library(readr)
pmdata1 <- read_csv("pmdata1.csv")
## Rows: 54 Columns: 280
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (18): StartDate, IPAddress, ResponseId, gender, race, edu, marital, inc...
## dbl (262): Progress, Duration..in.seconds., stdysal, benefits, goodsal, jobs...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
pmdata1$gender <- as.factor(pmdata1$gender)
pmdata1$race <- as.factor(pmdata1$race)
pmdata1$edu <- as.factor(pmdata1$edu)
pmdata1$marital <- as.factor(pmdata1$marital)
pmdata1$income <- as.factor(pmdata1$income)
pmdata1$religion <- as.factor(pmdata1$religion)
pmdata1$rank <- as.factor(pmdata1$rank)
pmdata1$family <- as.factor(pmdata1$family)
pmdata1$nopoexp <- as.factor(pmdata1$nopoexp)
pmdata1$military <- as.factor(pmdata1$military)
library(stats)
pmdata1$gender <- relevel(pmdata1$gender, ref = "female")
pmdata1$race <- relevel(pmdata1$race, ref = "black")
pmdata1$edu <- relevel(pmdata1$edu, ref = "high school")
pmdata1$marital <- relevel(pmdata1$marital, ref = "married")
pmdata1$income <- relevel(pmdata1$income, ref = "25k to 49.9k")
pmdata1$religion <- relevel(pmdata1$religion, ref = "no affil")
pmdata1$rank <- relevel(pmdata1$rank, ref = "police officer")
pmdata1$family <- relevel(pmdata1$family, ref = "no")
pmdata1$nopoexp <- relevel(pmdata1$nopoexp, ref = "no")
pmdata1$military <- relevel(pmdata1$military, ref = "no")
IVs
sdo = social dominance orientation (e.g., we should not push for group equality)
rwa = right-wing authoritarianism (e.g., its better to accept bad literature than to censor it)
legit = police perceptions of how the community views them in terms of legitimacy (e.g., citizens in your community trust the police) ferg = the ferguson effect (negative impact of publicity on officers)
prom = commitment to prominence goals (e.g., glory, championship); TIP-END goals
neg = commitment to negativity prevention goals (e.g., abnormality, craziness); TIP-END goals
trad = commitment to tradition goals (e.g., faith, obedience); TIP-END goals
inclus = commitment to inclusiveness goals (e.g., diversity, comradery, equity); TIP-END goals
elite = commitment to elitism goals (e.g., authoritarianism, boastfulness); TIP-END goals
disrep = commitment to disrepute (e.g., addiction, corruption); TIP-END goals
rebel = commitment to rebellion (e.g., wildness; temptation); TIP-END goals
loyal = loyalty to fellow officers (e.g., If I violate a rule, I expect my fellow officer to protect me)
bpaq = Buss-Perry Aggression Questionnaire (e.g., Given enough provocation, I may hit another person)
guardian = police officers as guardians orientation (e.g., As a police officer, I see myself as a civil servant)
warrior = police officers as warriors orientation (e.g., My primary responsibility as a police officer is to fight crime)
DVs
reason = endorsement of reasonable use of force (e.g., A police officer uses guns and clubs to stop violent demonstrations)
excess = endorsement of excessive use of force (e.g., A police officer uses violence to control non-violent demonstrations)
projust = endorsement of procedural justice (e.g., When interacting with community residents, how important is it to show an interest in what they have to say?)
Based on histograms below, loyal needs a transform. Excess and reason may need a transform too, but their skew is not as bad. I removed loyal from analysis.
hist(pmdata1$sdo)
hist(pmdata1$rwa)
hist(pmdata1$legit)
hist(pmdata1$ferg)
hist(pmdata1$prom)
hist(pmdata1$neg)
hist(pmdata1$trad)
hist(pmdata1$inclus)
hist(pmdata1$elite)
hist(pmdata1$disrep)
hist(pmdata1$rebel)
hist(pmdata1$reason)
hist(pmdata1$excess)
hist(pmdata1$projust)
hist(pmdata1$loyal)
hist(pmdata1$bpaq)
hist(pmdata1$desirab)
hist(pmdata1$guardian)
hist(pmdata1$warrior)
Based on the multicollinearity analysis below, I removed rank, marital, education, income, totalexp, race, religion, disrep, and rebel from further analysis.
library(car)
## Loading required package: carData
multicollin <- lm(excess ~ age + gender + family + nopoexp + military + rankexp + sdo + rwa + legit + prom + neg + trad + inclus + elite + rebel + bpaq + guardian + warrior + desirab, na.action = na.omit, data = pmdata1)
vif(multicollin)
## age gender family nopoexp military rankexp sdo rwa
## 1.501417 2.879692 5.205071 3.486756 2.942532 2.961819 2.672494 4.284721
## legit prom neg trad inclus elite rebel bpaq
## 2.824698 2.719625 4.079553 4.006909 4.137504 4.274605 6.496975 4.335127
## guardian warrior desirab
## 3.537075 2.363152 3.694388
model1.1 <- lm(excess ~ age + gender + family + nopoexp + military + rankexp, na.action = na.omit, data = pmdata1)
model1.2 <- lm(reason ~ age + gender + family + nopoexp + military + rankexp, na.action = na.omit, data = pmdata1)
model1.3 <- lm(projust ~ age + gender + family + nopoexp + military + rankexp, na.action = na.omit, data = pmdata1)
model2.1 <- lm(excess ~ age + gender + family + nopoexp + military + rankexp + sdo + rwa + legit + prom + neg + trad + inclus + elite + rebel + bpaq + guardian + warrior + desirab, na.action = na.omit, data = pmdata1)
model2.2 <- lm(reason ~ age + gender + family + nopoexp + military + rankexp + sdo + rwa + legit + prom + neg + trad + inclus + elite + rebel + bpaq + guardian + warrior + desirab, na.action = na.omit, data = pmdata1)
model2.3 <- lm(projust ~ age + gender + family + nopoexp + military + rankexp + sdo + rwa + legit + prom + neg + trad + inclus + elite + rebel + bpaq + guardian + warrior + desirab, na.action = na.omit, data = pmdata1)
par(mfrow=c(2,2))
plot(model1.1)
plot(model1.2)
plot(model1.3)
plot(model2.1)
plot(model2.2)
plot(model2.3)
par(mfrow=c(2,2))
model3 <- lm(excess ~ sdo, na.action = na.omit, data = pmdata1)
model4 <- lm(excess ~ rwa, na.action = na.omit, data = pmdata1)
model5 <- lm(excess ~ legit, na.action = na.omit, data = pmdata1)
model6 <- lm(excess ~ prom, na.action = na.omit, data = pmdata1)
model7 <- lm(excess ~ neg, na.action = na.omit, data = pmdata1)
model8 <- lm(excess ~ trad, na.action = na.omit, data = pmdata1)
model9 <- lm(excess ~ inclus, na.action = na.omit, data = pmdata1)
model10 <- lm(excess ~ elite, na.action = na.omit, data = pmdata1)
model11 <- lm(excess ~ rebel, na.action = na.omit, data = pmdata1)
model12 <- lm(excess ~ bpaq, na.action = na.omit, data = pmdata1)
model13 <- lm(excess ~ guardian, na.action = na.omit, data = pmdata1)
model14 <- lm(excess ~ warrior, na.action = na.omit, data = pmdata1)
plot(model3)
plot(model4)
plot(model5)
plot(model6)
plot(model7)
plot(model8)
plot(model9)
plot(model10)
plot(model11)
plot(model12)
plot(model13)
plot(model14)
par(mfrow=c(2,2))
model15 <- lm(reason ~ sdo, na.action = na.omit, data = pmdata1)
model16 <- lm(reason ~ rwa, na.action = na.omit, data = pmdata1)
model17 <- lm(reason ~ legit, na.action = na.omit, data = pmdata1)
model18 <- lm(reason ~ prom, na.action = na.omit, data = pmdata1)
model19 <- lm(reason ~ neg, na.action = na.omit, data = pmdata1)
model20 <- lm(reason ~ trad, na.action = na.omit, data = pmdata1)
model21 <- lm(reason ~ inclus, na.action = na.omit, data = pmdata1)
model22 <- lm(reason ~ elite, na.action = na.omit, data = pmdata1)
model23 <- lm(reason ~ rebel, na.action = na.omit, data = pmdata1)
model24 <- lm(reason ~ bpaq, na.action = na.omit, data = pmdata1)
model25 <- lm(reason ~ guardian, na.action = na.omit, data = pmdata1)
model26 <- lm(reason ~ warrior, na.action = na.omit, data = pmdata1)
plot(model15)
plot(model16)
plot(model17)
plot(model18)
plot(model19)
plot(model20)
plot(model21)
plot(model22)
plot(model23)
plot(model24)
plot(model25)
plot(model26)
par(mfrow=c(2,2))
model27 <- lm(projust ~ sdo, na.action = na.omit, data = pmdata1)
model28 <- lm(projust ~ rwa, na.action = na.omit, data = pmdata1)
model29 <- lm(projust ~ legit, na.action = na.omit, data = pmdata1)
model30 <- lm(projust ~ prom, na.action = na.omit, data = pmdata1)
model31 <- lm(projust ~ neg, na.action = na.omit, data = pmdata1)
model32 <- lm(projust ~ trad, na.action = na.omit, data = pmdata1)
model33 <- lm(projust ~ inclus, na.action = na.omit, data = pmdata1)
model34 <- lm(projust ~ elite, na.action = na.omit, data = pmdata1)
model35 <- lm(projust ~ rebel, na.action = na.omit, data = pmdata1)
model36 <- lm(projust ~ bpaq, na.action = na.omit, data = pmdata1)
model37 <- lm(projust ~ guardian, na.action = na.omit, data = pmdata1)
model38 <- lm(projust ~ warrior, na.action = na.omit, data = pmdata1)
plot(model27)
plot(model28)
plot(model29)
plot(model30)
plot(model31)
plot(model32)
plot(model33)
plot(model34)
plot(model35)
plot(model36)
plot(model37)
plot(model38)
Note, the direction of guardian, warrior, rwa, and sdo (IVs) in relation with excessive use force (DV); the direction of rwa and sdo for reasonable use of force; and the direction for guardian, warrior, and rwa in relation with procedural justice does not make sense. The relationships seem to be opposite to what we would expect. I suspect that this is due to multicollinearity. I found high VIF values for multiple variables in the above analysis. I did remove the problematic variables as aforementioned, but the VIF values still weren’t great. To account for this, I conducted bivariate regression analyses (excluding all other control variables) below. The direction of the relationships starts to make sense again.
DVs: excessive use force (excess), reasonable use of force (reason), procedural justice(projust) - higher scores = higher endorsement
summary(model1.1)
##
## Call:
## lm(formula = excess ~ age + gender + family + nopoexp + military +
## rankexp, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0400 -0.5426 -0.1985 0.5771 1.8535
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.384804 0.603006 3.955 0.000313 ***
## age -0.022300 0.013459 -1.657 0.105556
## gendermale 0.374130 0.316692 1.181 0.244611
## familyyes 0.138431 0.286112 0.484 0.631209
## nopoexpyes -0.024804 0.290659 -0.085 0.932429
## militaryyes -0.055955 0.269819 -0.207 0.836792
## rankexp -0.001774 0.016525 -0.107 0.915039
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7952 on 39 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.1186, Adjusted R-squared: -0.01698
## F-statistic: 0.8748 on 6 and 39 DF, p-value: 0.5222
summary(model1.2)
##
## Call:
## lm(formula = reason ~ age + gender + family + nopoexp + military +
## rankexp, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.72172 -0.28266 0.09474 0.41901 0.99749
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.069755 0.517320 13.666 3.02e-16 ***
## age -0.016466 0.011614 -1.418 0.164
## gendermale -0.147328 0.269064 -0.548 0.587
## familyyes -0.043646 0.243741 -0.179 0.859
## nopoexpyes -0.013938 0.246829 -0.056 0.955
## militaryyes -0.240683 0.231151 -1.041 0.304
## rankexp -0.003485 0.014028 -0.248 0.805
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6749 on 38 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.1468, Adjusted R-squared: 0.0121
## F-statistic: 1.09 on 6 and 38 DF, p-value: 0.386
summary(model1.3)
##
## Call:
## lm(formula = projust ~ age + gender + family + nopoexp + military +
## rankexp, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.64075 -0.20058 0.00802 0.25200 0.74675
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.255420 0.250210 17.007 <2e-16 ***
## age 0.005227 0.005624 0.929 0.3584
## gendermale -0.234543 0.130854 -1.792 0.0808 .
## familyyes -0.035277 0.118233 -0.298 0.7670
## nopoexpyes -0.016606 0.120144 -0.138 0.8908
## militaryyes -0.023590 0.111352 -0.212 0.8333
## rankexp 0.001798 0.006819 0.264 0.7934
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3284 on 39 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.09823, Adjusted R-squared: -0.0405
## F-statistic: 0.7081 on 6 and 39 DF, p-value: 0.645
DVs: excessive use force (excess), reasonable use of force (reason), procedural justice(projust) - higher scores = higher endorsement
summary(model2.1)
##
## Call:
## lm(formula = excess ~ age + gender + family + nopoexp + military +
## rankexp + sdo + rwa + legit + prom + neg + trad + inclus +
## elite + rebel + bpaq + guardian + warrior + desirab, data = pmdata1,
## na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.93856 -0.18935 0.09424 0.20608 0.89141
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.688381 4.598444 -0.150 0.885
## age -0.014925 0.018819 -0.793 0.451
## gendermale 0.290250 0.706973 0.411 0.692
## familyyes -0.035188 0.681017 -0.052 0.960
## nopoexpyes -0.588155 0.582879 -1.009 0.342
## militaryyes 0.081814 0.553562 0.148 0.886
## rankexp 0.003130 0.033721 0.093 0.928
## sdo -0.006493 0.298901 -0.022 0.983
## rwa -0.023454 0.395649 -0.059 0.954
## legit -0.385705 0.372608 -1.035 0.331
## prom -0.127533 0.316745 -0.403 0.698
## neg -0.443949 0.329670 -1.347 0.215
## trad -0.177406 0.366266 -0.484 0.641
## inclus -0.458348 0.321286 -1.427 0.192
## elite -0.128666 0.318187 -0.404 0.697
## rebel 0.211387 0.343597 0.615 0.556
## bpaq 0.372643 0.493235 0.756 0.472
## guardian 0.980184 0.699914 1.400 0.199
## warrior -0.175110 0.197382 -0.887 0.401
## desirab -0.344199 1.488634 -0.231 0.823
##
## Residual standard error: 0.7714 on 8 degrees of freedom
## (26 observations deleted due to missingness)
## Multiple R-squared: 0.6809, Adjusted R-squared: -0.07688
## F-statistic: 0.8985 on 19 and 8 DF, p-value: 0.6022
summary(model2.2)
##
## Call:
## lm(formula = reason ~ age + gender + family + nopoexp + military +
## rankexp + sdo + rwa + legit + prom + neg + trad + inclus +
## elite + rebel + bpaq + guardian + warrior + desirab, data = pmdata1,
## na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.56694 -0.33561 -0.03251 0.33938 0.83543
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.530220 4.090393 0.619 0.553
## age -0.013911 0.016740 -0.831 0.430
## gendermale 0.426776 0.628864 0.679 0.517
## familyyes -0.016695 0.605776 -0.028 0.979
## nopoexpyes 0.544937 0.518480 1.051 0.324
## militaryyes -0.117546 0.492402 -0.239 0.817
## rankexp 0.019228 0.029995 0.641 0.539
## sdo 0.140677 0.265877 0.529 0.611
## rwa 0.063344 0.351937 0.180 0.862
## legit -0.091408 0.331441 -0.276 0.790
## prom 0.485177 0.281750 1.722 0.123
## neg 0.052705 0.293247 0.180 0.862
## trad -0.513884 0.325799 -1.577 0.153
## inclus 0.292222 0.285789 1.023 0.336
## elite -0.003478 0.283033 -0.012 0.990
## rebel -0.368780 0.305635 -1.207 0.262
## bpaq -0.047157 0.438741 -0.107 0.917
## guardian 0.643247 0.622585 1.033 0.332
## warrior 0.094203 0.175575 0.537 0.606
## desirab -0.836532 1.324165 -0.632 0.545
##
## Residual standard error: 0.6862 on 8 degrees of freedom
## (26 observations deleted due to missingness)
## Multiple R-squared: 0.691, Adjusted R-squared: -0.04302
## F-statistic: 0.9414 on 19 and 8 DF, p-value: 0.572
summary(model2.3)
##
## Call:
## lm(formula = projust ~ age + gender + family + nopoexp + military +
## rankexp + sdo + rwa + legit + prom + neg + trad + inclus +
## elite + rebel + bpaq + guardian + warrior + desirab, data = pmdata1,
## na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.234829 -0.083597 0.007551 0.068291 0.230098
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.743571 1.204230 2.278 0.0522 .
## age -0.003622 0.004928 -0.735 0.4834
## gendermale -0.477106 0.185140 -2.577 0.0328 *
## familyyes -0.190353 0.178343 -1.067 0.3170
## nopoexpyes -0.078591 0.152643 -0.515 0.6206
## militaryyes 0.274005 0.144965 1.890 0.0954 .
## rankexp 0.006221 0.008831 0.704 0.5011
## sdo -0.074288 0.078275 -0.949 0.3704
## rwa 0.224076 0.103612 2.163 0.0625 .
## legit 0.174239 0.097578 1.786 0.1120
## prom 0.195015 0.082948 2.351 0.0466 *
## neg 0.134182 0.086333 1.554 0.1587
## trad 0.110896 0.095917 1.156 0.2810
## inclus 0.122892 0.084138 1.461 0.1823
## elite 0.139624 0.083326 1.676 0.1323
## rebel -0.088708 0.089980 -0.986 0.3531
## bpaq -0.180114 0.129167 -1.394 0.2007
## guardian -0.021495 0.183292 -0.117 0.9095
## warrior 0.158515 0.051690 3.067 0.0154 *
## desirab 0.073691 0.389840 0.189 0.8548
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.202 on 8 degrees of freedom
## (26 observations deleted due to missingness)
## Multiple R-squared: 0.8729, Adjusted R-squared: 0.5709
## F-statistic: 2.891 on 19 and 8 DF, p-value: 0.06387
library(lm.beta)
summary(model3)
##
## Call:
## lm(formula = excess ~ sdo, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0970 -0.5522 -0.1564 0.4961 2.1877
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6497 0.3770 1.723 0.09101 .
## sdo 0.3796 0.1285 2.955 0.00475 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.762 on 50 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.1487, Adjusted R-squared: 0.1317
## F-statistic: 8.734 on 1 and 50 DF, p-value: 0.004754
lm.beta(model3)
##
## Call:
## lm(formula = excess ~ sdo, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) sdo
## 0.0000000 0.3856227
summary(model4)
##
## Call:
## lm(formula = excess ~ rwa, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7363 -0.6961 -0.3330 0.5899 2.2965
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.61182 0.67722 2.380 0.0212 *
## rwa 0.02456 0.16718 0.147 0.8838
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.839 on 49 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.0004403, Adjusted R-squared: -0.01996
## F-statistic: 0.02158 on 1 and 49 DF, p-value: 0.8838
lm.beta(model4)
##
## Call:
## lm(formula = excess ~ rwa, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) rwa
## 0.00000000 0.02098293
summary(model5)
##
## Call:
## lm(formula = excess ~ legit, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1930 -0.4760 -0.3378 0.5644 2.4622
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5036 0.9959 3.518 0.000948 ***
## legit -0.2979 0.1650 -1.805 0.077216 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8077 on 49 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.06235, Adjusted R-squared: 0.04321
## F-statistic: 3.258 on 1 and 49 DF, p-value: 0.07722
lm.beta(model5)
##
## Call:
## lm(formula = excess ~ legit, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) legit
## 0.0000000 -0.2496936
summary(model6)
##
## Call:
## lm(formula = excess ~ prom, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0211 -0.6080 -0.2711 0.5525 2.2473
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7527 0.1193 14.688 <2e-16 ***
## prom 0.1736 0.1270 1.368 0.178
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8217 on 46 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.03908, Adjusted R-squared: 0.01819
## F-statistic: 1.871 on 1 and 46 DF, p-value: 0.178
lm.beta(model6)
##
## Call:
## lm(formula = excess ~ prom, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) prom
## 0.0000000 0.1976811
summary(model7)
##
## Call:
## lm(formula = excess ~ neg, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8872 -0.6108 -0.3567 0.5449 2.2466
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0656 0.2793 7.396 1.82e-09 ***
## neg 0.1487 0.1160 1.282 0.206
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.821 on 48 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.03311, Adjusted R-squared: 0.01296
## F-statistic: 1.643 on 1 and 48 DF, p-value: 0.206
lm.beta(model7)
##
## Call:
## lm(formula = excess ~ neg, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) neg
## 0.0000000 0.1819503
summary(model8)
##
## Call:
## lm(formula = excess ~ trad, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1026 -0.5187 -0.2308 0.3994 2.3001
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1428 0.2987 7.174 6.37e-09 ***
## trad -0.2215 0.1412 -1.568 0.124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8053 on 44 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.05292, Adjusted R-squared: 0.0314
## F-statistic: 2.459 on 1 and 44 DF, p-value: 0.124
lm.beta(model8)
##
## Call:
## lm(formula = excess ~ trad, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) trad
## 0.0000000 -0.2300469
summary(model9)
##
## Call:
## lm(formula = excess ~ inclus, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9921 -0.5398 -0.2581 0.4373 2.3061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0150 0.1839 10.96 1.55e-14 ***
## inclus -0.2523 0.1243 -2.03 0.0481 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7999 on 47 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 0.0806, Adjusted R-squared: 0.06104
## F-statistic: 4.12 on 1 and 47 DF, p-value: 0.04806
lm.beta(model9)
##
## Call:
## lm(formula = excess ~ inclus, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) inclus
## 0.0000000 -0.2838976
summary(model10)
##
## Call:
## lm(formula = excess ~ elite, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0352 -0.5280 -0.2178 0.5339 2.0546
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3559 0.2471 9.533 1.47e-12 ***
## elite 0.3140 0.1154 2.722 0.00908 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7776 on 47 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 0.1361, Adjusted R-squared: 0.1178
## F-statistic: 7.407 on 1 and 47 DF, p-value: 0.009081
lm.beta(model10)
##
## Call:
## lm(formula = excess ~ elite, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) elite
## 0.000000 0.368983
summary(model11)
##
## Call:
## lm(formula = excess ~ rebel, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0160 -0.5271 -0.1826 0.3913 1.6950
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3050 0.2262 10.192 1.73e-13 ***
## rebel 0.2890 0.1036 2.789 0.00762 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.775 on 47 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 0.142, Adjusted R-squared: 0.1237
## F-statistic: 7.776 on 1 and 47 DF, p-value: 0.00762
lm.beta(model11)
##
## Call:
## lm(formula = excess ~ rebel, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) rebel
## 0.000000 0.376773
summary(model12)
##
## Call:
## lm(formula = excess ~ bpaq, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0445 -0.5695 -0.2904 0.6138 2.0180
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9820 0.4282 2.294 0.0261 *
## bpaq 0.2500 0.1516 1.649 0.1054
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.751 on 49 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.05261, Adjusted R-squared: 0.03327
## F-statistic: 2.721 on 1 and 49 DF, p-value: 0.1054
lm.beta(model12)
##
## Call:
## lm(formula = excess ~ bpaq, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) bpaq
## 0.0000000 0.2293609
summary(model13)
##
## Call:
## lm(formula = excess ~ guardian, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6792 -0.5924 -0.2310 0.5690 1.6076
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.99748 1.79760 1.111 0.273
## guardian -0.05786 0.27670 -0.209 0.835
##
## Residual standard error: 0.7139 on 43 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.001016, Adjusted R-squared: -0.02222
## F-statistic: 0.04373 on 1 and 43 DF, p-value: 0.8353
lm.beta(model13)
##
## Call:
## lm(formula = excess ~ guardian, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) guardian
## 0.00000000 -0.03187431
summary(model14)
##
## Call:
## lm(formula = excess ~ warrior, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7503 -0.6295 -0.2844 0.5595 2.2387
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.49766 0.58866 2.544 0.0143 *
## warrior 0.03296 0.09917 0.332 0.7411
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7754 on 47 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 0.002345, Adjusted R-squared: -0.01888
## F-statistic: 0.1105 on 1 and 47 DF, p-value: 0.7411
lm.beta(model14)
##
## Call:
## lm(formula = excess ~ warrior, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) warrior
## 0.00000000 0.04842022
summary(model15)
##
## Call:
## lm(formula = reason ~ sdo, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7066 -0.3129 0.2877 0.4788 0.9093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.07732 0.34416 17.658 <2e-16 ***
## sdo 0.01017 0.11658 0.087 0.931
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.678 on 47 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 0.0001618, Adjusted R-squared: -0.02111
## F-statistic: 0.007606 on 1 and 47 DF, p-value: 0.9309
lm.beta(model15)
##
## Call:
## lm(formula = reason ~ sdo, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) sdo
## 0.00000000 0.01271999
summary(model16)
##
## Call:
## lm(formula = reason ~ rwa, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7074 -0.3487 0.1994 0.3566 0.9119
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.062583 0.562548 10.777 3.57e-14 ***
## rwa 0.009348 0.138375 0.068 0.946
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6814 on 46 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 9.919e-05, Adjusted R-squared: -0.02164
## F-statistic: 0.004563 on 1 and 46 DF, p-value: 0.9464
lm.beta(model16)
##
## Call:
## lm(formula = reason ~ rwa, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) rwa
## 0.000000000 0.009959658
summary(model17)
##
## Call:
## lm(formula = reason ~ legit, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7333 -0.3341 0.1673 0.4657 0.8683
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.121193 0.880115 6.955 1.06e-08 ***
## legit 0.002011 0.144953 0.014 0.989
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6465 on 46 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 4.183e-06, Adjusted R-squared: -0.02173
## F-statistic: 0.0001924 on 1 and 46 DF, p-value: 0.989
lm.beta(model17)
##
## Call:
## lm(formula = reason ~ legit, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) legit
## 0.00000000 0.00204533
summary(model18)
##
## Call:
## lm(formula = reason ~ prom, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4636 -0.3699 0.1355 0.4645 1.1819
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.08684 0.09741 62.49 <2e-16 ***
## prom 0.24554 0.10146 2.42 0.0197 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6566 on 44 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.1175, Adjusted R-squared: 0.0974
## F-statistic: 5.856 on 1 and 44 DF, p-value: 0.01972
lm.beta(model18)
##
## Call:
## lm(formula = reason ~ prom, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) prom
## 0.000000 0.342726
summary(model19)
##
## Call:
## lm(formula = reason ~ neg, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7138 -0.3623 0.2642 0.4846 0.9019
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.14360 0.25094 24.483 <2e-16 ***
## neg 0.01567 0.10250 0.153 0.879
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.685 on 46 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.000508, Adjusted R-squared: -0.02122
## F-statistic: 0.02338 on 1 and 46 DF, p-value: 0.8791
lm.beta(model19)
##
## Call:
## lm(formula = reason ~ neg, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) neg
## 0.00000000 0.02253955
summary(model20)
##
## Call:
## lm(formula = reason ~ trad, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6140 -0.4356 0.2159 0.4167 0.9626
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.10975 0.27423 22.279 <2e-16 ***
## trad -0.02567 0.12871 -0.199 0.843
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6864 on 42 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.0009465, Adjusted R-squared: -0.02284
## F-statistic: 0.03979 on 1 and 42 DF, p-value: 0.8429
lm.beta(model20)
##
## Call:
## lm(formula = reason ~ trad, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) trad
## 0.00000000 -0.03076516
summary(model21)
##
## Call:
## lm(formula = reason ~ inclus, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5913 -0.4445 0.1579 0.5049 1.1298
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.8702 0.1583 37.071 <2e-16 ***
## inclus 0.1903 0.1066 1.785 0.0812 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6687 on 44 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.0675, Adjusted R-squared: 0.04631
## F-statistic: 3.185 on 1 and 44 DF, p-value: 0.08121
lm.beta(model21)
##
## Call:
## lm(formula = reason ~ inclus, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) inclus
## 0.0000000 0.2598118
summary(model22)
##
## Call:
## lm(formula = reason ~ elite, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6998 -0.3436 0.1931 0.4587 0.9197
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.3725 0.2285 27.889 <2e-16 ***
## elite 0.1266 0.1049 1.207 0.234
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6737 on 45 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.03138, Adjusted R-squared: 0.009852
## F-statistic: 1.458 on 1 and 45 DF, p-value: 0.2336
lm.beta(model22)
##
## Call:
## lm(formula = reason ~ elite, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) elite
## 0.0000000 0.1771362
summary(model23)
##
## Call:
## lm(formula = reason ~ rebel, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5994 -0.3785 0.1868 0.4143 0.9043
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.25378 0.20758 30.127 <2e-16 ***
## rebel 0.08250 0.09396 0.878 0.385
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6791 on 45 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.01684, Adjusted R-squared: -0.005006
## F-statistic: 0.7709 on 1 and 45 DF, p-value: 0.3846
lm.beta(model23)
##
## Call:
## lm(formula = reason ~ rebel, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) rebel
## 0.0000000 0.1297758
summary(model24)
##
## Call:
## lm(formula = reason ~ bpaq, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7368 -0.3310 0.1566 0.4559 0.9912
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.5627 0.4033 13.79 <2e-16 ***
## bpaq 0.1968 0.1458 1.35 0.184
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6595 on 46 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.03809, Adjusted R-squared: 0.01718
## F-statistic: 1.822 on 1 and 46 DF, p-value: 0.1837
lm.beta(model24)
##
## Call:
## lm(formula = reason ~ bpaq, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) bpaq
## 0.0000000 0.1951676
summary(model25)
##
## Call:
## lm(formula = reason ~ guardian, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4702 -0.2702 0.1253 0.4191 1.1388
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3535 1.6898 1.985 0.0537 .
## guardian 0.4180 0.2606 1.604 0.1162
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6585 on 42 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.05772, Adjusted R-squared: 0.03528
## F-statistic: 2.573 on 1 and 42 DF, p-value: 0.1162
lm.beta(model25)
##
## Call:
## lm(formula = reason ~ guardian, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) guardian
## 0.0000000 0.2402472
summary(model26)
##
## Call:
## lm(formula = reason ~ warrior, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6298 -0.3190 0.1485 0.4052 0.9052
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.72674 0.51846 11.046 2.11e-14 ***
## warrior 0.06494 0.08813 0.737 0.465
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6612 on 45 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.01192, Adjusted R-squared: -0.01003
## F-statistic: 0.543 on 1 and 45 DF, p-value: 0.465
lm.beta(model26)
##
## Call:
## lm(formula = reason ~ warrior, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) warrior
## 0.0000000 0.1091945
summary(model27)
##
## Call:
## lm(formula = projust ~ sdo, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.66812 -0.21345 -0.01266 0.26333 0.55833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.62431 0.15767 29.329 <2e-16 ***
## sdo -0.12737 0.05347 -2.382 0.0213 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3028 on 47 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 0.1077, Adjusted R-squared: 0.08873
## F-statistic: 5.674 on 1 and 47 DF, p-value: 0.02132
lm.beta(model27)
##
## Call:
## lm(formula = projust ~ sdo, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) sdo
## 0.0000000 -0.3282011
summary(model28)
##
## Call:
## lm(formula = projust ~ rwa, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.72676 -0.24468 -0.09138 0.32460 0.63976
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.230887 0.271061 15.609 <2e-16 ***
## rwa 0.004755 0.066418 0.072 0.943
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3253 on 46 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.0001114, Adjusted R-squared: -0.02163
## F-statistic: 0.005125 on 1 and 46 DF, p-value: 0.9432
lm.beta(model28)
##
## Call:
## lm(formula = projust ~ rwa, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) rwa
## 0.00000000 0.01055516
summary(model29)
##
## Call:
## lm(formula = projust ~ legit, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6796 -0.2444 -0.0943 0.2737 0.6067
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.55795 0.42721 8.328 9.75e-11 ***
## legit 0.11571 0.07078 1.635 0.109
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3209 on 46 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.0549, Adjusted R-squared: 0.03436
## F-statistic: 2.672 on 1 and 46 DF, p-value: 0.1089
lm.beta(model29)
##
## Call:
## lm(formula = projust ~ legit, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) legit
## 0.0000000 0.2343137
summary(model30)
##
## Call:
## lm(formula = projust ~ prom, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.70659 -0.21561 -0.07005 0.32138 0.60560
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.25275 0.04724 90.018 <2e-16 ***
## prom -0.03638 0.05030 -0.723 0.473
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3161 on 44 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.01175, Adjusted R-squared: -0.01071
## F-statistic: 0.5232 on 1 and 44 DF, p-value: 0.4733
lm.beta(model30)
##
## Call:
## lm(formula = projust ~ prom, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) prom
## 0.0000000 -0.1084052
summary(model31)
##
## Call:
## lm(formula = projust ~ neg, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.72993 -0.21737 -0.06396 0.29688 0.67059
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.15536 0.11069 37.541 <2e-16 ***
## neg -0.04586 0.04619 -0.993 0.326
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.316 on 46 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.02098, Adjusted R-squared: -0.0003058
## F-statistic: 0.9856 on 1 and 46 DF, p-value: 0.326
lm.beta(model31)
##
## Call:
## lm(formula = projust ~ neg, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) neg
## 0.0000000 -0.1448354
summary(model32)
##
## Call:
## lm(formula = projust ~ trad, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.76120 -0.23181 -0.03492 0.26607 0.61279
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.13711 0.12206 33.893 <2e-16 ***
## trad 0.06128 0.05745 1.067 0.292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3145 on 43 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.02577, Adjusted R-squared: 0.003118
## F-statistic: 1.138 on 1 and 43 DF, p-value: 0.2921
lm.beta(model32)
##
## Call:
## lm(formula = projust ~ trad, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) trad
## 0.0000000 0.1605439
summary(model33)
##
## Call:
## lm(formula = projust ~ inclus, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5680 -0.1691 -0.0376 0.2094 0.5416
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.04580 0.06450 62.725 < 2e-16 ***
## inclus 0.17793 0.04359 4.082 0.000181 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.275 on 45 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.2702, Adjusted R-squared: 0.254
## F-statistic: 16.66 on 1 and 45 DF, p-value: 0.0001806
lm.beta(model33)
##
## Call:
## lm(formula = projust ~ inclus, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) inclus
## 0.0000000 0.5198198
summary(model34)
##
## Call:
## lm(formula = projust ~ elite, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.74879 -0.23801 -0.03517 0.25391 0.57115
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.11349 0.10028 41.020 <2e-16 ***
## elite -0.07003 0.04677 -1.497 0.141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3103 on 45 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.04745, Adjusted R-squared: 0.02629
## F-statistic: 2.242 on 1 and 45 DF, p-value: 0.1413
lm.beta(model34)
##
## Call:
## lm(formula = projust ~ elite, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) elite
## 0.0000000 -0.2178393
summary(model35)
##
## Call:
## lm(formula = projust ~ rebel, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.72303 -0.21380 -0.04223 0.24006 0.62079
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.11400 0.09131 45.057 <2e-16 ***
## rebel -0.07382 0.04237 -1.742 0.0883 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3116 on 45 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.06319, Adjusted R-squared: 0.04237
## F-statistic: 3.035 on 1 and 45 DF, p-value: 0.08831
lm.beta(model35)
##
## Call:
## lm(formula = projust ~ rebel, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) rebel
## 0.000000 -0.251368
summary(model36)
##
## Call:
## lm(formula = projust ~ bpaq, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.62623 -0.24093 -0.07311 0.29741 0.56202
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.44314 0.19061 23.310 <2e-16 ***
## bpaq -0.06974 0.06755 -1.032 0.307
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3198 on 46 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.02265, Adjusted R-squared: 0.001403
## F-statistic: 1.066 on 1 and 46 DF, p-value: 0.3072
lm.beta(model36)
##
## Call:
## lm(formula = projust ~ bpaq, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) bpaq
## 0.0000000 -0.1504974
summary(model37)
##
## Call:
## lm(formula = projust ~ guardian, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.57192 -0.22664 -0.08281 0.25612 0.60140
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8423 0.7630 3.725 0.000589 ***
## guardian 0.2232 0.1177 1.896 0.065028 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2966 on 41 degrees of freedom
## (11 observations deleted due to missingness)
## Multiple R-squared: 0.08061, Adjusted R-squared: 0.05818
## F-statistic: 3.595 on 1 and 41 DF, p-value: 0.06503
lm.beta(model37)
##
## Call:
## lm(formula = projust ~ guardian, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) guardian
## 0.0000000 0.2839147
summary(model38)
##
## Call:
## lm(formula = projust ~ warrior, data = pmdata1, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.75787 -0.25319 -0.02557 0.28000 0.61055
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98977 0.25901 15.404 <2e-16 ***
## warrior 0.04649 0.04402 1.056 0.297
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3249 on 44 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.02472, Adjusted R-squared: 0.002555
## F-statistic: 1.115 on 1 and 44 DF, p-value: 0.2967
lm.beta(model38)
##
## Call:
## lm(formula = projust ~ warrior, data = pmdata1, na.action = na.omit)
##
## Standardized Coefficients::
## (Intercept) warrior
## 0.0000000 0.1572281
stdysal = steady salary
benefits = good benefits
goodsal = good salary
jobsec = job security
retire = early retirement
jobstat = job status
jobfit = person-job fit
power = power/authority
faminlu = influence from family
excite = the excitement from job
service = service to others
dream = childhood dream
danger = dangerousness of job
library(psych)
##
## Attaching package: 'psych'
## The following object is masked from 'package:car':
##
## logit
motivedf <- with(pmdata1, data.frame(stdysal, benefits, goodsal, jobsec, retire, jobstat, jobfit, power, faminflu, excite, service, dream, danger))
describeBy(motivedf)
## Warning in describeBy(motivedf): no grouping variable requested
po = political orientation
rankexp = years of experience in current rank
totalexp = total years of police-related experience
edu = education
marital = marital status
family = having family or relative as police officers nopoexp = non-police related experience
military = military experience
library(psych)
pmdata1$age[pmdata1$age == 0] <- NA
contdemodf <- with(pmdata1, data.frame(age, po, rankexp, totalexp))
describeBy(contdemodf)
## Warning in describeBy(contdemodf): no grouping variable requested
library(summarytools)
summarytools::freq(pmdata1$gender, order = "freq")
## Frequencies
## pmdata1$gender
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ------------ ------ --------- -------------- --------- --------------
## male 46 85.19 85.19 85.19 85.19
## female 8 14.81 100.00 14.81 100.00
## <NA> 0 0.00 100.00
## Total 54 100.00 100.00 100.00 100.00
summarytools::freq(pmdata1$race, order = "freq")
## Frequencies
## pmdata1$race
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## -------------- ------ --------- -------------- --------- --------------
## white 49 92.45 92.45 90.74 90.74
## hispanic 3 5.66 98.11 5.56 96.30
## black 1 1.89 100.00 1.85 98.15
## <NA> 1 1.85 100.00
## Total 54 100.00 100.00 100.00 100.00
summarytools::freq(pmdata1$edu, order = "freq")
## Frequencies
## pmdata1$edu
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ------------------ ------ --------- -------------- --------- --------------
## bachelors 30 55.56 55.56 55.56 55.56
## masters 9 16.67 72.22 16.67 72.22
## high school 7 12.96 85.19 12.96 85.19
## associates 6 11.11 96.30 11.11 96.30
## trade school 2 3.70 100.00 3.70 100.00
## <NA> 0 0.00 100.00
## Total 54 100.00 100.00 100.00 100.00
summarytools::freq(pmdata1$marital, order = "freq")
## Frequencies
## pmdata1$marital
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## --------------- ------ --------- -------------- --------- --------------
## married 41 77.36 77.36 75.93 75.93
## single 5 9.43 86.79 9.26 85.19
## partnered 3 5.66 92.45 5.56 90.74
## separated 3 5.66 98.11 5.56 96.30
## widowed 1 1.89 100.00 1.85 98.15
## <NA> 1 1.85 100.00
## Total 54 100.00 100.00 100.00 100.00
summarytools::freq(pmdata1$income, order = "freq")
## Frequencies
## pmdata1$income
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## -------------------- ------ --------- -------------- --------- --------------
## 50k to 99.9k 27 50.00 50.00 50.00 50.00
## 100k to 199.9k 23 42.59 92.59 42.59 92.59
## 25k to 49.9k 4 7.41 100.00 7.41 100.00
## <NA> 0 0.00 100.00
## Total 54 100.00 100.00 100.00 100.00
summarytools::freq(pmdata1$religion, order = "freq")
## Frequencies
## pmdata1$religion
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ------------------ ------ --------- -------------- --------- --------------
## christianity 39 72.22 72.22 72.22 72.22
## no affil 11 20.37 92.59 20.37 92.59
## other 3 5.56 98.15 5.56 98.15
## judaism 1 1.85 100.00 1.85 100.00
## <NA> 0 0.00 100.00
## Total 54 100.00 100.00 100.00 100.00
summarytools::freq(pmdata1$rank, order = "freq")
## Frequencies
## pmdata1$rank
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## -------------------- ------ --------- -------------- --------- --------------
## sergeant 16 30.77 30.77 29.63 29.63
## police officer 15 28.85 59.62 27.78 57.41
## detective 8 15.38 75.00 14.81 72.22
## chief 4 7.69 82.69 7.41 79.63
## other rank 4 7.69 90.38 7.41 87.04
## captain 3 5.77 96.15 5.56 92.59
## deputy chief 1 1.92 98.08 1.85 94.44
## lieutent 1 1.92 100.00 1.85 96.30
## <NA> 2 3.70 100.00
## Total 54 100.00 100.00 100.00 100.00
summarytools::freq(pmdata1$family, order = "freq")
## Frequencies
## pmdata1$family
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## no 37 69.81 69.81 68.52 68.52
## yes 16 30.19 100.00 29.63 98.15
## <NA> 1 1.85 100.00
## Total 54 100.00 100.00 100.00 100.00
summarytools::freq(pmdata1$nopoexp, order = "freq")
## Frequencies
## pmdata1$nopoexp
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## yes 38 70.37 70.37 70.37 70.37
## no 16 29.63 100.00 29.63 100.00
## <NA> 0 0.00 100.00
## Total 54 100.00 100.00 100.00 100.00
summarytools::freq(pmdata1$military, order = "freq")
## Frequencies
## pmdata1$military
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## no 41 75.93 75.93 75.93 75.93
## yes 13 24.07 100.00 24.07 100.00
## <NA> 0 0.00 100.00
## Total 54 100.00 100.00 100.00 100.00