NYC Flights Homework

Load the libraries and view the “flights” dataset

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.0.6     v dplyr   1.0.4
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.0
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'tibble' was built under R version 4.0.3
## Warning: package 'tidyr' was built under R version 4.0.2
## Warning: package 'readr' was built under R version 4.0.3
## Warning: package 'dplyr' was built under R version 4.0.3
## Warning: package 'forcats' was built under R version 4.0.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(nycflights13)
## Warning: package 'nycflights13' was built under R version 4.0.4
library(psych)
## Warning: package 'psych' was built under R version 4.0.4
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
view(flights)
describe(flights)
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
##                vars      n    mean      sd median trimmed     mad  min  max
## year              1 336776 2013.00    0.00   2013 2013.00    0.00 2013 2013
## month             2 336776    6.55    3.41      7    6.56    4.45    1   12
## day               3 336776   15.71    8.77     16   15.70   11.86    1   31
## dep_time          4 328521 1349.11  488.28   1401 1346.82  634.55    1 2400
## sched_dep_time    5 336776 1344.25  467.34   1359 1341.60  613.80  106 2359
## dep_delay         6 328521   12.64   40.21     -2    3.32    5.93  -43 1301
## arr_time          7 328063 1502.05  533.26   1535 1526.42  619.73    1 2400
## sched_arr_time    8 336776 1536.38  497.46   1556 1550.67  618.24    1 2359
## arr_delay         9 327346    6.90   44.63     -5   -1.03   20.76  -86 1272
## carrier*         10 336776    7.14    4.14      6    7.00    5.93    1   16
## flight           11 336776 1971.92 1632.47   1496 1830.51 1608.62    1 8500
## tailnum*         12 334264 1814.32 1199.75   1798 1778.21 1587.86    1 4043
## origin*          13 336776    1.95    0.82      2    1.94    1.48    1    3
## dest*            14 336776   50.03   28.12     50   49.56   32.62    1  105
## air_time         15 327346  150.69   93.69    129  140.03   75.61   20  695
## distance         16 336776 1039.91  733.23    872  955.27  569.32   17 4983
## hour             17 336776   13.18    4.66     13   13.15    5.93    1   23
## minute           18 336776   26.23   19.30     29   25.64   23.72    0   59
## time_hour        19 336776     NaN      NA     NA     NaN      NA  Inf -Inf
##                range  skew kurtosis   se
## year               0   NaN      NaN 0.00
## month             11 -0.01    -1.19 0.01
## day               30  0.01    -1.19 0.02
## dep_time        2399 -0.02    -1.09 0.85
## sched_dep_time  2253 -0.01    -1.20 0.81
## dep_delay       1344  4.80    43.95 0.07
## arr_time        2399 -0.47    -0.19 0.93
## sched_arr_time  2358 -0.35    -0.38 0.86
## arr_delay       1358  3.72    29.23 0.08
## carrier*          15  0.36    -1.21 0.01
## flight          8499  0.66    -0.85 2.81
## tailnum*        4042  0.17    -1.24 2.08
## origin*            2  0.09    -1.50 0.00
## dest*            104  0.13    -1.08 0.05
## air_time         675  1.07     0.86 0.16
## distance        4966  1.13     1.19 1.26
## hour              22  0.00    -1.21 0.01
## minute            59  0.09    -1.24 0.03
## time_hour       -Inf    NA       NA   NA
flights %>%
  filter( dep_delay>0, dep_delay<60) %>%
  ggplot( aes(x=dep_delay)) +
    geom_histogram( binwidth=5, fill="turquoise3", color="black") +
    ggtitle("Number Of Flights Delayed An Hour Or Less In 2013") +
    xlab("Departure delay in minutes") +
    ylab("Number of Flights") +
    facet_wrap(~ origin) +
  theme(plot.background = element_rect(fill = "#1C0A08"),
        axis.text = element_text(colour = "gray100", size = rel(1.2)),
        axis.title = element_text(colour = "gray100", size = rel(1.5)),
        plot.title = element_text(colour = "gray100", size = rel(1.5)),
        panel.background = element_rect(fill = "gray100", colour = "gray100"),
        panel.grid.major.x = element_blank(),
        panel.grid.minor.x = element_blank(),
        panel.grid.major.y = element_line(colour = "#1C0A08"),
        panel.grid.minor.y = element_line(colour = "#1C0A08"))

I took a look at which airports around New York had the biggest issue with delayed flights. Therefore, I created a facet wrap of a histogram to outline which airporst had the most delayed flights. This visualization has three histograms brokendown between each of the three New York airports; Newark, Kennedy, and LaGuardia. Making this into a facet wrap enables the viewer to get a side-bu-side view on these three airports to easily compare the figures.

As you can see clearly Newark airport had the most delays, while LaGuardia was the airport with the least amount of delays. All these airports are pretty similar delay times outside of a 5-10 minute delay. Now it is important to note the amount of total flights compared to the number of delays. The % of delays for each airport could be different than what is shown.