exp(yt) }
else { exp(log(1 + lambda * yt)/lambda) }}
#testing
yt <- BCTransform(Biok_vert_df$three_HK_nM, 0)
yo <- BCTransformInverse(yt, 0)
unique(round(yo-Biok_vert_df$three_HK_nM),8)
## [1] 0
yt <- BCTransform(Biok_vert_df$three_HK_nM, 0.5)
yo <- BCTransformInverse(yt, 0.5)
unique(round(yo-Biok_vert_df$three_HK_nM),8)
## [1] 0
#Box-cox transformations
Biok_vert_df$three_HK_nM_boxcox <- BCTransform(Biok_vert_df$three_HK_nM, bc.power)
#Visualize
mod<-lm(three_HK_nM~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(three_HK_nM)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(three_HK_nM_boxcox~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Use box-cox for 3HK Beware high leverage outliers 83 and 177
#COX BOX TRANFORMATIONS: IL10
#creating box-cox function
bc<-boxcox(IL10_pg_mL~age, data=Biok_vert_df)
(bc.power<-bc$x[which.max(bc$y)])
## [1] -0.4242424
BCTransform <- function(y, lambda=0) {
if (lambda == 0L) { log(y) }
else { (y^lambda - 1) / lambda }}
BCTransformInverse <- function(yt, lambda=0) {
if (lambda == 0L) { exp(yt) }
else { exp(log(1 + lambda * yt)/lambda) }}
#testing
yt <- BCTransform(Biok_vert_df$IL10_pg_mL, 0)
yo <- BCTransformInverse(yt, 0)
unique(round(yo-Biok_vert_df$IL10_pg_mL),8)
## [1] 0
yt <- BCTransform(Biok_vert_df$IL10_pg_mL, 0.5)
yo <- BCTransformInverse(yt, 0.5)
unique(round(yo-Biok_vert_df$IL10_pg_mL),8)
## [1] 0
#Box-cox transformations
Biok_vert_df$IL10_pg_mL_boxcox <- BCTransform(Biok_vert_df$IL10_pg_mL, bc.power)
#Visualize
mod<-lm(IL10_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(log(IL10_pg_mL)~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
mod<-lm(IL10_pg_mL~age, data=Biok_vert_df)
autoplot(mod, which=1:6, ncol=3)
Raw variable looks better than log transform Cox box transformation looks same as raw Will utilize raw variable for IL-10
#Final variable set post (best attempt) transformations, not including ratios
vars_bx_trans<-c("TRP_nM",
"lnSER",
"KYN_nM",
"three_HK_nM_boxcox",
"KYNA_nM_log",
"lnPIC",
"Quin_nM",
"lnAA",
"NIC_nM_LLOD_log",
"NTA_nM_sqrt",
"SAA_ng_mL_log",
"lnVCAM",
"lnICAM",
"IL1B_pg_mL_log",
"IL1B_pg_mL_LLOD_log",
"IL2_pg_mL",
"IL4_pg_mL_log",
"IL4_pg_mL_LLOD_log",
"IL6_pg_mL_log",
"IL8_pg_mL_log",
"IL10_pg_mL",
"IL12p70_pg_mL",
"IL12p70_pg_mL_LLOD",
"IL13_pg_mL",
"IL13_pg_mL_LLOD",
"TNFa_pg_mL_sqrt",
"IFNy_pg_mL_boxcox",
"CRP_ng_mL_log")
df_trans<-Biok_vert_df %>% dplyr::select(all_of(vars_demo),
all_of(vars_tx),
all_of(vars_cx),
all_of(vars_bx_trans))
df_trans %>%
dplyr::select(c(-patientno, -Sample_ID)) %>%
gtsummary::tbl_summary()
| Characteristic | N = 2181 |
|---|---|
| age | 47 (34, 55) |
| sex | |
| male | 82 (38%) |
| female | 136 (62%) |
| BMI | 28.1 (24.9, 31.7) |
| race | |
| asian | 3 (1.4%) |
| black | 4 (1.8%) |
| white | 211 (97%) |
| Site_Location | |
| Johns Hopkins | 22 (10%) |
| Univeristy of Michigan | 69 (32%) |
| Mayo Clinic | 114 (52%) |
| Pine Rest | 13 (6.0%) |
| infusionno | |
| BL | 73 (33%) |
| 1st | 72 (33%) |
| 3rd | 73 (33%) |
| Batch_Number | |
| 1 | 35 (16%) |
| 2 | 37 (17%) |
| 3 | 37 (17%) |
| 4 | 36 (17%) |
| 5 | 36 (17%) |
| 6 | 37 (17%) |
| BSS_Score | 0.0 (0.0, 8.0) |
| Unknown | 5 |
| MADRS_Score | 16 (8, 25) |
| Unknown | 1 |
| Remission | |
| No remission | 77 (36%) |
| Remitter | 138 (64%) |
| Unknown | 3 |
| TRP_nM | 25,642 (20,408, 29,795) |
| lnSER | 4.32 (3.36, 5.62) |
| KYN_nM | 898 (751, 1,038) |
| three_HK_nM_boxcox | 1.037 (1.019, 1.059) |
| KYNA_nM_log | 2.91 (2.63, 3.15) |
| lnPIC | 2.83 (2.55, 3.11) |
| Quin_nM | 141 (109, 175) |
| lnAA | 1.65 (1.43, 1.93) |
| NIC_nM_LLOD_log | -0.67 (-1.08, -0.01) |
| NTA_nM_sqrt | 16.9 (13.9, 19.8) |
| SAA_ng_mL_log | 47 (36, 64) |
| lnVCAM | 5.73 (5.56, 5.86) |
| lnICAM | 5.66 (5.54, 5.87) |
| IL1B_pg_mL_log | |
| -1.12936028423984 | 211 (97%) |
| -1.08675143155781 | 1 (0.5%) |
| -0.885288513121754 | 1 (0.5%) |
| -0.813372591137231 | 1 (0.5%) |
| -0.560070844958166 | 1 (0.5%) |
| -0.442332943131407 | 1 (0.5%) |
| 0.473671672492252 | 1 (0.5%) |
| 1.00177015061474 | 1 (0.5%) |
| IL1B_pg_mL_LLOD_log | |
| -1.12936028423984 | 211 (97%) |
| -1.08675143155781 | 1 (0.5%) |
| -0.885288513121754 | 1 (0.5%) |
| -0.813372591137231 | 1 (0.5%) |
| -0.560070844958166 | 1 (0.5%) |
| -0.442332943131407 | 1 (0.5%) |
| 0.473671672492252 | 1 (0.5%) |
| 1.00177015061474 | 1 (0.5%) |
| IL2_pg_mL | 0.38 (0.28, 0.56) |
| Unknown | 66 |
| IL4_pg_mL_log | -2.46 (-2.67, -2.27) |
| Unknown | 1 |
| IL4_pg_mL_LLOD_log | -2.46 (-2.67, -2.27) |
| IL6_pg_mL_log | -0.11 (-0.40, 0.19) |
| IL8_pg_mL_log | 1.43 (1.20, 1.61) |
| IL10_pg_mL | 0.36 (0.28, 0.44) |
| IL12p70_pg_mL | 0.39 (0.30, 0.49) |
| Unknown | 1 |
| IL12p70_pg_mL_LLOD | 0.39 (0.30, 0.49) |
| IL13_pg_mL | 3.62 (3.16, 4.11) |
| Unknown | 3 |
| IL13_pg_mL_LLOD | 3.62 (3.15, 4.11) |
| TNFa_pg_mL_sqrt | 1.16 (1.08, 1.27) |
| IFNy_pg_mL_boxcox | 0.95 (0.87, 1.04) |
| CRP_ng_mL_log | 7.10 (6.07, 7.98) |
|
1
Median (IQR); n (%)
|
|
library(ggplot2)
library(ggcorrplot)
bx_inflam<-df_trans %>% dplyr::select(c("NTA_nM_sqrt",
"SAA_ng_mL_log",
"lnVCAM",
"lnICAM",
"IL1B_pg_mL_log",
"IL1B_pg_mL_LLOD_log",
"IL2_pg_mL",
"IL4_pg_mL_log",
"IL4_pg_mL_LLOD_log",
"IL6_pg_mL_log",
"IL8_pg_mL_log",
"IL10_pg_mL",
"IL12p70_pg_mL",
"IL12p70_pg_mL_LLOD",
"IL13_pg_mL",
"IL13_pg_mL_LLOD",
"TNFa_pg_mL_sqrt",
"IFNy_pg_mL_boxcox",
"CRP_ng_mL_log"))
ggcorrplot(cor(bx_inflam), hc.order = FALSE, type = "lower", lab = TRUE)
bx_kp<-df_trans %>% dplyr::select(c("TRP_nM",
"lnSER",
"KYN_nM",
"three_HK_nM_boxcox",
"KYNA_nM_log",
"lnPIC",
"Quin_nM",
"lnAA",
"NIC_nM_LLOD_log"))
ggcorrplot(cor(bx_kp), hc.order = TRUE, type = "lower", lab = TRUE)
Note: the inflammatory matrix is messed up, likely due to NA’s … wont show as ordered
#Convert from long to wide format
Biok_wide<-df_trans %>% tidyr::pivot_wider(names_from = infusionno,
values_from = c(all_of(vars_tx),
all_of(vars_cx),
all_of(vars_bx_trans),
-Remission,
-infusionno))
#recode as numeric variable
Biok_wide[c("Sample_ID_BL",
"Sample_ID_1st",
"Sample_ID_3rd")] <- lapply(Biok_wide[c("Sample_ID_BL",
"Sample_ID_1st",
"Sample_ID_3rd")], as.numeric)
#Selecting biomarker variables by timepoint for ease of selection
vars_BL<-tidyselect::vars_select(names(Biok_wide), ends_with("BL"))
vars_1st<-tidyselect::vars_select(names(Biok_wide), ends_with("1st"))
vars_3rd<-tidyselect::vars_select(names(Biok_wide), ends_with("3rd"))
Biok_wide %>%
dplyr::select(.,
-patientno,
-Site_Location_BL,
-Site_Location_1st,
-Site_Location_3rd,
-Sample_ID_BL,
-Sample_ID_1st,
-Sample_ID_3rd,
-Batch_Number_BL,
-Batch_Number_1st,
-Batch_Number_3rd) %>%
gtsummary::tbl_uvregression(method = lm, y= MADRS_Score_BL) %>%
gtsummary::add_global_p() %>%
gtsummary::bold_p() %>%
gtsummary::add_n() %>%
gtsummary::italicize_levels() %>%
gtsummary::bold_labels() %>%
gtsummary::modify_caption("**Univariate screen: sample Characteristics by depression (MADRS, baseline)**")
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.3.2
## Current Matrix version is 1.2.18
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
## add_global_p: Global p-values for variable(s) `add_global_p(include =
## c("age", "sex", "BMI", "race", "Remission", "BSS_Score_BL", "BSS_Score_1st",
## "BSS_Score_3rd", "MADRS_Score_1st", "MADRS_Score_3rd", "TRP_nM_BL",
## "TRP_nM_1st", "TRP_nM_3rd", "lnSER_BL", "lnSER_1st", "lnSER_3rd",
## "KYN_nM_BL", "KYN_nM_1st", "KYN_nM_3rd", "three_HK_nM_boxcox_BL",
## "three_HK_nM_boxcox_1st", "three_HK_nM_boxcox_3rd", "KYNA_nM_log_BL",
## "KYNA_nM_log_1st", "KYNA_nM_log_3rd", "lnPIC_BL", "lnPIC_1st", "lnPIC_3rd",
## "Quin_nM_BL", "Quin_nM_1st", "Quin_nM_3rd", "lnAA_BL", "lnAA_1st", "lnAA_3rd",
## "NIC_nM_LLOD_log_BL", "NIC_nM_LLOD_log_1st", "NIC_nM_LLOD_log_3rd",
## "NTA_nM_sqrt_BL", "NTA_nM_sqrt_1st", "NTA_nM_sqrt_3rd", "SAA_ng_mL_log_BL",
## "SAA_ng_mL_log_1st", "SAA_ng_mL_log_3rd", "lnVCAM_BL", "lnVCAM_1st",
## "lnVCAM_3rd", "lnICAM_BL", "lnICAM_1st", "lnICAM_3rd", "IL1B_pg_mL_log_BL",
## "IL1B_pg_mL_log_1st", "IL1B_pg_mL_log_3rd", "IL1B_pg_mL_LLOD_log_BL",
## "IL1B_pg_mL_LLOD_log_1st", "IL1B_pg_mL_LLOD_log_3rd", "IL2_pg_mL_BL",
## "IL2_pg_mL_1st", "IL2_pg_mL_3rd", "IL4_pg_mL_log_BL", "IL4_pg_mL_log_1st",
## "IL4_pg_mL_log_3rd", "IL4_pg_mL_LLOD_log_BL", "IL4_pg_mL_LLOD_log_1st",
## "IL4_pg_mL_LLOD_log_3rd", "IL6_pg_mL_log_BL", "IL6_pg_mL_log_1st",
## "IL6_pg_mL_log_3rd", "IL8_pg_mL_log_BL", "IL8_pg_mL_log_1st",
## "IL8_pg_mL_log_3rd", "IL10_pg_mL_BL", "IL10_pg_mL_1st", "IL10_pg_mL_3rd",
## "IL12p70_pg_mL_BL", "IL12p70_pg_mL_1st", "IL12p70_pg_mL_3rd",
## "IL12p70_pg_mL_LLOD_BL", "IL12p70_pg_mL_LLOD_1st", "IL12p70_pg_mL_LLOD_3rd",
## "IL13_pg_mL_BL", "IL13_pg_mL_1st", "IL13_pg_mL_3rd", "IL13_pg_mL_LLOD_BL",
## "IL13_pg_mL_LLOD_1st", "IL13_pg_mL_LLOD_3rd", "TNFa_pg_mL_sqrt_BL",
## "TNFa_pg_mL_sqrt_1st", "TNFa_pg_mL_sqrt_3rd", "IFNy_pg_mL_boxcox_BL",
## "IFNy_pg_mL_boxcox_1st", "IFNy_pg_mL_boxcox_3rd", "CRP_ng_mL_log_BL",
## "CRP_ng_mL_log_1st", "CRP_ng_mL_log_3rd"))` were calculated with
## `car::Anova(mod = x$model_obj, type = "III")`
| Characteristic | N | Beta | 95% CI1 | p-value |
|---|---|---|---|---|
| age | 73 | -0.10 | -0.20, 0.01 | 0.068 |
| sex | 73 | 0.2 | ||
| male | — | — | ||
| female | 1.9 | -0.95, 4.7 | ||
| BMI | 73 | -0.03 | -0.27, 0.22 | 0.8 |
| race | 73 | 0.7 | ||
| asian | — | — | ||
| black | 2.0 | -12, 16 | ||
| white | -1.2 | -13, 11 | ||
| Remission | 72 | 0.2 | ||
| No remission | — | — | ||
| Remitter | -2.1 | -4.9, 0.77 | ||
| BSS_Score_BL | 73 | 0.12 | -0.05, 0.29 | 0.2 |
| BSS_Score_1st | 68 | 0.38 | 0.13, 0.63 | 0.003 |
| BSS_Score_3rd | 68 | 0.15 | -0.18, 0.49 | 0.4 |
| MADRS_Score_1st | 70 | 0.19 | 0.00, 0.38 | 0.053 |
| MADRS_Score_3rd | 70 | 0.21 | 0.02, 0.40 | 0.030 |
| TRP_nM_BL | 73 | 0.00 | 0.00, 0.00 | 0.6 |
| TRP_nM_1st | 70 | 0.00 | 0.00, 0.00 | 0.3 |
| TRP_nM_3rd | 71 | 0.00 | 0.00, 0.00 | 0.4 |
| lnSER_BL | 73 | -0.63 | -1.6, 0.30 | 0.2 |
| lnSER_1st | 70 | -0.78 | -1.8, 0.19 | 0.11 |
| lnSER_3rd | 71 | -0.33 | -1.2, 0.56 | 0.5 |
| KYN_nM_BL | 73 | 0.00 | -0.01, 0.00 | 0.8 |
| KYN_nM_1st | 70 | 0.00 | -0.01, 0.00 | 0.5 |
| KYN_nM_3rd | 71 | 0.00 | -0.01, 0.00 | 0.8 |
| three_HK_nM_boxcox_BL | 73 | -1.7 | -46, 43 | >0.9 |
| three_HK_nM_boxcox_1st | 70 | -3.7 | -49, 42 | 0.9 |
| three_HK_nM_boxcox_3rd | 71 | 19 | -29, 66 | 0.4 |
| KYNA_nM_log_BL | 73 | -2.4 | -5.6, 0.82 | 0.14 |
| KYNA_nM_log_1st | 70 | -3.1 | -6.9, 0.69 | 0.11 |
| KYNA_nM_log_3rd | 71 | -0.66 | -4.1, 2.8 | 0.7 |
| lnPIC_BL | 73 | -2.0 | -4.7, 0.73 | 0.15 |
| lnPIC_1st | 70 | -1.7 | -5.3, 1.9 | 0.4 |
| lnPIC_3rd | 71 | -1.2 | -4.3, 1.9 | 0.4 |
| Quin_nM_BL | 73 | 0.00 | -0.03, 0.03 | >0.9 |
| Quin_nM_1st | 70 | -0.01 | -0.04, 0.03 | 0.7 |
| Quin_nM_3rd | 71 | 0.00 | -0.03, 0.03 | 0.9 |
| lnAA_BL | 73 | -1.9 | -5.0, 1.2 | 0.2 |
| lnAA_1st | 70 | -0.77 | -4.2, 2.7 | 0.7 |
| lnAA_3rd | 71 | -1.7 | -5.1, 1.6 | 0.3 |
| NIC_nM_LLOD_log_BL | 73 | 0.26 | -0.63, 1.1 | 0.6 |
| NIC_nM_LLOD_log_1st | 70 | 0.05 | -0.86, 1.0 | >0.9 |
| NIC_nM_LLOD_log_3rd | 71 | -0.05 | -1.0, 0.92 | >0.9 |
| NTA_nM_sqrt_BL | 73 | -0.18 | -0.47, 0.11 | 0.2 |
| NTA_nM_sqrt_1st | 70 | -0.37 | -0.70, -0.04 | 0.030 |
| NTA_nM_sqrt_3rd | 71 | -0.09 | -0.41, 0.24 | 0.6 |
| SAA_ng_mL_log_BL | 73 | 0.05 | -0.02, 0.12 | 0.2 |
| SAA_ng_mL_log_1st | 70 | 0.02 | -0.06, 0.09 | 0.7 |
| SAA_ng_mL_log_3rd | 71 | 0.06 | -0.02, 0.14 | 0.2 |
| lnVCAM_BL | 73 | -2.7 | -8.9, 3.5 | 0.4 |
| lnVCAM_1st | 70 | -5.6 | -12, 0.61 | 0.076 |
| lnVCAM_3rd | 71 | -4.4 | -10, 1.3 | 0.13 |
| lnICAM_BL | 73 | 5.5 | 0.29, 11 | 0.039 |
| lnICAM_1st | 70 | 3.3 | -2.2, 8.8 | 0.2 |
| lnICAM_3rd | 71 | 3.1 | -2.0, 8.2 | 0.2 |
| IL1B_pg_mL_log_BL | 73 | -1.5 | -8.8, 5.7 | 0.7 |
| IL1B_pg_mL_log_1st | 70 | 1.7 | -12, 15 | 0.8 |
| IL1B_pg_mL_log_3rd | 71 | -0.63 | -6.0, 4.8 | 0.8 |
| IL1B_pg_mL_LLOD_log_BL | 73 | -1.5 | -8.8, 5.7 | 0.7 |
| IL1B_pg_mL_LLOD_log_1st | 70 | 1.7 | -12, 15 | 0.8 |
| IL1B_pg_mL_LLOD_log_3rd | 71 | -0.63 | -6.0, 4.8 | 0.8 |
| IL2_pg_mL_BL | 45 | 0.13 | -0.16, 0.42 | 0.4 |
| IL2_pg_mL_1st | 50 | 0.16 | -0.16, 0.47 | 0.3 |
| IL2_pg_mL_3rd | 53 | 0.14 | -0.15, 0.43 | 0.3 |
| IL4_pg_mL_log_BL | 73 | -3.4 | -7.4, 0.64 | 0.10 |
| IL4_pg_mL_log_1st | 69 | -1.8 | -6.0, 2.4 | 0.4 |
| IL4_pg_mL_log_3rd | 71 | -2.1 | -7.0, 2.8 | 0.4 |
| IL4_pg_mL_LLOD_log_BL | 73 | -3.4 | -7.4, 0.64 | 0.10 |
| IL4_pg_mL_LLOD_log_1st | 70 | -1.8 | -4.6, 1.0 | 0.2 |
| IL4_pg_mL_LLOD_log_3rd | 71 | -2.1 | -7.0, 2.8 | 0.4 |
| IL6_pg_mL_log_BL | 73 | 0.26 | -2.8, 3.3 | 0.9 |
| IL6_pg_mL_log_1st | 70 | -0.48 | -3.2, 2.3 | 0.7 |
| IL6_pg_mL_log_3rd | 71 | 1.9 | -1.3, 5.2 | 0.2 |
| IL8_pg_mL_log_BL | 73 | -3.6 | -6.8, -0.30 | 0.033 |
| IL8_pg_mL_log_1st | 70 | -4.1 | -7.8, -0.40 | 0.030 |
| IL8_pg_mL_log_3rd | 71 | -2.2 | -6.2, 1.8 | 0.3 |
| IL10_pg_mL_BL | 73 | -0.07 | -0.71, 0.56 | 0.8 |
| IL10_pg_mL_1st | 70 | -0.05 | -0.76, 0.66 | 0.9 |
| IL10_pg_mL_3rd | 71 | -0.08 | -0.87, 0.70 | 0.8 |
| IL12p70_pg_mL_BL | 73 | 0.00 | -0.01, 0.00 | 0.4 |
| IL12p70_pg_mL_1st | 69 | 0.00 | -0.02, 0.01 | 0.4 |
| IL12p70_pg_mL_3rd | 71 | 0.00 | -0.01, 0.00 | 0.4 |
| IL12p70_pg_mL_LLOD_BL | 73 | 0.00 | -0.01, 0.00 | 0.4 |
| IL12p70_pg_mL_LLOD_1st | 70 | 0.00 | -0.02, 0.01 | 0.4 |
| IL12p70_pg_mL_LLOD_3rd | 71 | 0.00 | -0.01, 0.00 | 0.4 |
| IL13_pg_mL_BL | 72 | -0.05 | -0.17, 0.06 | 0.3 |
| IL13_pg_mL_1st | 68 | -0.05 | -0.18, 0.07 | 0.4 |
| IL13_pg_mL_3rd | 71 | -0.05 | -0.16, 0.07 | 0.4 |
| IL13_pg_mL_LLOD_BL | 73 | -0.05 | -0.17, 0.06 | 0.4 |
| IL13_pg_mL_LLOD_1st | 70 | -0.06 | -0.19, 0.07 | 0.3 |
| IL13_pg_mL_LLOD_3rd | 71 | -0.05 | -0.16, 0.07 | 0.4 |
| TNFa_pg_mL_sqrt_BL | 73 | -8.7 | -17, -0.59 | 0.036 |
| TNFa_pg_mL_sqrt_1st | 70 | -11 | -18, -3.1 | 0.006 |
| TNFa_pg_mL_sqrt_3rd | 71 | -7.5 | -15, 0.34 | 0.061 |
| IFNy_pg_mL_boxcox_BL | 73 | 4.8 | -6.4, 16 | 0.4 |
| IFNy_pg_mL_boxcox_1st | 70 | 3.4 | -7.1, 14 | 0.5 |
| IFNy_pg_mL_boxcox_3rd | 71 | 7.8 | -3.6, 19 | 0.2 |
| CRP_ng_mL_log_BL | 73 | 0.57 | -0.32, 1.5 | 0.2 |
| CRP_ng_mL_log_1st | 70 | 0.52 | -0.41, 1.5 | 0.3 |
| CRP_ng_mL_log_3rd | 71 | 0.63 | -0.31, 1.6 | 0.2 |
|
1
CI = Confidence Interval
|
||||
Baseline depressive severity is associated with baseline: -Suicidality -depression severity after ketamine infusion 3
Baseline depressive severity is inversely associated with baseline: -Age (trend) -NTA and TNF-alpha
Biok_wide %>%
dplyr::select(.,
-patientno,
-Site_Location_BL,
-Site_Location_1st,
-Site_Location_3rd,
-Sample_ID_BL,
-Sample_ID_1st,
-Sample_ID_3rd,
-Batch_Number_BL,
-Batch_Number_1st,
-Batch_Number_3rd) %>%
gtsummary::tbl_uvregression(method = lm, y= MADRS_Score_3rd) %>%
gtsummary::add_global_p() %>%
gtsummary::bold_p() %>%
gtsummary::add_n() %>%
gtsummary::italicize_levels() %>%
gtsummary::bold_labels() %>%
gtsummary::modify_caption("**Univariate screen: sample Characteristics by depression (MADRS, post-infusion 3)**")
## add_global_p: Global p-values for variable(s) `add_global_p(include =
## c("age", "sex", "BMI", "race", "Remission", "BSS_Score_BL", "BSS_Score_1st",
## "BSS_Score_3rd", "MADRS_Score_BL", "MADRS_Score_1st", "TRP_nM_BL",
## "TRP_nM_1st", "TRP_nM_3rd", "lnSER_BL", "lnSER_1st", "lnSER_3rd",
## "KYN_nM_BL", "KYN_nM_1st", "KYN_nM_3rd", "three_HK_nM_boxcox_BL",
## "three_HK_nM_boxcox_1st", "three_HK_nM_boxcox_3rd", "KYNA_nM_log_BL",
## "KYNA_nM_log_1st", "KYNA_nM_log_3rd", "lnPIC_BL", "lnPIC_1st", "lnPIC_3rd",
## "Quin_nM_BL", "Quin_nM_1st", "Quin_nM_3rd", "lnAA_BL", "lnAA_1st", "lnAA_3rd",
## "NIC_nM_LLOD_log_BL", "NIC_nM_LLOD_log_1st", "NIC_nM_LLOD_log_3rd",
## "NTA_nM_sqrt_BL", "NTA_nM_sqrt_1st", "NTA_nM_sqrt_3rd", "SAA_ng_mL_log_BL",
## "SAA_ng_mL_log_1st", "SAA_ng_mL_log_3rd", "lnVCAM_BL", "lnVCAM_1st",
## "lnVCAM_3rd", "lnICAM_BL", "lnICAM_1st", "lnICAM_3rd", "IL1B_pg_mL_log_BL",
## "IL1B_pg_mL_log_1st", "IL1B_pg_mL_log_3rd", "IL1B_pg_mL_LLOD_log_BL",
## "IL1B_pg_mL_LLOD_log_1st", "IL1B_pg_mL_LLOD_log_3rd", "IL2_pg_mL_BL",
## "IL2_pg_mL_1st", "IL2_pg_mL_3rd", "IL4_pg_mL_log_BL", "IL4_pg_mL_log_1st",
## "IL4_pg_mL_log_3rd", "IL4_pg_mL_LLOD_log_BL", "IL4_pg_mL_LLOD_log_1st",
## "IL4_pg_mL_LLOD_log_3rd", "IL6_pg_mL_log_BL", "IL6_pg_mL_log_1st",
## "IL6_pg_mL_log_3rd", "IL8_pg_mL_log_BL", "IL8_pg_mL_log_1st",
## "IL8_pg_mL_log_3rd", "IL10_pg_mL_BL", "IL10_pg_mL_1st", "IL10_pg_mL_3rd",
## "IL12p70_pg_mL_BL", "IL12p70_pg_mL_1st", "IL12p70_pg_mL_3rd",
## "IL12p70_pg_mL_LLOD_BL", "IL12p70_pg_mL_LLOD_1st", "IL12p70_pg_mL_LLOD_3rd",
## "IL13_pg_mL_BL", "IL13_pg_mL_1st", "IL13_pg_mL_3rd", "IL13_pg_mL_LLOD_BL",
## "IL13_pg_mL_LLOD_1st", "IL13_pg_mL_LLOD_3rd", "TNFa_pg_mL_sqrt_BL",
## "TNFa_pg_mL_sqrt_1st", "TNFa_pg_mL_sqrt_3rd", "IFNy_pg_mL_boxcox_BL",
## "IFNy_pg_mL_boxcox_1st", "IFNy_pg_mL_boxcox_3rd", "CRP_ng_mL_log_BL",
## "CRP_ng_mL_log_1st", "CRP_ng_mL_log_3rd"))` were calculated with
## `car::Anova(mod = x$model_obj, type = "III")`
| Characteristic | N | Beta | 95% CI1 | p-value |
|---|---|---|---|---|
| age | 72 | 0.01 | -0.13, 0.15 | 0.8 |
| sex | 72 | 0.4 | ||
| male | — | — | ||
| female | 1.4 | -2.3, 5.1 | ||
| BMI | 72 | 0.04 | -0.29, 0.36 | 0.8 |
| race | 72 | 0.6 | ||
| asian | — | — | ||
| black | 11 | -11, 33 | ||
| white | 4.9 | -11, 20 | ||
| Remission | 72 | <0.001 | ||
| No remission | — | — | ||
| Remitter | -13 | -15, -11 | ||
| BSS_Score_BL | 70 | 0.05 | -0.17, 0.28 | 0.6 |
| BSS_Score_1st | 69 | 0.50 | 0.20, 0.80 | 0.001 |
| BSS_Score_3rd | 69 | 0.85 | 0.50, 1.2 | <0.001 |
| MADRS_Score_BL | 70 | 0.32 | 0.03, 0.61 | 0.030 |
| MADRS_Score_1st | 71 | 0.64 | 0.45, 0.83 | <0.001 |
| TRP_nM_BL | 70 | 0.00 | 0.00, 0.00 | 0.068 |
| TRP_nM_1st | 71 | 0.00 | 0.00, 0.00 | 0.2 |
| TRP_nM_3rd | 72 | 0.00 | 0.00, 0.00 | 0.088 |
| lnSER_BL | 70 | 1.0 | -0.17, 2.1 | 0.094 |
| lnSER_1st | 71 | 1.0 | -0.26, 2.2 | 0.12 |
| lnSER_3rd | 72 | 1.2 | 0.06, 2.3 | 0.039 |
| KYN_nM_BL | 70 | 0.00 | 0.00, 0.01 | 0.4 |
| KYN_nM_1st | 71 | 0.00 | 0.00, 0.01 | 0.3 |
| KYN_nM_3rd | 72 | 0.01 | 0.00, 0.01 | 0.13 |
| three_HK_nM_boxcox_BL | 70 | -8.3 | -68, 51 | 0.8 |
| three_HK_nM_boxcox_1st | 71 | 4.4 | -54, 63 | 0.9 |
| three_HK_nM_boxcox_3rd | 72 | 21 | -42, 85 | 0.5 |
| KYNA_nM_log_BL | 70 | -2.3 | -6.7, 2.1 | 0.3 |
| KYNA_nM_log_1st | 71 | -0.71 | -5.9, 4.5 | 0.8 |
| KYNA_nM_log_3rd | 72 | -0.95 | -5.7, 3.8 | 0.7 |
| lnPIC_BL | 70 | -1.1 | -4.5, 2.3 | 0.5 |
| lnPIC_1st | 71 | 2.9 | -1.5, 7.3 | 0.2 |
| lnPIC_3rd | 72 | 0.53 | -3.5, 4.6 | 0.8 |
| Quin_nM_BL | 70 | -0.03 | -0.07, 0.01 | 0.2 |
| Quin_nM_1st | 71 | -0.01 | -0.05, 0.04 | 0.8 |
| Quin_nM_3rd | 72 | -0.02 | -0.06, 0.02 | 0.4 |
| lnAA_BL | 70 | -4.2 | -8.0, -0.37 | 0.032 |
| lnAA_1st | 71 | -0.67 | -5.0, 3.7 | 0.8 |
| lnAA_3rd | 72 | -0.80 | -5.3, 3.7 | 0.7 |
| NIC_nM_LLOD_log_BL | 70 | -0.01 | -1.1, 1.1 | >0.9 |
| NIC_nM_LLOD_log_1st | 71 | -0.47 | -1.6, 0.69 | 0.4 |
| NIC_nM_LLOD_log_3rd | 72 | 0.14 | -1.2, 1.4 | 0.8 |
| NTA_nM_sqrt_BL | 70 | 0.06 | -0.32, 0.44 | 0.7 |
| NTA_nM_sqrt_1st | 71 | -0.31 | -0.74, 0.11 | 0.15 |
| NTA_nM_sqrt_3rd | 72 | -0.01 | -0.44, 0.43 | >0.9 |
| SAA_ng_mL_log_BL | 70 | 0.05 | -0.04, 0.14 | 0.3 |
| SAA_ng_mL_log_1st | 71 | 0.04 | -0.05, 0.13 | 0.4 |
| SAA_ng_mL_log_3rd | 72 | 0.11 | 0.01, 0.20 | 0.024 |
| lnVCAM_BL | 70 | -4.2 | -12, 4.1 | 0.3 |
| lnVCAM_1st | 71 | 1.4 | -6.7, 9.4 | 0.7 |
| lnVCAM_3rd | 72 | 0.01 | -7.7, 7.7 | >0.9 |
| lnICAM_BL | 70 | 4.2 | -2.5, 11 | 0.2 |
| lnICAM_1st | 71 | 5.2 | -1.7, 12 | 0.14 |
| lnICAM_3rd | 72 | 5.5 | -1.3, 12 | 0.11 |
| IL1B_pg_mL_log_BL | 70 | 1.3 | -7.7, 10 | 0.8 |
| IL1B_pg_mL_log_1st | 71 | -0.82 | -18, 16 | >0.9 |
| IL1B_pg_mL_log_3rd | 72 | -4.2 | -11, 2.9 | 0.2 |
| IL1B_pg_mL_LLOD_log_BL | 70 | 1.3 | -7.7, 10 | 0.8 |
| IL1B_pg_mL_LLOD_log_1st | 71 | -0.82 | -18, 16 | >0.9 |
| IL1B_pg_mL_LLOD_log_3rd | 72 | -4.2 | -11, 2.9 | 0.2 |
| IL2_pg_mL_BL | 44 | 0.26 | -0.03, 0.54 | 0.074 |
| IL2_pg_mL_1st | 52 | 0.29 | -0.04, 0.62 | 0.088 |
| IL2_pg_mL_3rd | 55 | 0.27 | -0.06, 0.59 | 0.11 |
| IL4_pg_mL_log_BL | 70 | -0.29 | -5.5, 4.9 | >0.9 |
| IL4_pg_mL_log_1st | 70 | 1.3 | -4.1, 6.7 | 0.6 |
| IL4_pg_mL_log_3rd | 72 | -0.64 | -7.1, 5.8 | 0.8 |
| IL4_pg_mL_LLOD_log_BL | 70 | -0.29 | -5.5, 4.9 | >0.9 |
| IL4_pg_mL_LLOD_log_1st | 71 | 1.8 | -1.8, 5.4 | 0.3 |
| IL4_pg_mL_LLOD_log_3rd | 72 | -0.64 | -7.1, 5.8 | 0.8 |
| IL6_pg_mL_log_BL | 70 | -0.54 | -4.4, 3.3 | 0.8 |
| IL6_pg_mL_log_1st | 71 | 1.5 | -1.9, 4.9 | 0.4 |
| IL6_pg_mL_log_3rd | 72 | 1.5 | -2.8, 5.8 | 0.5 |
| IL8_pg_mL_log_BL | 70 | -2.0 | -6.4, 2.3 | 0.4 |
| IL8_pg_mL_log_1st | 71 | -3.3 | -8.1, 1.5 | 0.2 |
| IL8_pg_mL_log_3rd | 72 | 1.0 | -4.3, 6.3 | 0.7 |
| IL10_pg_mL_BL | 70 | -0.53 | -1.3, 0.25 | 0.2 |
| IL10_pg_mL_1st | 71 | -0.53 | -1.4, 0.37 | 0.2 |
| IL10_pg_mL_3rd | 72 | -0.61 | -1.6, 0.42 | 0.2 |
| IL12p70_pg_mL_BL | 70 | 0.00 | -0.01, 0.01 | >0.9 |
| IL12p70_pg_mL_1st | 70 | 0.00 | -0.01, 0.01 | >0.9 |
| IL12p70_pg_mL_3rd | 72 | 0.00 | -0.01, 0.01 | >0.9 |
| IL12p70_pg_mL_LLOD_BL | 70 | 0.00 | -0.01, 0.01 | >0.9 |
| IL12p70_pg_mL_LLOD_1st | 71 | 0.00 | -0.01, 0.01 | >0.9 |
| IL12p70_pg_mL_LLOD_3rd | 72 | 0.00 | -0.01, 0.01 | >0.9 |
| IL13_pg_mL_BL | 69 | 0.00 | -0.14, 0.14 | >0.9 |
| IL13_pg_mL_1st | 69 | 0.00 | -0.17, 0.16 | >0.9 |
| IL13_pg_mL_3rd | 72 | 0.00 | -0.16, 0.15 | >0.9 |
| IL13_pg_mL_LLOD_BL | 70 | 0.00 | -0.14, 0.14 | >0.9 |
| IL13_pg_mL_LLOD_1st | 71 | 0.00 | -0.16, 0.17 | >0.9 |
| IL13_pg_mL_LLOD_3rd | 72 | 0.00 | -0.16, 0.15 | >0.9 |
| TNFa_pg_mL_sqrt_BL | 70 | -2.6 | -13, 8.0 | 0.6 |
| TNFa_pg_mL_sqrt_1st | 71 | -1.2 | -11, 8.9 | 0.8 |
| TNFa_pg_mL_sqrt_3rd | 72 | -0.64 | -11, 9.9 | >0.9 |
| IFNy_pg_mL_boxcox_BL | 70 | -3.0 | -17, 11 | 0.7 |
| IFNy_pg_mL_boxcox_1st | 71 | -3.1 | -17, 10 | 0.6 |
| IFNy_pg_mL_boxcox_3rd | 72 | 0.37 | -15, 16 | >0.9 |
| CRP_ng_mL_log_BL | 70 | 0.28 | -0.85, 1.4 | 0.6 |
| CRP_ng_mL_log_1st | 71 | 0.19 | -1.0, 1.4 | 0.8 |
| CRP_ng_mL_log_3rd | 72 | 0.77 | -0.47, 2.0 | 0.2 |
|
1
CI = Confidence Interval
|
||||
Depression at post-infusion 3 is associated with: -increased depression and suicidality, at both BL and post-infusion 3 -serotonin levels at post-infusion 3 -decreased anthranilic acid level at baseline -Increased SAA level at post-infusion 3 -trends: higher baseline tryptophan, baseline IL2, baseline serotonin
Biok_wide %>%
dplyr::select(.,
-patientno,
-Site_Location_BL,
-Site_Location_1st,
-Site_Location_3rd,
-Sample_ID_BL,
-Sample_ID_1st,
-Sample_ID_3rd,
-Batch_Number_BL,
-Batch_Number_1st,
-Batch_Number_3rd) %>%
gtsummary::tbl_summary(by=Remission) %>%
gtsummary::add_p(statistic =list(all_continuous() ~ "{mean} ({sd})",
all_dichotomous() ~ "{p}% ({n})",
digits = all_continuous() ~ 2,
missing_text = "(Missing)"))%>%
gtsummary::bold_p() %>%
gtsummary::add_n() %>%
gtsummary::italicize_levels() %>%
gtsummary::bold_labels() %>%
gtsummary::modify_caption("**Univariate screen: sample Characteristics by remission status (post-infusion 3)**")
## 1 observations missing `Remission` have been removed. To include these observations, use `forcats::fct_explicit_na()` on `Remission` column before passing to `tbl_summary()`.
## Warning for variable 'age':
## simpleWarning in wilcox.test.default(x = c(63, 36, 57, 59, 43, 55, 28, 24, 45, : cannot compute exact p-value with ties
## Warning for variable 'BMI':
## simpleWarning in wilcox.test.default(x = c(23.4, 25.1, 37.9, 33.4, 46.7, 30.1, : cannot compute exact p-value with ties
## Warning for variable 'BSS_Score_BL':
## simpleWarning in wilcox.test.default(x = c(12, 15, 4, 2, 10, 27, 13, 25, 6, 14, : cannot compute exact p-value with ties
## Warning for variable 'BSS_Score_1st':
## simpleWarning in wilcox.test.default(x = c(8, 0, 0, 23, 1, 1, 8, 19, 0, 1, 9, : cannot compute exact p-value with ties
## Warning for variable 'BSS_Score_3rd':
## simpleWarning in wilcox.test.default(x = c(13, 4, 0, 1, 0, 1, 21, 0, 12, 2, 0, : cannot compute exact p-value with ties
## Warning for variable 'MADRS_Score_BL':
## simpleWarning in wilcox.test.default(x = c(31, 38, 29, 19, 27, 36, 34, 27, 23, : cannot compute exact p-value with ties
## Warning for variable 'MADRS_Score_1st':
## simpleWarning in wilcox.test.default(x = c(25, 21, 9, 11, 21, 22, 19, 13, 21, : cannot compute exact p-value with ties
## Warning for variable 'MADRS_Score_3rd':
## simpleWarning in wilcox.test.default(x = c(28, 26, 15, 21, 10, 20, 15, 12, 15, : cannot compute exact p-value with ties
## Warning for variable 'NIC_nM_LLOD_log_1st':
## simpleWarning in wilcox.test.default(x = c(1.18711144725052, -1.1294839523352, : cannot compute exact p-value with ties
## Warning for variable 'IL13_pg_mL_LLOD_1st':
## simpleWarning in wilcox.test.default(x = c(3.170425335, 3.493771076, 4.743641871, : cannot compute exact p-value with ties
| Characteristic | N | No remission, N = 271 | Remitter, N = 471 | p-value2 |
|---|---|---|---|---|
| age | 74 | 47 (28, 55) | 46 (36, 55) | >0.9 |
| sex | 74 | 0.4 | ||
| male | 8 (30%) | 19 (40%) | ||
| female | 19 (70%) | 28 (60%) | ||
| BMI | 74 | 28.8 (23.4, 32.1) | 28.1 (25.1, 31.9) | 0.8 |
| race | 74 | >0.9 | ||
| asian | 0 (0%) | 1 (2.1%) | ||
| black | 1 (3.7%) | 1 (2.1%) | ||
| white | 26 (96%) | 45 (96%) | ||
| BSS_Score_BL | 72 | 8 (2, 13) | 6 (1, 13) | 0.3 |
| Unknown | 1 | 1 | ||
| BSS_Score_1st | 69 | 1.0 (0.0, 8.5) | 0.0 (0.0, 0.8) | 0.004 |
| Unknown | 4 | 1 | ||
| BSS_Score_3rd | 69 | 1.0 (0.0, 8.0) | 0.0 (0.0, 0.0) | <0.001 |
| Unknown | 2 | 3 | ||
| MADRS_Score_BL | 72 | 28.5 (24.2, 33.0) | 27.0 (24.0, 30.0) | 0.3 |
| Unknown | 1 | 1 | ||
| MADRS_Score_1st | 71 | 21 (12, 24) | 13 (7, 15) | <0.001 |
| Unknown | 2 | 1 | ||
| MADRS_Score_3rd | 72 | 16 (12, 21) | 4 (2, 6) | <0.001 |
| Unknown | 1 | 1 | ||
| TRP_nM_BL | 72 | 27,892 (26,129, 32,035) | 28,410 (23,376, 30,356) | 0.3 |
| Unknown | 1 | 1 | ||
| TRP_nM_1st | 71 | 25,316 (21,275, 27,114) | 24,536 (19,413, 28,137) | 0.7 |
| Unknown | 2 | 1 | ||
| TRP_nM_3rd | 72 | 25,642 (19,848, 30,055) | 22,882 (19,748, 28,685) | 0.3 |
| Unknown | 1 | 1 | ||
| lnSER_BL | 72 | 4.94 (3.65, 6.02) | 4.26 (3.38, 5.26) | 0.12 |
| Unknown | 1 | 1 | ||
| lnSER_1st | 71 | 4.57 (3.64, 5.62) | 3.80 (3.21, 5.11) | 0.2 |
| Unknown | 2 | 1 | ||
| lnSER_3rd | 72 | 5.20 (3.41, 6.31) | 3.78 (3.02, 4.98) | 0.024 |
| Unknown | 1 | 1 | ||
| KYN_nM_BL | 72 | 960 (850, 1,143) | 927 (768, 1,178) | 0.5 |
| Unknown | 1 | 1 | ||
| KYN_nM_1st | 71 | 856 (763, 998) | 868 (743, 997) | >0.9 |
| Unknown | 2 | 1 | ||
| KYN_nM_3rd | 72 | 854 (759, 1,032) | 879 (708, 980) | 0.7 |
| Unknown | 1 | 1 | ||
| three_HK_nM_boxcox_BL | 72 | 1.04 (1.03, 1.06) | 1.04 (1.02, 1.06) | 0.8 |
| Unknown | 1 | 1 | ||
| three_HK_nM_boxcox_1st | 71 | 1.035 (1.020, 1.047) | 1.033 (1.021, 1.057) | >0.9 |
| Unknown | 2 | 1 | ||
| three_HK_nM_boxcox_3rd | 72 | 1.036 (1.017, 1.053) | 1.036 (1.014, 1.060) | >0.9 |
| Unknown | 1 | 1 | ||
| KYNA_nM_log_BL | 72 | 2.95 (2.67, 3.18) | 2.99 (2.75, 3.24) | 0.9 |
| Unknown | 1 | 1 | ||
| KYNA_nM_log_1st | 71 | 2.89 (2.73, 3.07) | 2.97 (2.65, 3.18) | 0.5 |
| Unknown | 2 | 1 | ||
| KYNA_nM_log_3rd | 72 | 2.83 (2.60, 3.09) | 2.89 (2.65, 3.18) | 0.5 |
| Unknown | 1 | 1 | ||
| lnPIC_BL | 72 | 2.88 (2.65, 3.16) | 2.84 (2.51, 3.20) | 0.8 |
| Unknown | 1 | 1 | ||
| lnPIC_1st | 71 | 2.77 (2.59, 3.03) | 2.74 (2.49, 3.10) | 0.7 |
| Unknown | 2 | 1 | ||
| lnPIC_3rd | 72 | 2.88 (2.47, 3.10) | 2.84 (2.60, 3.12) | 0.8 |
| Unknown | 1 | 1 | ||
| Quin_nM_BL | 72 | 141 (107, 161) | 145 (118, 177) | 0.4 |
| Unknown | 1 | 1 | ||
| Quin_nM_1st | 71 | 133 (112, 162) | 138 (102, 177) | 0.8 |
| Unknown | 2 | 1 | ||
| Quin_nM_3rd | 72 | 130 (113, 155) | 157 (116, 181) | 0.2 |
| Unknown | 1 | 1 | ||
| lnAA_BL | 72 | 1.56 (1.44, 1.76) | 1.72 (1.50, 2.00) | 0.035 |
| Unknown | 1 | 1 | ||
| lnAA_1st | 71 | 1.63 (1.37, 1.87) | 1.69 (1.43, 2.00) | 0.4 |
| Unknown | 2 | 1 | ||
| lnAA_3rd | 72 | 1.64 (1.45, 1.87) | 1.63 (1.40, 1.96) | 0.9 |
| Unknown | 1 | 1 | ||
| NIC_nM_LLOD_log_BL | 72 | -0.54 (-1.12, -0.23) | -0.67 (-1.13, 0.08) | >0.9 |
| Unknown | 1 | 1 | ||
| NIC_nM_LLOD_log_1st | 71 | -0.86 (-1.07, -0.46) | -0.47 (-0.98, 0.57) | 0.12 |
| Unknown | 2 | 1 | ||
| NIC_nM_LLOD_log_3rd | 72 | -0.67 (-1.04, 0.08) | -0.74 (-1.11, -0.07) | 0.5 |
| Unknown | 1 | 1 | ||
| NTA_nM_sqrt_BL | 72 | 17.3 (14.8, 19.4) | 17.3 (14.2, 21.7) | 0.6 |
| Unknown | 1 | 1 | ||
| NTA_nM_sqrt_1st | 71 | 15.6 (13.1, 17.4) | 17.8 (14.1, 20.6) | 0.10 |
| Unknown | 2 | 1 | ||
| NTA_nM_sqrt_3rd | 72 | 17.2 (15.3, 18.0) | 15.7 (13.0, 18.4) | 0.3 |
| Unknown | 1 | 1 | ||
| SAA_ng_mL_log_BL | 72 | 54 (44, 65) | 42 (35, 61) | 0.15 |
| Unknown | 1 | 1 | ||
| SAA_ng_mL_log_1st | 71 | 50 (40, 62) | 42 (34, 63) | 0.4 |
| Unknown | 2 | 1 | ||
| SAA_ng_mL_log_3rd | 72 | 46 (38, 69) | 45 (35, 64) | 0.5 |
| Unknown | 1 | 1 | ||
| lnVCAM_BL | 72 | 5.71 (5.59, 5.86) | 5.73 (5.60, 5.89) | 0.5 |
| Unknown | 1 | 1 | ||
| lnVCAM_1st | 71 | 5.72 (5.56, 5.88) | 5.73 (5.56, 5.88) | >0.9 |
| Unknown | 2 | 1 | ||
| lnVCAM_3rd | 72 | 5.75 (5.62, 5.85) | 5.69 (5.52, 5.85) | 0.6 |
| Unknown | 1 | 1 | ||
| lnICAM_BL | 72 | 5.76 (5.56, 5.98) | 5.68 (5.56, 5.84) | 0.2 |
| Unknown | 1 | 1 | ||
| lnICAM_1st | 71 | 5.67 (5.57, 5.92) | 5.65 (5.52, 5.85) | 0.4 |
| Unknown | 2 | 1 | ||
| lnICAM_3rd | 72 | 5.70 (5.57, 5.90) | 5.64 (5.51, 5.81) | 0.15 |
| Unknown | 1 | 1 | ||
| IL1B_pg_mL_log_BL | 72 | 0.6 | ||
| -1.12936028423984 | 25 (96%) | 45 (98%) | ||
| -0.885288513121754 | 0 (0%) | 1 (2.2%) | ||
| 0.473671672492252 | 1 (3.8%) | 0 (0%) | ||
| Unknown | 1 | 1 | ||
| IL1B_pg_mL_log_1st | 71 | 0.6 | ||
| -1.12936028423984 | 24 (96%) | 45 (98%) | ||
| -0.560070844958166 | 0 (0%) | 1 (2.2%) | ||
| -0.442332943131407 | 1 (4.0%) | 0 (0%) | ||
| Unknown | 2 | 1 | ||
| IL1B_pg_mL_log_3rd | 72 | 0.7 | ||
| -1.12936028423984 | 25 (96%) | 44 (96%) | ||
| -1.08675143155781 | 1 (3.8%) | 0 (0%) | ||
| -0.813372591137231 | 0 (0%) | 1 (2.2%) | ||
| 1.00177015061474 | 0 (0%) | 1 (2.2%) | ||
| Unknown | 1 | 1 | ||
| IL1B_pg_mL_LLOD_log_BL | 72 | 0.6 | ||
| -1.12936028423984 | 25 (96%) | 45 (98%) | ||
| -0.885288513121754 | 0 (0%) | 1 (2.2%) | ||
| 0.473671672492252 | 1 (3.8%) | 0 (0%) | ||
| Unknown | 1 | 1 | ||
| IL1B_pg_mL_LLOD_log_1st | 71 | 0.6 | ||
| -1.12936028423984 | 24 (96%) | 45 (98%) | ||
| -0.560070844958166 | 0 (0%) | 1 (2.2%) | ||
| -0.442332943131407 | 1 (4.0%) | 0 (0%) | ||
| Unknown | 2 | 1 | ||
| IL1B_pg_mL_LLOD_log_3rd | 72 | 0.7 | ||
| -1.12936028423984 | 25 (96%) | 44 (96%) | ||
| -1.08675143155781 | 1 (3.8%) | 0 (0%) | ||
| -0.813372591137231 | 0 (0%) | 1 (2.2%) | ||
| 1.00177015061474 | 0 (0%) | 1 (2.2%) | ||
| Unknown | 1 | 1 | ||
| IL2_pg_mL_BL | 45 | 0.47 (0.30, 0.61) | 0.38 (0.30, 0.66) | >0.9 |
| Unknown | 11 | 18 | ||
| IL2_pg_mL_1st | 52 | 0.40 (0.25, 0.53) | 0.37 (0.28, 0.49) | 0.8 |
| Unknown | 9 | 13 | ||
| IL2_pg_mL_3rd | 55 | 0.37 (0.29, 0.61) | 0.39 (0.29, 0.50) | 0.7 |
| Unknown | 9 | 10 | ||
| IL4_pg_mL_log_BL | 72 | -2.44 (-2.60, -2.26) | -2.47 (-2.67, -2.31) | 0.8 |
| Unknown | 1 | 1 | ||
| IL4_pg_mL_log_1st | 70 | -2.48 (-2.64, -2.19) | -2.41 (-2.74, -2.29) | 0.6 |
| Unknown | 2 | 2 | ||
| IL4_pg_mL_log_3rd | 72 | -2.47 (-2.65, -2.22) | -2.45 (-2.62, -2.28) | 0.8 |
| Unknown | 1 | 1 | ||
| IL4_pg_mL_LLOD_log_BL | 72 | -2.44 (-2.60, -2.26) | -2.47 (-2.67, -2.31) | 0.8 |
| Unknown | 1 | 1 | ||
| IL4_pg_mL_LLOD_log_1st | 71 | -2.48 (-2.64, -2.19) | -2.46 (-2.74, -2.30) | 0.5 |
| Unknown | 2 | 1 | ||
| IL4_pg_mL_LLOD_log_3rd | 72 | -2.47 (-2.65, -2.22) | -2.45 (-2.62, -2.28) | 0.8 |
| Unknown | 1 | 1 | ||
| IL6_pg_mL_log_BL | 72 | -0.07 (-0.39, 0.18) | -0.20 (-0.37, 0.16) | >0.9 |
| Unknown | 1 | 1 | ||
| IL6_pg_mL_log_1st | 71 | 0.09 (-0.11, 0.44) | -0.11 (-0.46, 0.23) | 0.14 |
| Unknown | 2 | 1 | ||
| IL6_pg_mL_log_3rd | 72 | -0.05 (-0.39, 0.20) | -0.26 (-0.46, 0.09) | 0.3 |
| Unknown | 1 | 1 | ||
| IL8_pg_mL_log_BL | 72 | 1.36 (1.09, 1.65) | 1.53 (1.33, 1.66) | 0.15 |
| Unknown | 1 | 1 | ||
| IL8_pg_mL_log_1st | 71 | 1.44 (1.07, 1.66) | 1.51 (1.35, 1.71) | 0.2 |
| Unknown | 2 | 1 | ||
| IL8_pg_mL_log_3rd | 72 | 1.38 (1.11, 1.55) | 1.32 (1.12, 1.51) | 0.7 |
| Unknown | 1 | 1 | ||
| IL10_pg_mL_BL | 72 | 0.33 (0.29, 0.42) | 0.34 (0.26, 0.45) | 0.7 |
| Unknown | 1 | 1 | ||
| IL10_pg_mL_1st | 71 | 0.37 (0.32, 0.42) | 0.36 (0.26, 0.46) | 0.5 |
| Unknown | 2 | 1 | ||
| IL10_pg_mL_3rd | 72 | 0.40 (0.34, 0.43) | 0.34 (0.26, 0.46) | 0.4 |
| Unknown | 1 | 1 | ||
| IL12p70_pg_mL_BL | 72 | 0.39 (0.33, 0.51) | 0.37 (0.26, 0.47) | 0.3 |
| Unknown | 1 | 1 | ||
| IL12p70_pg_mL_1st | 70 | 0.41 (0.33, 0.52) | 0.38 (0.30, 0.49) | 0.2 |
| Unknown | 2 | 2 | ||
| IL12p70_pg_mL_3rd | 72 | 0.43 (0.34, 0.48) | 0.36 (0.29, 0.49) | 0.3 |
| Unknown | 1 | 1 | ||
| IL12p70_pg_mL_LLOD_BL | 72 | 0.39 (0.33, 0.51) | 0.37 (0.26, 0.47) | 0.3 |
| Unknown | 1 | 1 | ||
| IL12p70_pg_mL_LLOD_1st | 71 | 0.41 (0.33, 0.52) | 0.37 (0.29, 0.48) | 0.14 |
| Unknown | 2 | 1 | ||
| IL12p70_pg_mL_LLOD_3rd | 72 | 0.43 (0.34, 0.48) | 0.36 (0.29, 0.49) | 0.3 |
| Unknown | 1 | 1 | ||
| IL13_pg_mL_BL | 71 | 3.42 (3.08, 3.97) | 3.62 (3.24, 4.19) | 0.3 |
| Unknown | 1 | 2 | ||
| IL13_pg_mL_1st | 69 | 3.49 (3.15, 3.94) | 3.66 (3.20, 4.24) | 0.5 |
| Unknown | 2 | 3 | ||
| IL13_pg_mL_3rd | 72 | 3.50 (3.13, 4.06) | 3.64 (3.24, 3.95) | 0.5 |
| Unknown | 1 | 1 | ||
| IL13_pg_mL_LLOD_BL | 72 | 3.42 (3.08, 3.97) | 3.62 (3.18, 4.17) | 0.4 |
| Unknown | 1 | 1 | ||
| IL13_pg_mL_LLOD_1st | 71 | 3.49 (3.15, 3.94) | 3.65 (3.14, 4.21) | 0.7 |
| Unknown | 2 | 1 | ||
| IL13_pg_mL_LLOD_3rd | 72 | 3.50 (3.13, 4.06) | 3.64 (3.24, 3.95) | 0.5 |
| Unknown | 1 | 1 | ||
| TNFa_pg_mL_sqrt_BL | 72 | 1.14 (1.08, 1.27) | 1.19 (1.10, 1.30) | 0.4 |
| Unknown | 1 | 1 | ||
| TNFa_pg_mL_sqrt_1st | 71 | 1.13 (1.07, 1.25) | 1.15 (1.09, 1.30) | 0.3 |
| Unknown | 2 | 1 | ||
| TNFa_pg_mL_sqrt_3rd | 72 | 1.15 (1.06, 1.25) | 1.16 (1.10, 1.26) | 0.5 |
| Unknown | 1 | 1 | ||
| IFNy_pg_mL_boxcox_BL | 72 | 0.93 (0.86, 1.04) | 0.95 (0.88, 1.04) | 0.7 |
| Unknown | 1 | 1 | ||
| IFNy_pg_mL_boxcox_1st | 71 | 0.90 (0.86, 1.00) | 0.95 (0.87, 1.03) | 0.5 |
| Unknown | 2 | 1 | ||
| IFNy_pg_mL_boxcox_3rd | 72 | 0.96 (0.89, 1.04) | 0.97 (0.89, 1.06) | 0.6 |
| Unknown | 1 | 1 | ||
| CRP_ng_mL_log_BL | 72 | 7.42 (6.75, 8.77) | 6.93 (6.06, 7.92) | 0.3 |
| Unknown | 1 | 1 | ||
| CRP_ng_mL_log_1st | 71 | 7.03 (5.97, 8.14) | 6.86 (6.23, 7.84) | 0.7 |
| Unknown | 2 | 1 | ||
| CRP_ng_mL_log_3rd | 72 | 7.52 (5.91, 8.04) | 6.97 (6.07, 7.80) | 0.4 |
| Unknown | 1 | 1 | ||
|
1
Median (IQR); n (%)
2
Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test
|
||||
Remission status (MADRS<9) after infusion 3 is associated with: -Lower suicidality at basleine and post-infusion 3 -Lower serotonin levels after infusion 3 -Higher anthranilic acid at baseline -Feint trends: IL4, IL6, IL8, SAA, NIC, NTA
Biok_wide %>%
dplyr::select(.,
-patientno,
-Site_Location_BL,
-Site_Location_1st,
-Site_Location_3rd,
-Sample_ID_BL,
-Sample_ID_1st,
-Sample_ID_3rd,
-Batch_Number_BL,
-Batch_Number_1st,
-Batch_Number_3rd) %>%
gtsummary::tbl_uvregression(method = lm, y= BSS_Score_BL) %>%
gtsummary::add_global_p() %>%
gtsummary::bold_p() %>%
gtsummary::add_n() %>%
gtsummary::italicize_levels() %>%
gtsummary::bold_labels() %>%
gtsummary::modify_caption("**Univariate screen: sample Characteristics by suicidality (BSS, baseline)**")
## add_global_p: Global p-values for variable(s) `add_global_p(include =
## c("age", "sex", "BMI", "race", "Remission", "BSS_Score_1st", "BSS_Score_3rd",
## "MADRS_Score_BL", "MADRS_Score_1st", "MADRS_Score_3rd", "TRP_nM_BL",
## "TRP_nM_1st", "TRP_nM_3rd", "lnSER_BL", "lnSER_1st", "lnSER_3rd",
## "KYN_nM_BL", "KYN_nM_1st", "KYN_nM_3rd", "three_HK_nM_boxcox_BL",
## "three_HK_nM_boxcox_1st", "three_HK_nM_boxcox_3rd", "KYNA_nM_log_BL",
## "KYNA_nM_log_1st", "KYNA_nM_log_3rd", "lnPIC_BL", "lnPIC_1st", "lnPIC_3rd",
## "Quin_nM_BL", "Quin_nM_1st", "Quin_nM_3rd", "lnAA_BL", "lnAA_1st", "lnAA_3rd",
## "NIC_nM_LLOD_log_BL", "NIC_nM_LLOD_log_1st", "NIC_nM_LLOD_log_3rd",
## "NTA_nM_sqrt_BL", "NTA_nM_sqrt_1st", "NTA_nM_sqrt_3rd", "SAA_ng_mL_log_BL",
## "SAA_ng_mL_log_1st", "SAA_ng_mL_log_3rd", "lnVCAM_BL", "lnVCAM_1st",
## "lnVCAM_3rd", "lnICAM_BL", "lnICAM_1st", "lnICAM_3rd", "IL1B_pg_mL_log_BL",
## "IL1B_pg_mL_log_1st", "IL1B_pg_mL_log_3rd", "IL1B_pg_mL_LLOD_log_BL",
## "IL1B_pg_mL_LLOD_log_1st", "IL1B_pg_mL_LLOD_log_3rd", "IL2_pg_mL_BL",
## "IL2_pg_mL_1st", "IL2_pg_mL_3rd", "IL4_pg_mL_log_BL", "IL4_pg_mL_log_1st",
## "IL4_pg_mL_log_3rd", "IL4_pg_mL_LLOD_log_BL", "IL4_pg_mL_LLOD_log_1st",
## "IL4_pg_mL_LLOD_log_3rd", "IL6_pg_mL_log_BL", "IL6_pg_mL_log_1st",
## "IL6_pg_mL_log_3rd", "IL8_pg_mL_log_BL", "IL8_pg_mL_log_1st",
## "IL8_pg_mL_log_3rd", "IL10_pg_mL_BL", "IL10_pg_mL_1st", "IL10_pg_mL_3rd",
## "IL12p70_pg_mL_BL", "IL12p70_pg_mL_1st", "IL12p70_pg_mL_3rd",
## "IL12p70_pg_mL_LLOD_BL", "IL12p70_pg_mL_LLOD_1st", "IL12p70_pg_mL_LLOD_3rd",
## "IL13_pg_mL_BL", "IL13_pg_mL_1st", "IL13_pg_mL_3rd", "IL13_pg_mL_LLOD_BL",
## "IL13_pg_mL_LLOD_1st", "IL13_pg_mL_LLOD_3rd", "TNFa_pg_mL_sqrt_BL",
## "TNFa_pg_mL_sqrt_1st", "TNFa_pg_mL_sqrt_3rd", "IFNy_pg_mL_boxcox_BL",
## "IFNy_pg_mL_boxcox_1st", "IFNy_pg_mL_boxcox_3rd", "CRP_ng_mL_log_BL",
## "CRP_ng_mL_log_1st", "CRP_ng_mL_log_3rd"))` were calculated with
## `car::Anova(mod = x$model_obj, type = "III")`
| Characteristic | N | Beta | 95% CI1 | p-value |
|---|---|---|---|---|
| age | 73 | -0.06 | -0.20, 0.09 | 0.4 |
| sex | 73 | 0.6 | ||
| male | — | — | ||
| female | -1.1 | -5.0, 2.8 | ||
| BMI | 73 | -0.06 | -0.39, 0.28 | 0.7 |
| race | 73 | 0.6 | ||
| asian | — | — | ||
| black | 9.5 | -10, 29 | ||
| white | 8.6 | -7.5, 25 | ||
| Remission | 72 | 0.5 | ||
| No remission | — | — | ||
| Remitter | -1.3 | -5.1, 2.5 | ||
| BSS_Score_1st | 68 | 0.87 | 0.59, 1.1 | <0.001 |
| BSS_Score_3rd | 68 | 0.79 | 0.37, 1.2 | <0.001 |
| MADRS_Score_BL | 73 | 0.23 | -0.09, 0.55 | 0.2 |
| MADRS_Score_1st | 70 | -0.09 | -0.36, 0.18 | 0.5 |
| MADRS_Score_3rd | 70 | 0.06 | -0.20, 0.32 | 0.6 |
| TRP_nM_BL | 73 | 0.00 | 0.00, 0.00 | 0.4 |
| TRP_nM_1st | 70 | 0.00 | 0.00, 0.00 | 0.8 |
| TRP_nM_3rd | 71 | 0.00 | 0.00, 0.00 | >0.9 |
| lnSER_BL | 73 | 0.51 | -0.78, 1.8 | 0.4 |
| lnSER_1st | 70 | 0.26 | -1.1, 1.6 | 0.7 |
| lnSER_3rd | 71 | 0.57 | -0.66, 1.8 | 0.4 |
| KYN_nM_BL | 73 | -0.01 | -0.01, 0.00 | 0.12 |
| KYN_nM_1st | 70 | -0.01 | -0.01, 0.00 | 0.2 |
| KYN_nM_3rd | 71 | -0.01 | -0.01, 0.00 | 0.10 |
| three_HK_nM_boxcox_BL | 73 | -37 | -97, 24 | 0.2 |
| three_HK_nM_boxcox_1st | 70 | -33 | -95, 29 | 0.3 |
| three_HK_nM_boxcox_3rd | 71 | -44 | -109, 21 | 0.2 |
| KYNA_nM_log_BL | 73 | -3.3 | -7.7, 1.1 | 0.14 |
| KYNA_nM_log_1st | 70 | -1.8 | -7.1, 3.5 | 0.5 |
| KYNA_nM_log_3rd | 71 | -4.0 | -8.6, 0.58 | 0.085 |
| lnPIC_BL | 73 | 0.58 | -3.2, 4.3 | 0.8 |
| lnPIC_1st | 70 | 3.0 | -2.0, 8.0 | 0.2 |
| lnPIC_3rd | 71 | -0.80 | -5.1, 3.5 | 0.7 |
| Quin_nM_BL | 73 | -0.02 | -0.06, 0.02 | 0.3 |
| Quin_nM_1st | 70 | -0.01 | -0.06, 0.04 | 0.7 |
| Quin_nM_3rd | 71 | -0.02 | -0.06, 0.02 | 0.3 |
| lnAA_BL | 73 | -1.5 | -5.7, 2.8 | 0.5 |
| lnAA_1st | 70 | -1.3 | -6.0, 3.4 | 0.6 |
| lnAA_3rd | 71 | -1.1 | -5.7, 3.6 | 0.6 |
| NIC_nM_LLOD_log_BL | 73 | 0.56 | -0.66, 1.8 | 0.4 |
| NIC_nM_LLOD_log_1st | 70 | 0.50 | -0.76, 1.8 | 0.4 |
| NIC_nM_LLOD_log_3rd | 71 | 0.57 | -0.77, 1.9 | 0.4 |
| NTA_nM_sqrt_BL | 73 | -0.19 | -0.60, 0.21 | 0.3 |
| NTA_nM_sqrt_1st | 70 | -0.34 | -0.81, 0.12 | 0.15 |
| NTA_nM_sqrt_3rd | 71 | -0.09 | -0.54, 0.36 | 0.7 |
| SAA_ng_mL_log_BL | 73 | -0.05 | -0.14, 0.05 | 0.4 |
| SAA_ng_mL_log_1st | 70 | -0.04 | -0.14, 0.06 | 0.5 |
| SAA_ng_mL_log_3rd | 71 | -0.03 | -0.14, 0.08 | 0.6 |
| lnVCAM_BL | 73 | 1.3 | -7.3, 9.8 | 0.8 |
| lnVCAM_1st | 70 | 2.9 | -5.8, 12 | 0.5 |
| lnVCAM_3rd | 71 | 3.2 | -4.8, 11 | 0.4 |
| lnICAM_BL | 73 | 0.84 | -6.6, 8.3 | 0.8 |
| lnICAM_1st | 70 | -0.72 | -8.4, 6.9 | 0.9 |
| lnICAM_3rd | 71 | 0.76 | -6.4, 7.9 | 0.8 |
| IL1B_pg_mL_log_BL | 73 | -2.7 | -13, 7.2 | 0.6 |
| IL1B_pg_mL_log_1st | 70 | 12 | -6.0, 30 | 0.2 |
| IL1B_pg_mL_log_3rd | 71 | -3.5 | -11, 3.9 | 0.3 |
| IL1B_pg_mL_LLOD_log_BL | 73 | -2.7 | -13, 7.2 | 0.6 |
| IL1B_pg_mL_LLOD_log_1st | 70 | 12 | -6.0, 30 | 0.2 |
| IL1B_pg_mL_LLOD_log_3rd | 71 | -3.5 | -11, 3.9 | 0.3 |
| IL2_pg_mL_BL | 45 | 0.12 | -0.27, 0.50 | 0.5 |
| IL2_pg_mL_1st | 50 | 0.12 | -0.29, 0.54 | 0.6 |
| IL2_pg_mL_3rd | 53 | 0.11 | -0.27, 0.50 | 0.6 |
| IL4_pg_mL_log_BL | 73 | -1.2 | -6.8, 4.4 | 0.7 |
| IL4_pg_mL_log_1st | 69 | 2.8 | -3.0, 8.6 | 0.3 |
| IL4_pg_mL_log_3rd | 71 | 6.7 | 0.16, 13 | 0.045 |
| IL4_pg_mL_LLOD_log_BL | 73 | -1.2 | -6.8, 4.4 | 0.7 |
| IL4_pg_mL_LLOD_log_1st | 70 | 0.77 | -3.1, 4.7 | 0.7 |
| IL4_pg_mL_LLOD_log_3rd | 71 | 6.7 | 0.16, 13 | 0.045 |
| IL6_pg_mL_log_BL | 73 | 0.69 | -3.5, 4.9 | 0.7 |
| IL6_pg_mL_log_1st | 70 | 1.0 | -2.8, 4.8 | 0.6 |
| IL6_pg_mL_log_3rd | 71 | 1.9 | -2.6, 6.4 | 0.4 |
| IL8_pg_mL_log_BL | 73 | -0.87 | -5.5, 3.7 | 0.7 |
| IL8_pg_mL_log_1st | 70 | -1.5 | -6.8, 3.7 | 0.6 |
| IL8_pg_mL_log_3rd | 71 | -2.1 | -7.7, 3.5 | 0.5 |
| IL10_pg_mL_BL | 73 | 0.22 | -0.65, 1.1 | 0.6 |
| IL10_pg_mL_1st | 70 | 0.29 | -0.68, 1.3 | 0.5 |
| IL10_pg_mL_3rd | 71 | 0.38 | -0.70, 1.5 | 0.5 |
| IL12p70_pg_mL_BL | 73 | 0.01 | 0.00, 0.02 | 0.11 |
| IL12p70_pg_mL_1st | 69 | 0.01 | 0.00, 0.03 | 0.11 |
| IL12p70_pg_mL_3rd | 71 | 0.01 | 0.00, 0.02 | 0.10 |
| IL12p70_pg_mL_LLOD_BL | 73 | 0.01 | 0.00, 0.02 | 0.11 |
| IL12p70_pg_mL_LLOD_1st | 70 | 0.01 | 0.00, 0.03 | 0.11 |
| IL12p70_pg_mL_LLOD_3rd | 71 | 0.01 | 0.00, 0.02 | 0.10 |
| IL13_pg_mL_BL | 72 | 0.13 | -0.02, 0.28 | 0.094 |
| IL13_pg_mL_1st | 68 | 0.15 | -0.02, 0.32 | 0.079 |
| IL13_pg_mL_3rd | 71 | 0.14 | -0.02, 0.29 | 0.083 |
| IL13_pg_mL_LLOD_BL | 73 | 0.13 | -0.03, 0.28 | 0.11 |
| IL13_pg_mL_LLOD_1st | 70 | 0.14 | -0.03, 0.32 | 0.10 |
| IL13_pg_mL_LLOD_3rd | 71 | 0.14 | -0.02, 0.29 | 0.083 |
| TNFa_pg_mL_sqrt_BL | 73 | 2.7 | -8.8, 14 | 0.6 |
| TNFa_pg_mL_sqrt_1st | 70 | 2.7 | -8.3, 14 | 0.6 |
| TNFa_pg_mL_sqrt_3rd | 71 | 3.8 | -7.3, 15 | 0.5 |
| IFNy_pg_mL_boxcox_BL | 73 | -2.4 | -18, 13 | 0.8 |
| IFNy_pg_mL_boxcox_1st | 70 | -1.8 | -16, 13 | 0.8 |
| IFNy_pg_mL_boxcox_3rd | 71 | -2.3 | -18, 14 | 0.8 |
| CRP_ng_mL_log_BL | 73 | 0.14 | -1.1, 1.4 | 0.8 |
| CRP_ng_mL_log_1st | 70 | 0.08 | -1.2, 1.4 | 0.9 |
| CRP_ng_mL_log_3rd | 71 | -0.25 | -1.6, 1.1 | 0.7 |
|
1
CI = Confidence Interval
|
||||
Baseline suicidality is associated with -suicidality at post-infusion 3 -IL4 at post-ketamine infusion 3
model<-lm(MADRS_Score_3rd~sex+age+BMI+race+MADRS_Score_BL*TRP_nM_BL+TRP_nM_BL+lnSER_BL+lnAA_BL, data=Biok_wide)
summary(model)
##
## Call:
## lm(formula = MADRS_Score_3rd ~ sex + age + BMI + race + MADRS_Score_BL *
## TRP_nM_BL + TRP_nM_BL + lnSER_BL + lnAA_BL, data = Biok_wide)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.3376 -4.3554 -0.5433 3.2536 14.1170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.295e+01 2.235e+01 1.922 0.0595 .
## sexfemale 3.870e+00 1.695e+00 2.283 0.0260 *
## age 5.106e-02 6.377e-02 0.801 0.4266
## BMI 1.967e-01 1.490e-01 1.320 0.1921
## raceblack 2.657e+00 9.404e+00 0.283 0.7785
## racewhite -2.360e+00 6.658e+00 -0.354 0.7243
## MADRS_Score_BL -1.830e+00 7.455e-01 -2.456 0.0170 *
## TRP_nM_BL -1.691e-03 7.109e-04 -2.379 0.0206 *
## lnSER_BL 1.088e+00 5.368e-01 2.026 0.0473 *
## lnAA_BL -4.995e+00 1.897e+00 -2.633 0.0108 *
## MADRS_Score_BL:TRP_nM_BL 7.645e-05 2.640e-05 2.895 0.0053 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.17 on 59 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 0.3641, Adjusted R-squared: 0.2563
## F-statistic: 3.378 on 10 and 59 DF, p-value: 0.001545
reg_cohend <- function (glm_output) {
beta <- summary(glm_output)$coefficients[,1]
SD <- sqrt(dim(glm_output$model)[1])*summary(glm_output)$coefficients[,2]
cohend <- round(beta/SD,3)
return(cohend)
}
reg_cohend(model)
## (Intercept) sexfemale age
## 0.230 0.273 0.096
## BMI raceblack racewhite
## 0.158 0.034 -0.042
## MADRS_Score_BL TRP_nM_BL lnSER_BL
## -0.293 -0.284 0.242
## lnAA_BL MADRS_Score_BL:TRP_nM_BL
## -0.315 0.346
After adjusting for demographic factors and pre-treatment depressive severity, Modelling depression severity (MADRS total score, post-infusion #3) by baseline characteristics, adjusting for demographics, relevant covariates and interactions. Post-treatment depression levels were “predicted” by: -female sex -lower depressive severity (main effect) -lower tryptophan levels (main effect) -higher depressive severity under conditions of high tryptophan (interaction effect) -higher baseline serotonin levels -lower baseline anthranilic acid levels
Note: this model doesnt include KP metabolite ratios yet.
Biok_wide$Remission<-relevel(Biok_wide$Remission, ref="No remission")
model<-glm(Remission~sex+age+BMI+race+MADRS_Score_BL*TRP_nM_BL+lnAA_BL,family="binomial", data=Biok_wide)
summary(model)
##
## Call:
## glm(formula = Remission ~ sex + age + BMI + race + MADRS_Score_BL *
## TRP_nM_BL + lnAA_BL, family = "binomial", data = Biok_wide)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0383 -1.0070 0.4478 0.8955 1.5816
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.303e+00 1.455e+03 -0.001 0.99929
## sexfemale -1.168e+00 7.079e-01 -1.650 0.09890 .
## age -2.369e-02 2.629e-02 -0.901 0.36754
## BMI -4.496e-02 5.535e-02 -0.812 0.41655
## raceblack -1.370e+01 1.455e+03 -0.009 0.99249
## racewhite -1.359e+01 1.455e+03 -0.009 0.99255
## MADRS_Score_BL 6.242e-01 3.403e-01 1.834 0.06661 .
## TRP_nM_BL 5.508e-04 3.217e-04 1.712 0.08690 .
## lnAA_BL 2.981e+00 1.112e+00 2.681 0.00734 **
## MADRS_Score_BL:TRP_nM_BL -2.462e-05 1.241e-05 -1.983 0.04732 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 94.184 on 71 degrees of freedom
## Residual deviance: 75.494 on 62 degrees of freedom
## (3 observations deleted due to missingness)
## AIC: 95.494
##
## Number of Fisher Scoring iterations: 14
reg_cohend(model)
## (Intercept) sexfemale age
## 0.000 -0.194 -0.106
## BMI raceblack racewhite
## -0.096 -0.001 -0.001
## MADRS_Score_BL TRP_nM_BL lnAA_BL
## 0.216 0.202 0.316
## MADRS_Score_BL:TRP_nM_BL
## -0.234
Rough model of remission according to baseline factors, adjusted by demo, clinical covariates and interactions. Oddly, the effects seem reversed: -Male sex trends with remission -Higher baseline depression trends with remission status (main effects), except in conditions of lower tryptophan (interaction) -higher baseline anthranilic acid discriminates remitters from non-remitters
Im not sure this makes sense, considering the linear model before this…