1 Retrieve dataset and install packages

library(readr)
pmdata1 <- read_csv("pmdata1.csv")
## Rows: 54 Columns: 280
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr  (18): StartDate, IPAddress, ResponseId, gender, race, edu, marital, inc...
## dbl (262): Progress, Duration..in.seconds., stdysal, benefits, goodsal, jobs...
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

2 specify categorical variables and relevel

pmdata1$gender <- as.factor(pmdata1$gender)
pmdata1$race <- as.factor(pmdata1$race)
pmdata1$edu <- as.factor(pmdata1$edu)
pmdata1$marital <- as.factor(pmdata1$marital)
pmdata1$income <- as.factor(pmdata1$income)
pmdata1$religion <- as.factor(pmdata1$religion)
pmdata1$rank <- as.factor(pmdata1$rank)
pmdata1$family <- as.factor(pmdata1$family)
pmdata1$nopoexp <- as.factor(pmdata1$nopoexp)
pmdata1$military <- as.factor(pmdata1$military)

library(stats)
pmdata1$gender <- relevel(pmdata1$gender, ref = "female")
pmdata1$race  <- relevel(pmdata1$race, ref = "black")
pmdata1$edu  <- relevel(pmdata1$edu, ref = "high school")
pmdata1$marital  <- relevel(pmdata1$marital, ref = "married")
pmdata1$income  <- relevel(pmdata1$income, ref = "25k to 49.9k")
pmdata1$religion  <- relevel(pmdata1$religion, ref = "no affil")
pmdata1$rank  <- relevel(pmdata1$rank, ref = "police officer")
pmdata1$family  <- relevel(pmdata1$family, ref = "no")
pmdata1$nopoexp  <- relevel(pmdata1$nopoexp, ref = "no")
pmdata1$military  <- relevel(pmdata1$military, ref = "no")

3 Data screening

IVs
sdo = social dominance orientation (e.g., we should not push for group equality)
rwa = right-wing authoritarianism (e.g., its better to accept bad literature than to censor it)
legit = police perceptions of how the community views them in terms of legitimacy (e.g., citizens in your community trust the police) ferg = the ferguson effect (negative impact of publicity on officers)
prom = commitment to prominence goals (e.g., glory, championship); TIP-END goals
neg = commitment to negativity prevention goals (e.g., abnormality, craziness); TIP-END goals
trad = commitment to tradition goals (e.g., faith, obedience); TIP-END goals
inclus = commitment to inclusiveness goals (e.g., diversity, comradery, equity); TIP-END goals
elite = commitment to elitism goals (e.g., authoritarianism, boastfulness); TIP-END goals
disrep = commitment to disrepute (e.g., addiction, corruption); TIP-END goals
rebel = commitment to rebellion (e.g., wildness; temptation); TIP-END goals
loyal = loyalty to fellow officers (e.g., If I violate a rule, I expect my fellow officer to protect me)
bpaq = Buss-Perry Aggression Questionnaire (e.g., Given enough provocation, I may hit another person)
guardian = police officers as guardians orientation (e.g., As a police officer, I see myself as a civil servant)
warrior = police officers as warriors orientation (e.g., My primary responsibility as a police officer is to fight crime)

DVs
reason = endorsement of reasonable use of force (e.g., A police officer uses guns and clubs to stop violent demonstrations)
excess = endorsement of excessive use of force (e.g., A police officer uses violence to control non-violent demonstrations)
projust = endorsement of procedural justice (e.g., When interacting with community residents, how important is it to show an interest in what they have to say?)

3.1 Histograms

Based on histograms below, loyal needs a transform. Excess and reason may need a transform too, but their skew is not as bad. I removed loyal from analysis.

hist(pmdata1$sdo)

hist(pmdata1$rwa)

hist(pmdata1$legit)

hist(pmdata1$ferg)

hist(pmdata1$prom)

hist(pmdata1$neg)

hist(pmdata1$trad)

hist(pmdata1$inclus)

hist(pmdata1$elite)

hist(pmdata1$disrep)

hist(pmdata1$rebel)

hist(pmdata1$reason)

hist(pmdata1$excess)

hist(pmdata1$projust)

hist(pmdata1$loyal)

hist(pmdata1$bpaq)

hist(pmdata1$desirab)

hist(pmdata1$guardian)

hist(pmdata1$warrior)

3.2 Outliers (beyond 1.5*IQR was removed)

3.3 Multicollinearity: for hierarchical regression

Based on the multicollinearity analysis below, I removed rank, marital, education, income, totalexp, race, religion, disrep, and rebel from further analysis.

library(car)
## Loading required package: carData
multicollin <- lm(excess ~ age + gender + family + nopoexp + military + rankexp + sdo + rwa + legit + prom + neg + trad + inclus + elite + rebel + bpaq + guardian + warrior + desirab,  na.action = na.omit, data = pmdata1)
vif(multicollin)
##      age   gender   family  nopoexp military  rankexp      sdo      rwa 
## 1.501417 2.879692 5.205071 3.486756 2.942532 2.961819 2.672494 4.284721 
##    legit     prom      neg     trad   inclus    elite    rebel     bpaq 
## 2.824698 2.719625 4.079553 4.006909 4.137504 4.274605 6.496975 4.335127 
## guardian  warrior  desirab 
## 3.537075 2.363152 3.694388

3.4 Linearity, constancy, normality: hierarchial regression

model1.1 <- lm(excess ~ age + gender + family + nopoexp + military + rankexp, na.action = na.omit, data = pmdata1)
model1.2 <- lm(reason ~ age + gender + family + nopoexp + military + rankexp, na.action = na.omit, data = pmdata1)
model1.3 <- lm(projust ~ age + gender + family + nopoexp + military + rankexp, na.action = na.omit, data = pmdata1)

model2.1 <- lm(excess ~ age + gender + family + nopoexp + military + rankexp + sdo + rwa + legit + prom + neg + trad + inclus + elite + rebel + bpaq + guardian + warrior + desirab, na.action = na.omit, data = pmdata1)
model2.2 <- lm(reason ~ age + gender + family + nopoexp + military + rankexp + sdo + rwa + legit + prom + neg + trad + inclus + elite + rebel + bpaq + guardian + warrior + desirab, na.action = na.omit, data = pmdata1)
model2.3 <- lm(projust ~ age + gender + family + nopoexp + military + rankexp + sdo + rwa + legit + prom + neg + trad + inclus + elite + rebel + bpaq + guardian + warrior + desirab, na.action = na.omit, data = pmdata1)

par(mfrow=c(2,2)) 

plot(model1.1)

plot(model1.2)

plot(model1.3)

plot(model2.1)

plot(model2.2)

plot(model2.3)

3.5 Linearity, constancy, normality: bivariate regressions

3.5.1 Linearity, constancy, normality: excess

par(mfrow=c(2,2)) 
model3 <- lm(excess ~  sdo, na.action = na.omit, data = pmdata1)
model4 <- lm(excess ~  rwa, na.action = na.omit, data = pmdata1)
model5 <- lm(excess ~  legit, na.action = na.omit, data = pmdata1)
model6 <- lm(excess ~  prom, na.action = na.omit, data = pmdata1)
model7 <- lm(excess ~  neg, na.action = na.omit, data = pmdata1)
model8 <- lm(excess ~  trad, na.action = na.omit, data = pmdata1)
model9 <- lm(excess ~ inclus, na.action = na.omit, data = pmdata1)
model10 <- lm(excess ~  elite, na.action = na.omit, data = pmdata1)
model11 <- lm(excess ~  rebel, na.action = na.omit, data = pmdata1)
model12 <- lm(excess ~  bpaq, na.action = na.omit, data = pmdata1)
model13 <- lm(excess ~  guardian, na.action = na.omit, data = pmdata1)
model14 <- lm(excess ~  warrior, na.action = na.omit, data = pmdata1)

plot(model3)

plot(model4)

plot(model5)

plot(model6)

plot(model7)

plot(model8)

plot(model9)

plot(model10)

plot(model11)

plot(model12)

plot(model13)

plot(model14)

3.5.2 Linearity, constancy, normality: reason

par(mfrow=c(2,2)) 
model15 <- lm(reason ~  sdo, na.action = na.omit, data = pmdata1)
model16 <- lm(reason ~  rwa, na.action = na.omit, data = pmdata1)
model17 <- lm(reason ~  legit, na.action = na.omit, data = pmdata1)
model18 <- lm(reason ~  prom, na.action = na.omit, data = pmdata1)
model19 <- lm(reason ~  neg, na.action = na.omit, data = pmdata1)
model20 <- lm(reason ~  trad, na.action = na.omit, data = pmdata1)
model21 <- lm(reason ~ inclus, na.action = na.omit, data = pmdata1)
model22 <- lm(reason ~  elite, na.action = na.omit, data = pmdata1)
model23 <- lm(reason ~  rebel, na.action = na.omit, data = pmdata1)
model24 <- lm(reason ~  bpaq, na.action = na.omit, data = pmdata1)
model25 <- lm(reason ~  guardian, na.action = na.omit, data = pmdata1)
model26 <- lm(reason ~  warrior, na.action = na.omit, data = pmdata1)

plot(model15)

plot(model16)

plot(model17)

plot(model18)

plot(model19)

plot(model20)

plot(model21)

plot(model22)

plot(model23)

plot(model24)

plot(model25)

plot(model26)

3.5.3 Linearity, constancy, normality: projust

par(mfrow=c(2,2)) 
model27 <- lm(projust ~  sdo, na.action = na.omit, data = pmdata1)
model28 <- lm(projust ~  rwa, na.action = na.omit, data = pmdata1)
model29 <- lm(projust ~  legit, na.action = na.omit, data = pmdata1)
model30 <- lm(projust ~  prom, na.action = na.omit, data = pmdata1)
model31 <- lm(projust ~  neg, na.action = na.omit, data = pmdata1)
model32 <- lm(projust ~  trad, na.action = na.omit, data = pmdata1)
model33 <- lm(projust ~ inclus, na.action = na.omit, data = pmdata1)
model34 <- lm(projust ~  elite, na.action = na.omit, data = pmdata1)
model35 <- lm(projust ~  rebel, na.action = na.omit, data = pmdata1)
model36 <- lm(projust ~  bpaq, na.action = na.omit, data = pmdata1)
model37 <- lm(projust ~  guardian, na.action = na.omit, data = pmdata1)
model38 <- lm(projust ~  warrior, na.action = na.omit, data = pmdata1)

plot(model27)

plot(model28)

plot(model29)

plot(model30)

plot(model31)

plot(model32)

plot(model33)

plot(model34)

plot(model35)

plot(model36)

plot(model37)

plot(model38)

4 Analyses

4.1 Hierarchical regressions

Note, the direction of guardian, warrior, rwa, and sdo (IVs) in relation with excessive use force (DV); the direction of rwa and sdo for reasonable use of force; and the direction for guardian, warrior, and rwa in relation with procedural justice does not make sense. The relationships seem to be opposite to what we would expect. I suspect that this is due to multicollinearity. I found high VIF values for multiple variables in the above analysis. I did remove the problematic variables as aforementioned, but the VIF values still weren’t great. To account for this, I conducted bivariate regression analyses (excluding all other control variables) below. The direction of the relationships starts to make sense again.

4.1.1 Step 1: Demographic model

DVs: excessive use force (excess), reasonable use of force (reason), procedural justice(projust) - higher scores = higher endorsement

summary(model1.1)
## 
## Call:
## lm(formula = excess ~ age + gender + family + nopoexp + military + 
##     rankexp, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0400 -0.5426 -0.1985  0.5771  1.8535 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.384804   0.603006   3.955 0.000313 ***
## age         -0.022300   0.013459  -1.657 0.105556    
## gendermale   0.374130   0.316692   1.181 0.244611    
## familyyes    0.138431   0.286112   0.484 0.631209    
## nopoexpyes  -0.024804   0.290659  -0.085 0.932429    
## militaryyes -0.055955   0.269819  -0.207 0.836792    
## rankexp     -0.001774   0.016525  -0.107 0.915039    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7952 on 39 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1186, Adjusted R-squared:  -0.01698 
## F-statistic: 0.8748 on 6 and 39 DF,  p-value: 0.5222
summary(model1.2)
## 
## Call:
## lm(formula = reason ~ age + gender + family + nopoexp + military + 
##     rankexp, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.72172 -0.28266  0.09474  0.41901  0.99749 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  7.069755   0.517320  13.666 3.02e-16 ***
## age         -0.016466   0.011614  -1.418    0.164    
## gendermale  -0.147328   0.269064  -0.548    0.587    
## familyyes   -0.043646   0.243741  -0.179    0.859    
## nopoexpyes  -0.013938   0.246829  -0.056    0.955    
## militaryyes -0.240683   0.231151  -1.041    0.304    
## rankexp     -0.003485   0.014028  -0.248    0.805    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6749 on 38 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.1468, Adjusted R-squared:  0.0121 
## F-statistic:  1.09 on 6 and 38 DF,  p-value: 0.386
summary(model1.3)
## 
## Call:
## lm(formula = projust ~ age + gender + family + nopoexp + military + 
##     rankexp, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.64075 -0.20058  0.00802  0.25200  0.74675 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.255420   0.250210  17.007   <2e-16 ***
## age          0.005227   0.005624   0.929   0.3584    
## gendermale  -0.234543   0.130854  -1.792   0.0808 .  
## familyyes   -0.035277   0.118233  -0.298   0.7670    
## nopoexpyes  -0.016606   0.120144  -0.138   0.8908    
## militaryyes -0.023590   0.111352  -0.212   0.8333    
## rankexp      0.001798   0.006819   0.264   0.7934    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3284 on 39 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.09823,    Adjusted R-squared:  -0.0405 
## F-statistic: 0.7081 on 6 and 39 DF,  p-value: 0.645

4.1.2 Step 2: Whole model (demographic + IVs)

DVs: excessive use force (excess), reasonable use of force (reason), procedural justice(projust) - higher scores = higher endorsement

summary(model2.1)
## 
## Call:
## lm(formula = excess ~ age + gender + family + nopoexp + military + 
##     rankexp + sdo + rwa + legit + prom + neg + trad + inclus + 
##     elite + rebel + bpaq + guardian + warrior + desirab, data = pmdata1, 
##     na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.93856 -0.18935  0.09424  0.20608  0.89141 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.688381   4.598444  -0.150    0.885
## age         -0.014925   0.018819  -0.793    0.451
## gendermale   0.290250   0.706973   0.411    0.692
## familyyes   -0.035188   0.681017  -0.052    0.960
## nopoexpyes  -0.588155   0.582879  -1.009    0.342
## militaryyes  0.081814   0.553562   0.148    0.886
## rankexp      0.003130   0.033721   0.093    0.928
## sdo         -0.006493   0.298901  -0.022    0.983
## rwa         -0.023454   0.395649  -0.059    0.954
## legit       -0.385705   0.372608  -1.035    0.331
## prom        -0.127533   0.316745  -0.403    0.698
## neg         -0.443949   0.329670  -1.347    0.215
## trad        -0.177406   0.366266  -0.484    0.641
## inclus      -0.458348   0.321286  -1.427    0.192
## elite       -0.128666   0.318187  -0.404    0.697
## rebel        0.211387   0.343597   0.615    0.556
## bpaq         0.372643   0.493235   0.756    0.472
## guardian     0.980184   0.699914   1.400    0.199
## warrior     -0.175110   0.197382  -0.887    0.401
## desirab     -0.344199   1.488634  -0.231    0.823
## 
## Residual standard error: 0.7714 on 8 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.6809, Adjusted R-squared:  -0.07688 
## F-statistic: 0.8985 on 19 and 8 DF,  p-value: 0.6022
summary(model2.2)
## 
## Call:
## lm(formula = reason ~ age + gender + family + nopoexp + military + 
##     rankexp + sdo + rwa + legit + prom + neg + trad + inclus + 
##     elite + rebel + bpaq + guardian + warrior + desirab, data = pmdata1, 
##     na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.56694 -0.33561 -0.03251  0.33938  0.83543 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)  2.530220   4.090393   0.619    0.553
## age         -0.013911   0.016740  -0.831    0.430
## gendermale   0.426776   0.628864   0.679    0.517
## familyyes   -0.016695   0.605776  -0.028    0.979
## nopoexpyes   0.544937   0.518480   1.051    0.324
## militaryyes -0.117546   0.492402  -0.239    0.817
## rankexp      0.019228   0.029995   0.641    0.539
## sdo          0.140677   0.265877   0.529    0.611
## rwa          0.063344   0.351937   0.180    0.862
## legit       -0.091408   0.331441  -0.276    0.790
## prom         0.485177   0.281750   1.722    0.123
## neg          0.052705   0.293247   0.180    0.862
## trad        -0.513884   0.325799  -1.577    0.153
## inclus       0.292222   0.285789   1.023    0.336
## elite       -0.003478   0.283033  -0.012    0.990
## rebel       -0.368780   0.305635  -1.207    0.262
## bpaq        -0.047157   0.438741  -0.107    0.917
## guardian     0.643247   0.622585   1.033    0.332
## warrior      0.094203   0.175575   0.537    0.606
## desirab     -0.836532   1.324165  -0.632    0.545
## 
## Residual standard error: 0.6862 on 8 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.691,  Adjusted R-squared:  -0.04302 
## F-statistic: 0.9414 on 19 and 8 DF,  p-value: 0.572
summary(model2.3)
## 
## Call:
## lm(formula = projust ~ age + gender + family + nopoexp + military + 
##     rankexp + sdo + rwa + legit + prom + neg + trad + inclus + 
##     elite + rebel + bpaq + guardian + warrior + desirab, data = pmdata1, 
##     na.action = na.omit)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.234829 -0.083597  0.007551  0.068291  0.230098 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  2.743571   1.204230   2.278   0.0522 .
## age         -0.003622   0.004928  -0.735   0.4834  
## gendermale  -0.477106   0.185140  -2.577   0.0328 *
## familyyes   -0.190353   0.178343  -1.067   0.3170  
## nopoexpyes  -0.078591   0.152643  -0.515   0.6206  
## militaryyes  0.274005   0.144965   1.890   0.0954 .
## rankexp      0.006221   0.008831   0.704   0.5011  
## sdo         -0.074288   0.078275  -0.949   0.3704  
## rwa          0.224076   0.103612   2.163   0.0625 .
## legit        0.174239   0.097578   1.786   0.1120  
## prom         0.195015   0.082948   2.351   0.0466 *
## neg          0.134182   0.086333   1.554   0.1587  
## trad         0.110896   0.095917   1.156   0.2810  
## inclus       0.122892   0.084138   1.461   0.1823  
## elite        0.139624   0.083326   1.676   0.1323  
## rebel       -0.088708   0.089980  -0.986   0.3531  
## bpaq        -0.180114   0.129167  -1.394   0.2007  
## guardian    -0.021495   0.183292  -0.117   0.9095  
## warrior      0.158515   0.051690   3.067   0.0154 *
## desirab      0.073691   0.389840   0.189   0.8548  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.202 on 8 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.8729, Adjusted R-squared:  0.5709 
## F-statistic: 2.891 on 19 and 8 DF,  p-value: 0.06387

4.2 Bivariate regressions

4.2.1 Single IVs predicting excessive use of force (higher scores = higher endorsement)

library(lm.beta)
summary(model3)
## 
## Call:
## lm(formula = excess ~ sdo, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0970 -0.5522 -0.1564  0.4961  2.1877 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.6497     0.3770   1.723  0.09101 . 
## sdo           0.3796     0.1285   2.955  0.00475 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.762 on 50 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1487, Adjusted R-squared:  0.1317 
## F-statistic: 8.734 on 1 and 50 DF,  p-value: 0.004754
lm.beta(model3)
## 
## Call:
## lm(formula = excess ~ sdo, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)         sdo 
##   0.0000000   0.3856227
summary(model4)
## 
## Call:
## lm(formula = excess ~ rwa, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7363 -0.6961 -0.3330  0.5899  2.2965 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  1.61182    0.67722   2.380   0.0212 *
## rwa          0.02456    0.16718   0.147   0.8838  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.839 on 49 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.0004403,  Adjusted R-squared:  -0.01996 
## F-statistic: 0.02158 on 1 and 49 DF,  p-value: 0.8838
lm.beta(model4)
## 
## Call:
## lm(formula = excess ~ rwa, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)         rwa 
##  0.00000000  0.02098293
summary(model5)
## 
## Call:
## lm(formula = excess ~ legit, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1930 -0.4760 -0.3378  0.5644  2.4622 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.5036     0.9959   3.518 0.000948 ***
## legit        -0.2979     0.1650  -1.805 0.077216 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8077 on 49 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.06235,    Adjusted R-squared:  0.04321 
## F-statistic: 3.258 on 1 and 49 DF,  p-value: 0.07722
lm.beta(model5)
## 
## Call:
## lm(formula = excess ~ legit, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)       legit 
##   0.0000000  -0.2496936
summary(model6)
## 
## Call:
## lm(formula = excess ~ prom, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0211 -0.6080 -0.2711  0.5525  2.2473 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7527     0.1193  14.688   <2e-16 ***
## prom          0.1736     0.1270   1.368    0.178    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8217 on 46 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.03908,    Adjusted R-squared:  0.01819 
## F-statistic: 1.871 on 1 and 46 DF,  p-value: 0.178
lm.beta(model6)
## 
## Call:
## lm(formula = excess ~ prom, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)        prom 
##   0.0000000   0.1976811
summary(model7)
## 
## Call:
## lm(formula = excess ~ neg, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8872 -0.6108 -0.3567  0.5449  2.2466 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.0656     0.2793   7.396 1.82e-09 ***
## neg           0.1487     0.1160   1.282    0.206    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.821 on 48 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.03311,    Adjusted R-squared:  0.01296 
## F-statistic: 1.643 on 1 and 48 DF,  p-value: 0.206
lm.beta(model7)
## 
## Call:
## lm(formula = excess ~ neg, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)         neg 
##   0.0000000   0.1819503
summary(model8)
## 
## Call:
## lm(formula = excess ~ trad, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1026 -0.5187 -0.2308  0.3994  2.3001 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.1428     0.2987   7.174 6.37e-09 ***
## trad         -0.2215     0.1412  -1.568    0.124    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8053 on 44 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.05292,    Adjusted R-squared:  0.0314 
## F-statistic: 2.459 on 1 and 44 DF,  p-value: 0.124
lm.beta(model8)
## 
## Call:
## lm(formula = excess ~ trad, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)        trad 
##   0.0000000  -0.2300469
summary(model9)
## 
## Call:
## lm(formula = excess ~ inclus, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9921 -0.5398 -0.2581  0.4373  2.3061 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.0150     0.1839   10.96 1.55e-14 ***
## inclus       -0.2523     0.1243   -2.03   0.0481 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7999 on 47 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.0806, Adjusted R-squared:  0.06104 
## F-statistic:  4.12 on 1 and 47 DF,  p-value: 0.04806
lm.beta(model9)
## 
## Call:
## lm(formula = excess ~ inclus, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)      inclus 
##   0.0000000  -0.2838976
summary(model10)
## 
## Call:
## lm(formula = excess ~ elite, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0352 -0.5280 -0.2178  0.5339  2.0546 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3559     0.2471   9.533 1.47e-12 ***
## elite         0.3140     0.1154   2.722  0.00908 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7776 on 47 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1361, Adjusted R-squared:  0.1178 
## F-statistic: 7.407 on 1 and 47 DF,  p-value: 0.009081
lm.beta(model10)
## 
## Call:
## lm(formula = excess ~ elite, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)       elite 
##    0.000000    0.368983
summary(model11)
## 
## Call:
## lm(formula = excess ~ rebel, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0160 -0.5271 -0.1826  0.3913  1.6950 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3050     0.2262  10.192 1.73e-13 ***
## rebel         0.2890     0.1036   2.789  0.00762 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.775 on 47 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.142,  Adjusted R-squared:  0.1237 
## F-statistic: 7.776 on 1 and 47 DF,  p-value: 0.00762
lm.beta(model11)
## 
## Call:
## lm(formula = excess ~ rebel, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)       rebel 
##    0.000000    0.376773
summary(model12)
## 
## Call:
## lm(formula = excess ~ bpaq, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0445 -0.5695 -0.2904  0.6138  2.0180 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.9820     0.4282   2.294   0.0261 *
## bpaq          0.2500     0.1516   1.649   0.1054  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.751 on 49 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.05261,    Adjusted R-squared:  0.03327 
## F-statistic: 2.721 on 1 and 49 DF,  p-value: 0.1054
lm.beta(model12)
## 
## Call:
## lm(formula = excess ~ bpaq, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)        bpaq 
##   0.0000000   0.2293609
summary(model13)
## 
## Call:
## lm(formula = excess ~ guardian, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6792 -0.5924 -0.2310  0.5690  1.6076 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  1.99748    1.79760   1.111    0.273
## guardian    -0.05786    0.27670  -0.209    0.835
## 
## Residual standard error: 0.7139 on 43 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.001016,   Adjusted R-squared:  -0.02222 
## F-statistic: 0.04373 on 1 and 43 DF,  p-value: 0.8353
lm.beta(model13)
## 
## Call:
## lm(formula = excess ~ guardian, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)    guardian 
##  0.00000000 -0.03187431
summary(model14)
## 
## Call:
## lm(formula = excess ~ warrior, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7503 -0.6295 -0.2844  0.5595  2.2387 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  1.49766    0.58866   2.544   0.0143 *
## warrior      0.03296    0.09917   0.332   0.7411  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7754 on 47 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.002345,   Adjusted R-squared:  -0.01888 
## F-statistic: 0.1105 on 1 and 47 DF,  p-value: 0.7411
lm.beta(model14)
## 
## Call:
## lm(formula = excess ~ warrior, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)     warrior 
##  0.00000000  0.04842022

4.2.2 Single IVs predicting reasonable use of force (higher scores = higher endorsement)

summary(model15)
## 
## Call:
## lm(formula = reason ~ sdo, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7066 -0.3129  0.2877  0.4788  0.9093 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.07732    0.34416  17.658   <2e-16 ***
## sdo          0.01017    0.11658   0.087    0.931    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.678 on 47 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.0001618,  Adjusted R-squared:  -0.02111 
## F-statistic: 0.007606 on 1 and 47 DF,  p-value: 0.9309
lm.beta(model15)
## 
## Call:
## lm(formula = reason ~ sdo, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)         sdo 
##  0.00000000  0.01271999
summary(model16)
## 
## Call:
## lm(formula = reason ~ rwa, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7074 -0.3487  0.1994  0.3566  0.9119 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.062583   0.562548  10.777 3.57e-14 ***
## rwa         0.009348   0.138375   0.068    0.946    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6814 on 46 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  9.919e-05,  Adjusted R-squared:  -0.02164 
## F-statistic: 0.004563 on 1 and 46 DF,  p-value: 0.9464
lm.beta(model16)
## 
## Call:
## lm(formula = reason ~ rwa, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)         rwa 
## 0.000000000 0.009959658
summary(model17)
## 
## Call:
## lm(formula = reason ~ legit, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7333 -0.3341  0.1673  0.4657  0.8683 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.121193   0.880115   6.955 1.06e-08 ***
## legit       0.002011   0.144953   0.014    0.989    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6465 on 46 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  4.183e-06,  Adjusted R-squared:  -0.02173 
## F-statistic: 0.0001924 on 1 and 46 DF,  p-value: 0.989
lm.beta(model17)
## 
## Call:
## lm(formula = reason ~ legit, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)       legit 
##  0.00000000  0.00204533
summary(model18)
## 
## Call:
## lm(formula = reason ~ prom, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4636 -0.3699  0.1355  0.4645  1.1819 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.08684    0.09741   62.49   <2e-16 ***
## prom         0.24554    0.10146    2.42   0.0197 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6566 on 44 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1175, Adjusted R-squared:  0.0974 
## F-statistic: 5.856 on 1 and 44 DF,  p-value: 0.01972
lm.beta(model18)
## 
## Call:
## lm(formula = reason ~ prom, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)        prom 
##    0.000000    0.342726
summary(model19)
## 
## Call:
## lm(formula = reason ~ neg, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7138 -0.3623  0.2642  0.4846  0.9019 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.14360    0.25094  24.483   <2e-16 ***
## neg          0.01567    0.10250   0.153    0.879    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.685 on 46 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.000508,   Adjusted R-squared:  -0.02122 
## F-statistic: 0.02338 on 1 and 46 DF,  p-value: 0.8791
lm.beta(model19)
## 
## Call:
## lm(formula = reason ~ neg, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)         neg 
##  0.00000000  0.02253955
summary(model20)
## 
## Call:
## lm(formula = reason ~ trad, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6140 -0.4356  0.2159  0.4167  0.9626 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.10975    0.27423  22.279   <2e-16 ***
## trad        -0.02567    0.12871  -0.199    0.843    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6864 on 42 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.0009465,  Adjusted R-squared:  -0.02284 
## F-statistic: 0.03979 on 1 and 42 DF,  p-value: 0.8429
lm.beta(model20)
## 
## Call:
## lm(formula = reason ~ trad, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)        trad 
##  0.00000000 -0.03076516
summary(model21)
## 
## Call:
## lm(formula = reason ~ inclus, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5913 -0.4445  0.1579  0.5049  1.1298 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.8702     0.1583  37.071   <2e-16 ***
## inclus        0.1903     0.1066   1.785   0.0812 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6687 on 44 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.0675, Adjusted R-squared:  0.04631 
## F-statistic: 3.185 on 1 and 44 DF,  p-value: 0.08121
lm.beta(model21)
## 
## Call:
## lm(formula = reason ~ inclus, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)      inclus 
##   0.0000000   0.2598118
summary(model22)
## 
## Call:
## lm(formula = reason ~ elite, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6998 -0.3436  0.1931  0.4587  0.9197 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   6.3725     0.2285  27.889   <2e-16 ***
## elite         0.1266     0.1049   1.207    0.234    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6737 on 45 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.03138,    Adjusted R-squared:  0.009852 
## F-statistic: 1.458 on 1 and 45 DF,  p-value: 0.2336
lm.beta(model22)
## 
## Call:
## lm(formula = reason ~ elite, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)       elite 
##   0.0000000   0.1771362
summary(model23)
## 
## Call:
## lm(formula = reason ~ rebel, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5994 -0.3785  0.1868  0.4143  0.9043 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.25378    0.20758  30.127   <2e-16 ***
## rebel        0.08250    0.09396   0.878    0.385    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6791 on 45 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.01684,    Adjusted R-squared:  -0.005006 
## F-statistic: 0.7709 on 1 and 45 DF,  p-value: 0.3846
lm.beta(model23)
## 
## Call:
## lm(formula = reason ~ rebel, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)       rebel 
##   0.0000000   0.1297758
summary(model24)
## 
## Call:
## lm(formula = reason ~ bpaq, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7368 -0.3310  0.1566  0.4559  0.9912 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.5627     0.4033   13.79   <2e-16 ***
## bpaq          0.1968     0.1458    1.35    0.184    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6595 on 46 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.03809,    Adjusted R-squared:  0.01718 
## F-statistic: 1.822 on 1 and 46 DF,  p-value: 0.1837
lm.beta(model24)
## 
## Call:
## lm(formula = reason ~ bpaq, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)        bpaq 
##   0.0000000   0.1951676
summary(model25)
## 
## Call:
## lm(formula = reason ~ guardian, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4702 -0.2702  0.1253  0.4191  1.1388 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   3.3535     1.6898   1.985   0.0537 .
## guardian      0.4180     0.2606   1.604   0.1162  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6585 on 42 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.05772,    Adjusted R-squared:  0.03528 
## F-statistic: 2.573 on 1 and 42 DF,  p-value: 0.1162
lm.beta(model25)
## 
## Call:
## lm(formula = reason ~ guardian, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)    guardian 
##   0.0000000   0.2402472
summary(model26)
## 
## Call:
## lm(formula = reason ~ warrior, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6298 -0.3190  0.1485  0.4052  0.9052 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.72674    0.51846  11.046 2.11e-14 ***
## warrior      0.06494    0.08813   0.737    0.465    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6612 on 45 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.01192,    Adjusted R-squared:  -0.01003 
## F-statistic: 0.543 on 1 and 45 DF,  p-value: 0.465
lm.beta(model26)
## 
## Call:
## lm(formula = reason ~ warrior, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)     warrior 
##   0.0000000   0.1091945

4.2.3 Single IVs predicting procedural justice (higher scores = higher endorsement)

summary(model27)
## 
## Call:
## lm(formula = projust ~ sdo, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.66812 -0.21345 -0.01266  0.26333  0.55833 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.62431    0.15767  29.329   <2e-16 ***
## sdo         -0.12737    0.05347  -2.382   0.0213 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3028 on 47 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1077, Adjusted R-squared:  0.08873 
## F-statistic: 5.674 on 1 and 47 DF,  p-value: 0.02132
lm.beta(model27)
## 
## Call:
## lm(formula = projust ~ sdo, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)         sdo 
##   0.0000000  -0.3282011
summary(model28)
## 
## Call:
## lm(formula = projust ~ rwa, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.72676 -0.24468 -0.09138  0.32460  0.63976 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 4.230887   0.271061  15.609   <2e-16 ***
## rwa         0.004755   0.066418   0.072    0.943    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3253 on 46 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.0001114,  Adjusted R-squared:  -0.02163 
## F-statistic: 0.005125 on 1 and 46 DF,  p-value: 0.9432
lm.beta(model28)
## 
## Call:
## lm(formula = projust ~ rwa, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)         rwa 
##  0.00000000  0.01055516
summary(model29)
## 
## Call:
## lm(formula = projust ~ legit, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6796 -0.2444 -0.0943  0.2737  0.6067 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.55795    0.42721   8.328 9.75e-11 ***
## legit        0.11571    0.07078   1.635    0.109    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3209 on 46 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.0549, Adjusted R-squared:  0.03436 
## F-statistic: 2.672 on 1 and 46 DF,  p-value: 0.1089
lm.beta(model29)
## 
## Call:
## lm(formula = projust ~ legit, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)       legit 
##   0.0000000   0.2343137
summary(model30)
## 
## Call:
## lm(formula = projust ~ prom, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.70659 -0.21561 -0.07005  0.32138  0.60560 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.25275    0.04724  90.018   <2e-16 ***
## prom        -0.03638    0.05030  -0.723    0.473    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3161 on 44 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.01175,    Adjusted R-squared:  -0.01071 
## F-statistic: 0.5232 on 1 and 44 DF,  p-value: 0.4733
lm.beta(model30)
## 
## Call:
## lm(formula = projust ~ prom, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)        prom 
##   0.0000000  -0.1084052
summary(model31)
## 
## Call:
## lm(formula = projust ~ neg, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.72993 -0.21737 -0.06396  0.29688  0.67059 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.15536    0.11069  37.541   <2e-16 ***
## neg         -0.04586    0.04619  -0.993    0.326    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.316 on 46 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.02098,    Adjusted R-squared:  -0.0003058 
## F-statistic: 0.9856 on 1 and 46 DF,  p-value: 0.326
lm.beta(model31)
## 
## Call:
## lm(formula = projust ~ neg, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)         neg 
##   0.0000000  -0.1448354
summary(model32)
## 
## Call:
## lm(formula = projust ~ trad, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.76120 -0.23181 -0.03492  0.26607  0.61279 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.13711    0.12206  33.893   <2e-16 ***
## trad         0.06128    0.05745   1.067    0.292    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3145 on 43 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.02577,    Adjusted R-squared:  0.003118 
## F-statistic: 1.138 on 1 and 43 DF,  p-value: 0.2921
lm.beta(model32)
## 
## Call:
## lm(formula = projust ~ trad, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)        trad 
##   0.0000000   0.1605439
summary(model33)
## 
## Call:
## lm(formula = projust ~ inclus, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5680 -0.1691 -0.0376  0.2094  0.5416 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.04580    0.06450  62.725  < 2e-16 ***
## inclus       0.17793    0.04359   4.082 0.000181 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.275 on 45 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.2702, Adjusted R-squared:  0.254 
## F-statistic: 16.66 on 1 and 45 DF,  p-value: 0.0001806
lm.beta(model33)
## 
## Call:
## lm(formula = projust ~ inclus, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)      inclus 
##   0.0000000   0.5198198
summary(model34)
## 
## Call:
## lm(formula = projust ~ elite, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.74879 -0.23801 -0.03517  0.25391  0.57115 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.11349    0.10028  41.020   <2e-16 ***
## elite       -0.07003    0.04677  -1.497    0.141    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3103 on 45 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.04745,    Adjusted R-squared:  0.02629 
## F-statistic: 2.242 on 1 and 45 DF,  p-value: 0.1413
lm.beta(model34)
## 
## Call:
## lm(formula = projust ~ elite, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)       elite 
##   0.0000000  -0.2178393
summary(model35)
## 
## Call:
## lm(formula = projust ~ rebel, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.72303 -0.21380 -0.04223  0.24006  0.62079 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.11400    0.09131  45.057   <2e-16 ***
## rebel       -0.07382    0.04237  -1.742   0.0883 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3116 on 45 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.06319,    Adjusted R-squared:  0.04237 
## F-statistic: 3.035 on 1 and 45 DF,  p-value: 0.08831
lm.beta(model35)
## 
## Call:
## lm(formula = projust ~ rebel, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)       rebel 
##    0.000000   -0.251368
summary(model36)
## 
## Call:
## lm(formula = projust ~ bpaq, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.62623 -0.24093 -0.07311  0.29741  0.56202 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.44314    0.19061  23.310   <2e-16 ***
## bpaq        -0.06974    0.06755  -1.032    0.307    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3198 on 46 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.02265,    Adjusted R-squared:  0.001403 
## F-statistic: 1.066 on 1 and 46 DF,  p-value: 0.3072
lm.beta(model36)
## 
## Call:
## lm(formula = projust ~ bpaq, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)        bpaq 
##   0.0000000  -0.1504974
summary(model37)
## 
## Call:
## lm(formula = projust ~ guardian, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.57192 -0.22664 -0.08281  0.25612  0.60140 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.8423     0.7630   3.725 0.000589 ***
## guardian      0.2232     0.1177   1.896 0.065028 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2966 on 41 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.08061,    Adjusted R-squared:  0.05818 
## F-statistic: 3.595 on 1 and 41 DF,  p-value: 0.06503
lm.beta(model37)
## 
## Call:
## lm(formula = projust ~ guardian, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)    guardian 
##   0.0000000   0.2839147
summary(model38)
## 
## Call:
## lm(formula = projust ~ warrior, data = pmdata1, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.75787 -0.25319 -0.02557  0.28000  0.61055 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.98977    0.25901  15.404   <2e-16 ***
## warrior      0.04649    0.04402   1.056    0.297    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3249 on 44 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.02472,    Adjusted R-squared:  0.002555 
## F-statistic: 1.115 on 1 and 44 DF,  p-value: 0.2967
lm.beta(model38)
## 
## Call:
## lm(formula = projust ~ warrior, data = pmdata1, na.action = na.omit)
## 
## Standardized Coefficients::
## (Intercept)     warrior 
##   0.0000000   0.1572281

5 Descriptive statistics

5.1 Police motivation means and standard deviations

stdysal = steady salary
benefits = good benefits
goodsal = good salary
jobsec = job security
retire = early retirement
jobstat = job status
jobfit = person-job fit
power = power/authority
faminlu = influence from family
excite = the excitement from job
service = service to others
dream = childhood dream
danger = dangerousness of job

library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:car':
## 
##     logit
motivedf <- with(pmdata1, data.frame(stdysal, benefits, goodsal, jobsec, retire, jobstat, jobfit, power, faminflu, excite, service, dream, danger))
describeBy(motivedf)
## Warning in describeBy(motivedf): no grouping variable requested

5.2 Demographics

po = political orientation
rankexp = years of experience in current rank
totalexp = total years of police-related experience
edu = education
marital = marital status
family = having family or relative as police officers nopoexp = non-police related experience
military = military experience

library(psych)
pmdata1$age[pmdata1$age == 0] <- NA
contdemodf <- with(pmdata1, data.frame(age, po, rankexp, totalexp))
describeBy(contdemodf)
## Warning in describeBy(contdemodf): no grouping variable requested
library(summarytools)
summarytools::freq(pmdata1$gender, order = "freq")
## Frequencies  
## pmdata1$gender  
## Type: Factor  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ------------ ------ --------- -------------- --------- --------------
##         male     46     85.19          85.19     85.19          85.19
##       female      8     14.81         100.00     14.81         100.00
##         <NA>      0                               0.00         100.00
##        Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata1$race, order = "freq")
## Frequencies  
## pmdata1$race  
## Type: Factor  
## 
##                  Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## -------------- ------ --------- -------------- --------- --------------
##          white     49     92.45          92.45     90.74          90.74
##       hispanic      3      5.66          98.11      5.56          96.30
##          black      1      1.89         100.00      1.85          98.15
##           <NA>      1                               1.85         100.00
##          Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata1$edu, order = "freq")
## Frequencies  
## pmdata1$edu  
## Type: Factor  
## 
##                      Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ------------------ ------ --------- -------------- --------- --------------
##          bachelors     30     55.56          55.56     55.56          55.56
##            masters      9     16.67          72.22     16.67          72.22
##        high school      7     12.96          85.19     12.96          85.19
##         associates      6     11.11          96.30     11.11          96.30
##       trade school      2      3.70         100.00      3.70         100.00
##               <NA>      0                               0.00         100.00
##              Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata1$marital, order = "freq")
## Frequencies  
## pmdata1$marital  
## Type: Factor  
## 
##                   Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## --------------- ------ --------- -------------- --------- --------------
##         married     41     77.36          77.36     75.93          75.93
##          single      5      9.43          86.79      9.26          85.19
##       partnered      3      5.66          92.45      5.56          90.74
##       separated      3      5.66          98.11      5.56          96.30
##         widowed      1      1.89         100.00      1.85          98.15
##            <NA>      1                               1.85         100.00
##           Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata1$income, order = "freq")
## Frequencies  
## pmdata1$income  
## Type: Factor  
## 
##                        Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## -------------------- ------ --------- -------------- --------- --------------
##         50k to 99.9k     27     50.00          50.00     50.00          50.00
##       100k to 199.9k     23     42.59          92.59     42.59          92.59
##         25k to 49.9k      4      7.41         100.00      7.41         100.00
##                 <NA>      0                               0.00         100.00
##                Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata1$religion, order = "freq")
## Frequencies  
## pmdata1$religion  
## Type: Factor  
## 
##                      Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ------------------ ------ --------- -------------- --------- --------------
##       christianity     39     72.22          72.22     72.22          72.22
##           no affil     11     20.37          92.59     20.37          92.59
##              other      3      5.56          98.15      5.56          98.15
##            judaism      1      1.85         100.00      1.85         100.00
##               <NA>      0                               0.00         100.00
##              Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata1$rank, order = "freq")
## Frequencies  
## pmdata1$rank  
## Type: Factor  
## 
##                        Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## -------------------- ------ --------- -------------- --------- --------------
##             sergeant     16     30.77          30.77     29.63          29.63
##       police officer     15     28.85          59.62     27.78          57.41
##            detective      8     15.38          75.00     14.81          72.22
##                chief      4      7.69          82.69      7.41          79.63
##           other rank      4      7.69          90.38      7.41          87.04
##              captain      3      5.77          96.15      5.56          92.59
##         deputy chief      1      1.92          98.08      1.85          94.44
##             lieutent      1      1.92         100.00      1.85          96.30
##                 <NA>      2                               3.70         100.00
##                Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata1$family, order = "freq")
## Frequencies  
## pmdata1$family  
## Type: Factor  
## 
##               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
##          no     37     69.81          69.81     68.52          68.52
##         yes     16     30.19         100.00     29.63          98.15
##        <NA>      1                               1.85         100.00
##       Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata1$nopoexp, order = "freq")
## Frequencies  
## pmdata1$nopoexp  
## Type: Factor  
## 
##               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
##         yes     38     70.37          70.37     70.37          70.37
##          no     16     29.63         100.00     29.63         100.00
##        <NA>      0                               0.00         100.00
##       Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata1$military, order = "freq")
## Frequencies  
## pmdata1$military  
## Type: Factor  
## 
##               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
##          no     41     75.93          75.93     75.93          75.93
##         yes     13     24.07         100.00     24.07         100.00
##        <NA>      0                               0.00         100.00
##       Total     54    100.00         100.00    100.00         100.00