library(readr)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.3     ✓ dplyr   1.0.7
## ✓ tibble  3.1.5     ✓ stringr 1.4.0
## ✓ tidyr   1.1.4     ✓ forcats 0.5.1
## ✓ purrr   0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
ex5 <- read_csv("IO_ex5.csv", skip = 4)
## Rows: 133 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): ctry, code, %4yr, %overwt
## dbl (3): year, gdppc, eduyr
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(ex5)
## # A tibble: 6 × 7
##   ctry        code   year gdppc eduyr `%4yr` `%overwt`
##   <chr>       <chr> <dbl> <dbl> <dbl> <chr>  <chr>    
## 1 Afghanistan AFG    2010  1685   3.2 3.65%  16.7%    
## 2 Albania     ALB    2010  9272   9.3 0.93%  54.3%    
## 3 Algeria     DZA    2010 13092   7.1 6.66%  53.9%    
## 4 Argentina   ARG    2010 19068   9.8 2.87%  59.8%    
## 5 Armenia     ARM    2010  8079  11.1 15.03% 51.2%    
## 6 Australia   AUS    2010 45684  12.4 18.52% 63.9%
tail(ex5)
## # A tibble: 6 × 7
##   ctry      code   year gdppc eduyr `%4yr` `%overwt`
##   <chr>     <chr> <dbl> <dbl> <dbl> <chr>  <chr>    
## 1 Uruguay   URY    2010 16402   8.4 3.50%  61.2%    
## 2 Venezuela VEN    2010 17204   8.9 2.96%  59.3%    
## 3 Vietnam   VNM    2010  4555   7.5 3.27%  14.0%    
## 4 Yemen     YEM    2010  4811   2.6 1.50%  37.2%    
## 5 Zambia    ZMB    2010  3125   6.6 0.49%  20.7%    
## 6 Zimbabwe  ZWE    2010  1404   7.3 0.38%  29.4%
ex5 <- read_csv("IO_ex5.csv", skip = 4, col_types = cols(
  ctry = col_character(),
  code = col_character(),
  year = col_double(),
  gdppc = col_double(),
  eduyr = col_double(),
  `%4yr` = col_number(),
  `%overwt` = col_number()
))
# we are change the column type from character to number # 
head(ex5)
## # A tibble: 6 × 7
##   ctry        code   year gdppc eduyr `%4yr` `%overwt`
##   <chr>       <chr> <dbl> <dbl> <dbl>  <dbl>     <dbl>
## 1 Afghanistan AFG    2010  1685   3.2   3.65      16.7
## 2 Albania     ALB    2010  9272   9.3   0.93      54.3
## 3 Algeria     DZA    2010 13092   7.1   6.66      53.9
## 4 Argentina   ARG    2010 19068   9.8   2.87      59.8
## 5 Armenia     ARM    2010  8079  11.1  15.0       51.2
## 6 Australia   AUS    2010 45684  12.4  18.5       63.9
tail(ex5)
## # A tibble: 6 × 7
##   ctry      code   year gdppc eduyr `%4yr` `%overwt`
##   <chr>     <chr> <dbl> <dbl> <dbl>  <dbl>     <dbl>
## 1 Uruguay   URY    2010 16402   8.4   3.5       61.2
## 2 Venezuela VEN    2010 17204   8.9   2.96      59.3
## 3 Vietnam   VNM    2010  4555   7.5   3.27      14  
## 4 Yemen     YEM    2010  4811   2.6   1.5       37.2
## 5 Zambia    ZMB    2010  3125   6.6   0.49      20.7
## 6 Zimbabwe  ZWE    2010  1404   7.3   0.38      29.4
library(dplyr)
colnames(ex5)
## [1] "ctry"    "code"    "year"    "gdppc"   "eduyr"   "%4yr"    "%overwt"
names(ex5) [names(ex5)=="%4yr"] <- "pct_college"
#this is going to be a rename of the column name #
head(ex5)
## # A tibble: 6 × 7
##   ctry        code   year gdppc eduyr pct_college `%overwt`
##   <chr>       <chr> <dbl> <dbl> <dbl>       <dbl>     <dbl>
## 1 Afghanistan AFG    2010  1685   3.2        3.65      16.7
## 2 Albania     ALB    2010  9272   9.3        0.93      54.3
## 3 Algeria     DZA    2010 13092   7.1        6.66      53.9
## 4 Argentina   ARG    2010 19068   9.8        2.87      59.8
## 5 Armenia     ARM    2010  8079  11.1       15.0       51.2
## 6 Australia   AUS    2010 45684  12.4       18.5       63.9
tail(ex5)
## # A tibble: 6 × 7
##   ctry      code   year gdppc eduyr pct_college `%overwt`
##   <chr>     <chr> <dbl> <dbl> <dbl>       <dbl>     <dbl>
## 1 Uruguay   URY    2010 16402   8.4        3.5       61.2
## 2 Venezuela VEN    2010 17204   8.9        2.96      59.3
## 3 Vietnam   VNM    2010  4555   7.5        3.27      14  
## 4 Yemen     YEM    2010  4811   2.6        1.5       37.2
## 5 Zambia    ZMB    2010  3125   6.6        0.49      20.7
## 6 Zimbabwe  ZWE    2010  1404   7.3        0.38      29.4