Importar banco

library(readxl)
library(lavaan)
## This is lavaan 0.6-9
## lavaan is FREE software! Please report any bugs.
library(semTools)
## 
## ###############################################################################
## This is semTools 0.5-5
## All users of R (or SEM) are invited to submit functions or ideas for functions.
## ###############################################################################
library(semPlot)
library(stringr)
set.seed(1234)
options(width = 132)
banco_geral <- read_excel("responses.xlsx")

Passo 1 - Repetir análises fatoriais confirmatórias por instrumento

Mindset

model<-'
FIXO =~ DMI1 + DMI2 + DMI4 + DMI6
CRESCIMENTO =~ DMI3 + DMI5 + DMI7 + DMI8

DMI1    ~~  DMI2
#DMI4   ~~  DMI6
'
fit<-cfa(model=model,data=banco_geral,ordered=T,estimator="ULSMV")
summary(fit,standardized=T,rsquare=T,fit.measures=T)
## lavaan 0.6-9 ended normally after 23 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        58
##                                                       
##   Number of observations                           327
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                13.776      67.330
##   Degrees of freedom                                18          18
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.216
##   Shift parameter                                            3.684
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2838.446    1767.510
##   Degrees of freedom                                28          28
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.622
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.972
##   Tucker-Lewis Index (TLI)                       1.002       0.956
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.092
##   90 Percent confidence interval - lower         0.000       0.069
##   90 Percent confidence interval - upper         0.036       0.116
##   P-value RMSEA <= 0.05                          0.991       0.002
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.034       0.034
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   FIXO =~                                                               
##     DMI1              1.000                               0.580    0.580
##     DMI2              1.170    0.079   14.885    0.000    0.679    0.679
##     DMI4              1.366    0.119   11.511    0.000    0.793    0.793
##     DMI6              1.461    0.131   11.178    0.000    0.848    0.848
##   CRESCIMENTO =~                                                        
##     DMI3              1.000                               0.837    0.837
##     DMI5              1.015    0.031   32.639    0.000    0.850    0.850
##     DMI7              1.016    0.034   30.121    0.000    0.850    0.850
##     DMI8              0.960    0.041   23.696    0.000    0.804    0.804
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .DMI1 ~~                                                               
##    .DMI2              0.296    0.043    6.903    0.000    0.296    0.496
##   FIXO ~~                                                               
##     CRESCIMENTO      -0.384    0.044   -8.801    0.000   -0.790   -0.790
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .DMI1              0.000                               0.000    0.000
##    .DMI2              0.000                               0.000    0.000
##    .DMI4              0.000                               0.000    0.000
##    .DMI6              0.000                               0.000    0.000
##    .DMI3              0.000                               0.000    0.000
##    .DMI5              0.000                               0.000    0.000
##    .DMI7              0.000                               0.000    0.000
##    .DMI8              0.000                               0.000    0.000
##     FIXO              0.000                               0.000    0.000
##     CRESCIMENTO       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     DMI1|t1           0.324    0.071    4.575    0.000    0.324    0.324
##     DMI1|t2           0.653    0.075    8.698    0.000    0.653    0.653
##     DMI1|t3           0.857    0.080   10.777    0.000    0.857    0.857
##     DMI1|t4           0.986    0.083   11.853    0.000    0.986    0.986
##     DMI1|t5           1.276    0.094   13.516    0.000    1.276    1.276
##     DMI1|t6           1.473    0.105   14.019    0.000    1.473    1.473
##     DMI2|t1           0.096    0.070    1.380    0.168    0.096    0.096
##     DMI2|t2           0.625    0.075    8.379    0.000    0.625    0.625
##     DMI2|t3           0.879    0.080   10.977    0.000    0.879    0.879
##     DMI2|t4           1.119    0.088   12.752    0.000    1.119    1.119
##     DMI2|t5           1.473    0.105   14.019    0.000    1.473    1.473
##     DMI2|t6           1.754    0.126   13.895    0.000    1.754    1.754
##     DMI4|t1           0.065    0.069    0.939    0.348    0.065    0.065
##     DMI4|t2           0.490    0.073    6.761    0.000    0.490    0.490
##     DMI4|t3           0.751    0.077    9.752    0.000    0.751    0.751
##     DMI4|t4           1.134    0.088   12.836    0.000    1.134    1.134
##     DMI4|t5           1.408    0.101   13.909    0.000    1.408    1.408
##     DMI4|t6           1.686    0.120   14.009    0.000    1.686    1.686
##     DMI6|t1           0.073    0.069    1.049    0.294    0.073    0.073
##     DMI6|t2           0.499    0.073    6.869    0.000    0.499    0.499
##     DMI6|t3           0.846    0.079   10.676    0.000    0.846    0.846
##     DMI6|t4           1.024    0.084   12.132    0.000    1.024    1.024
##     DMI6|t5           1.330    0.097   13.704    0.000    1.330    1.330
##     DMI6|t6           1.754    0.126   13.895    0.000    1.754    1.754
##     DMI3|t1          -1.872    0.138  -13.573    0.000   -1.872   -1.872
##     DMI3|t2          -1.598    0.113  -14.080    0.000   -1.598   -1.598
##     DMI3|t3          -1.330    0.097  -13.704    0.000   -1.330   -1.330
##     DMI3|t4          -1.050    0.085  -12.314    0.000   -1.050   -1.050
##     DMI3|t5          -0.663    0.075   -8.805    0.000   -0.663   -0.663
##     DMI3|t6          -0.220    0.070   -3.145    0.002   -0.220   -0.220
##     DMI5|t1          -1.754    0.126  -13.895    0.000   -1.754   -1.754
##     DMI5|t2          -1.626    0.116  -14.068    0.000   -1.626   -1.626
##     DMI5|t3          -1.349    0.098  -13.760    0.000   -1.349   -1.349
##     DMI5|t4          -0.974    0.083  -11.758    0.000   -0.974   -0.974
##     DMI5|t5          -0.644    0.075   -8.592    0.000   -0.644   -0.644
##     DMI5|t6          -0.158    0.070   -2.263    0.024   -0.158   -0.158
##     DMI7|t1          -2.026    0.156  -12.959    0.000   -2.026   -2.026
##     DMI7|t2          -1.719    0.123  -13.960    0.000   -1.719   -1.719
##     DMI7|t3          -1.368    0.099  -13.814    0.000   -1.368   -1.368
##     DMI7|t4          -1.091    0.087  -12.580    0.000   -1.091   -1.091
##     DMI7|t5          -0.663    0.075   -8.805    0.000   -0.663   -0.663
##     DMI7|t6          -0.197    0.070   -2.814    0.005   -0.197   -0.197
##     DMI8|t1          -2.089    0.165  -12.647    0.000   -2.089   -2.089
##     DMI8|t2          -1.872    0.138  -13.573    0.000   -1.872   -1.872
##     DMI8|t3          -1.520    0.108  -14.065    0.000   -1.520   -1.520
##     DMI8|t4          -1.134    0.088  -12.836    0.000   -1.134   -1.134
##     DMI8|t5          -0.606    0.074   -8.164    0.000   -0.606   -0.606
##     DMI8|t6          -0.027    0.069   -0.387    0.699   -0.027   -0.027
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .DMI1              0.663                               0.663    0.663
##    .DMI2              0.539                               0.539    0.539
##    .DMI4              0.371                               0.371    0.371
##    .DMI6              0.281                               0.281    0.281
##    .DMI3              0.299                               0.299    0.299
##    .DMI5              0.277                               0.277    0.277
##    .DMI7              0.277                               0.277    0.277
##    .DMI8              0.354                               0.354    0.354
##     FIXO              0.337    0.055    6.115    0.000    1.000    1.000
##     CRESCIMENTO       0.701    0.041   16.989    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     DMI1              1.000                               1.000    1.000
##     DMI2              1.000                               1.000    1.000
##     DMI4              1.000                               1.000    1.000
##     DMI6              1.000                               1.000    1.000
##     DMI3              1.000                               1.000    1.000
##     DMI5              1.000                               1.000    1.000
##     DMI7              1.000                               1.000    1.000
##     DMI8              1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     DMI1              0.337
##     DMI2              0.461
##     DMI4              0.629
##     DMI6              0.719
##     DMI3              0.701
##     DMI5              0.723
##     DMI7              0.723
##     DMI8              0.646
semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord" and the response by Zumbo & Kroc (2019). Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##                FIXO CRESCIMENTO
## alpha     0.7570879   0.8392356
## alpha.ord 0.8435195   0.9021933
## omega     0.7117085   0.8642375
## omega2    0.7117085   0.8642375
## omega3    0.7102847   0.8637027
## avevar    0.5363352   0.6983619
semTools::discriminantValidity(fit)
## Some of the latent variable variances are estimated instead of fixed to 1. The model is re-estimated by scaling the latent variables by fixing their variances and freeing all factor loadings.
##    lhs op         rhs        est   ci.lower   ci.upper Df AIC BIC    Chisq Chisq diff Df diff  Pr(>Chisq)
## 1 FIXO ~~ CRESCIMENTO -0.7896155 -0.8586785 -0.7205526 19  NA  NA 24.46295   10.17262       1 0.001425414

Flexibilidade Psicológica

model<-'
FPT=~FPT1 + FPT2 + FPT3 + FPT4 + FPT5 + FPT6 + FPT7'
fit<-cfa(model=model,data=banco_geral,estimator="ULSMV",ordered=T)
summary(fit,standardized=T,fit=T,rsquare=T)
## lavaan 0.6-9 ended normally after 14 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        49
##                                                       
##   Number of observations                           327
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                13.908      42.303
##   Degrees of freedom                                14          14
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.345
##   Shift parameter                                            1.996
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1404.410    1532.333
##   Degrees of freedom                                21          21
##   P-value                                           NA       0.000
##   Scaling correction factor                                  0.921
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.981
##   Tucker-Lewis Index (TLI)                       1.000       0.972
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.079
##   90 Percent confidence interval - lower         0.000       0.052
##   90 Percent confidence interval - upper         0.053       0.107
##   P-value RMSEA <= 0.05                          0.930       0.038
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.039       0.039
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   FPT =~                                                                
##     FPT1              1.000                               0.752    0.752
##     FPT2              0.556    0.065    8.609    0.000    0.418    0.418
##     FPT3              0.968    0.049   19.817    0.000    0.728    0.728
##     FPT4              0.903    0.047   19.153    0.000    0.678    0.678
##     FPT5              1.068    0.045   23.773    0.000    0.802    0.802
##     FPT6              0.839    0.054   15.659    0.000    0.630    0.630
##     FPT7              0.851    0.053   16.068    0.000    0.640    0.640
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .FPT1              0.000                               0.000    0.000
##    .FPT2              0.000                               0.000    0.000
##    .FPT3              0.000                               0.000    0.000
##    .FPT4              0.000                               0.000    0.000
##    .FPT5              0.000                               0.000    0.000
##    .FPT6              0.000                               0.000    0.000
##    .FPT7              0.000                               0.000    0.000
##     FPT               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     FPT1|t1          -2.026    0.156  -12.959    0.000   -2.026   -2.026
##     FPT1|t2          -1.545    0.110  -14.078    0.000   -1.545   -1.545
##     FPT1|t3          -1.294    0.095  -13.582    0.000   -1.294   -1.294
##     FPT1|t4          -0.846    0.079  -10.676    0.000   -0.846   -0.846
##     FPT1|t5          -0.212    0.070   -3.035    0.002   -0.212   -0.212
##     FPT1|t6           0.543    0.073    7.411    0.000    0.543    0.543
##     FPT2|t1          -2.741    0.329   -8.345    0.000   -2.741   -2.741
##     FPT2|t2          -2.359    0.214  -11.040    0.000   -2.359   -2.359
##     FPT2|t3          -2.089    0.165  -12.647    0.000   -2.089   -2.089
##     FPT2|t4          -1.496    0.107  -14.045    0.000   -1.496   -1.496
##     FPT2|t5          -0.782    0.078  -10.063    0.000   -0.782   -0.782
##     FPT2|t6          -0.065    0.069   -0.939    0.348   -0.065   -0.065
##     FPT3|t1          -2.089    0.165  -12.647    0.000   -2.089   -2.089
##     FPT3|t2          -1.655    0.118  -14.044    0.000   -1.655   -1.655
##     FPT3|t3          -1.077    0.086  -12.493    0.000   -1.077   -1.077
##     FPT3|t4          -0.606    0.074   -8.164    0.000   -0.606   -0.606
##     FPT3|t5           0.324    0.071    4.575    0.000    0.324    0.324
##     FPT3|t6           1.011    0.084   12.040    0.000    1.011    1.011
##     FPT4|t1          -1.473    0.105  -14.019    0.000   -1.473   -1.473
##     FPT4|t2          -1.037    0.085  -12.224    0.000   -1.037   -1.037
##     FPT4|t3          -0.499    0.073   -6.869    0.000   -0.499   -0.499
##     FPT4|t4           0.111    0.070    1.601    0.109    0.111    0.111
##     FPT4|t5           0.663    0.075    8.805    0.000    0.663    0.663
##     FPT4|t6           1.368    0.099   13.814    0.000    1.368    1.368
##     FPT5|t1          -1.969    0.149  -13.209    0.000   -1.969   -1.969
##     FPT5|t2          -1.545    0.110  -14.078    0.000   -1.545   -1.545
##     FPT5|t3          -0.925    0.081  -11.372    0.000   -0.925   -0.925
##     FPT5|t4          -0.422    0.072   -5.889    0.000   -0.422   -0.422
##     FPT5|t5           0.348    0.071    4.904    0.000    0.348    0.348
##     FPT5|t6           1.024    0.084   12.132    0.000    1.024    1.024
##     FPT6|t1          -1.242    0.093  -13.379    0.000   -1.242   -1.242
##     FPT6|t2          -1.037    0.085  -12.224    0.000   -1.037   -1.037
##     FPT6|t3          -0.543    0.073   -7.411    0.000   -0.543   -0.543
##     FPT6|t4          -0.150    0.070   -2.153    0.031   -0.150   -0.150
##     FPT6|t5           0.340    0.071    4.794    0.000    0.340    0.340
##     FPT6|t6           0.891    0.080   11.077    0.000    0.891    0.891
##     FPT7|t1          -1.210    0.091  -13.232    0.000   -1.210   -1.210
##     FPT7|t2          -0.803    0.078  -10.269    0.000   -0.803   -0.803
##     FPT7|t3          -0.268    0.070   -3.805    0.000   -0.268   -0.268
##     FPT7|t4           0.212    0.070    3.035    0.002    0.212    0.212
##     FPT7|t5           0.741    0.077    9.647    0.000    0.741    0.741
##     FPT7|t6           1.312    0.096   13.644    0.000    1.312    1.312
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .FPT1              0.435                               0.435    0.435
##    .FPT2              0.825                               0.825    0.825
##    .FPT3              0.471                               0.471    0.471
##    .FPT4              0.540                               0.540    0.540
##    .FPT5              0.356                               0.356    0.356
##    .FPT6              0.602                               0.602    0.602
##    .FPT7              0.591                               0.591    0.591
##     FPT               0.565    0.043   13.170    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     FPT1              1.000                               1.000    1.000
##     FPT2              1.000                               1.000    1.000
##     FPT3              1.000                               1.000    1.000
##     FPT4              1.000                               1.000    1.000
##     FPT5              1.000                               1.000    1.000
##     FPT6              1.000                               1.000    1.000
##     FPT7              1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     FPT1              0.565
##     FPT2              0.175
##     FPT3              0.529
##     FPT4              0.460
##     FPT5              0.644
##     FPT6              0.398
##     FPT7              0.409
semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord" and the response by Zumbo & Kroc (2019). Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##                 FPT
## alpha     0.8184692
## alpha.ord 0.8453989
## omega     0.8324085
## omega2    0.8324085
## omega3    0.8312708
## avevar    0.4542928

Metas de Aproximação

modelo<-
'
MAP =~ MRT7 + MRT8 + MRT9 + MRT10
DAP =~ MRT11 + MRT12 + MRT13 + MRT14
'
fit<-cfa(model=modelo,data=banco_geral,estimator="ULSMV",ordered=T,orthogonal=T)
summary(fit,standardized=T,fit=T,rsquare=T)
## lavaan 0.6-9 ended normally after 16 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        56
##                                                       
##   Number of observations                           327
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                67.484      48.326
##   Degrees of freedom                                20          20
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  1.749
##   Shift parameter                                            9.734
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1603.098    1057.251
##   Degrees of freedom                                28          28
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.536
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.970       0.972
##   Tucker-Lewis Index (TLI)                       0.958       0.961
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.085       0.066
##   90 Percent confidence interval - lower         0.063       0.042
##   90 Percent confidence interval - upper         0.108       0.090
##   P-value RMSEA <= 0.05                          0.005       0.124
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.076       0.076
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP =~                                                                
##     MRT7              1.000                               0.809    0.809
##     MRT8              0.728    0.046   15.816    0.000    0.589    0.589
##     MRT9              0.977    0.045   21.648    0.000    0.790    0.790
##     MRT10             1.047    0.049   21.323    0.000    0.847    0.847
##   DAP =~                                                                
##     MRT11             1.000                               0.735    0.735
##     MRT12             1.270    0.051   24.959    0.000    0.934    0.934
##     MRT13             1.189    0.045   26.161    0.000    0.874    0.874
##     MRT14             0.986    0.044   22.192    0.000    0.725    0.725
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP ~~                                                                
##     DAP               0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.000                               0.000    0.000
##    .MRT8              0.000                               0.000    0.000
##    .MRT9              0.000                               0.000    0.000
##    .MRT10             0.000                               0.000    0.000
##    .MRT11             0.000                               0.000    0.000
##    .MRT12             0.000                               0.000    0.000
##    .MRT13             0.000                               0.000    0.000
##    .MRT14             0.000                               0.000    0.000
##     MAP               0.000                               0.000    0.000
##     DAP               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     MRT7|t1          -2.505    0.250  -10.034    0.000   -2.505   -2.505
##     MRT7|t2          -2.162    0.177  -12.251    0.000   -2.162   -2.162
##     MRT7|t3          -1.719    0.123  -13.960    0.000   -1.719   -1.719
##     MRT7|t4          -1.276    0.094  -13.516    0.000   -1.276   -1.276
##     MRT7|t5          -0.701    0.076   -9.228    0.000   -0.701   -0.701
##     MRT7|t6          -0.104    0.070   -1.491    0.136   -0.104   -0.104
##     MRT8|t1          -1.686    0.120  -14.009    0.000   -1.686   -1.686
##     MRT8|t2          -1.626    0.116  -14.068    0.000   -1.626   -1.626
##     MRT8|t3          -1.276    0.094  -13.516    0.000   -1.276   -1.276
##     MRT8|t4          -0.653    0.075   -8.698    0.000   -0.653   -0.653
##     MRT8|t5           0.035    0.069    0.497    0.619    0.035    0.035
##     MRT8|t6           0.663    0.075    8.805    0.000    0.663    0.663
##     MRT9|t1          -2.505    0.250  -10.034    0.000   -2.505   -2.505
##     MRT9|t2          -2.250    0.192  -11.736    0.000   -2.250   -2.250
##     MRT9|t3          -1.754    0.126  -13.895    0.000   -1.754   -1.754
##     MRT9|t4          -1.226    0.092  -13.306    0.000   -1.226   -1.226
##     MRT9|t5          -0.597    0.074   -8.057    0.000   -0.597   -0.597
##     MRT9|t6          -0.073    0.069   -1.049    0.294   -0.073   -0.073
##     MRT10|t1         -2.250    0.192  -11.736    0.000   -2.250   -2.250
##     MRT10|t2         -1.919    0.143  -13.410    0.000   -1.919   -1.919
##     MRT10|t3         -1.598    0.113  -14.080    0.000   -1.598   -1.598
##     MRT10|t4         -1.050    0.085  -12.314    0.000   -1.050   -1.050
##     MRT10|t5         -0.389    0.071   -5.452    0.000   -0.389   -0.389
##     MRT10|t6          0.181    0.070    2.594    0.009    0.181    0.181
##     MRT11|t1         -0.615    0.074   -8.272    0.000   -0.615   -0.615
##     MRT11|t2         -0.356    0.071   -5.014    0.000   -0.356   -0.356
##     MRT11|t3         -0.158    0.070   -2.263    0.024   -0.158   -0.158
##     MRT11|t4          0.348    0.071    4.904    0.000    0.348    0.348
##     MRT11|t5          0.731    0.077    9.543    0.000    0.731    0.731
##     MRT11|t6          1.105    0.087   12.667    0.000    1.105    1.105
##     MRT12|t1         -0.741    0.077   -9.647    0.000   -0.741   -0.741
##     MRT12|t2         -0.482    0.072   -6.652    0.000   -0.482   -0.482
##     MRT12|t3         -0.228    0.070   -3.255    0.001   -0.228   -0.228
##     MRT12|t4          0.348    0.071    4.904    0.000    0.348    0.348
##     MRT12|t5          0.751    0.077    9.752    0.000    0.751    0.751
##     MRT12|t6          1.077    0.086   12.493    0.000    1.077    1.077
##     MRT13|t1         -0.490    0.073   -6.761    0.000   -0.490   -0.490
##     MRT13|t2         -0.260    0.070   -3.695    0.000   -0.260   -0.260
##     MRT13|t3          0.050    0.069    0.718    0.473    0.050    0.050
##     MRT13|t4          0.588    0.074    7.950    0.000    0.588    0.588
##     MRT13|t5          0.925    0.081   11.372    0.000    0.925    0.925
##     MRT13|t6          1.179    0.090   13.078    0.000    1.179    1.179
##     MRT14|t1         -1.194    0.091  -13.156    0.000   -1.194   -1.194
##     MRT14|t2         -0.792    0.078  -10.166    0.000   -0.792   -0.792
##     MRT14|t3         -0.543    0.073   -7.411    0.000   -0.543   -0.543
##     MRT14|t4         -0.081    0.069   -1.159    0.246   -0.081   -0.081
##     MRT14|t5          0.332    0.071    4.685    0.000    0.332    0.332
##     MRT14|t6          0.634    0.075    8.485    0.000    0.634    0.634
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.346                               0.346    0.346
##    .MRT8              0.653                               0.653    0.653
##    .MRT9              0.376                               0.376    0.376
##    .MRT10             0.283                               0.283    0.283
##    .MRT11             0.460                               0.460    0.460
##    .MRT12             0.129                               0.129    0.129
##    .MRT13             0.236                               0.236    0.236
##    .MRT14             0.474                               0.474    0.474
##     MAP               0.654    0.044   14.901    0.000    1.000    1.000
##     DAP               0.540    0.040   13.591    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     MRT7              1.000                               1.000    1.000
##     MRT8              1.000                               1.000    1.000
##     MRT9              1.000                               1.000    1.000
##     MRT10             1.000                               1.000    1.000
##     MRT11             1.000                               1.000    1.000
##     MRT12             1.000                               1.000    1.000
##     MRT13             1.000                               1.000    1.000
##     MRT14             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     MRT7              0.654
##     MRT8              0.347
##     MRT9              0.624
##     MRT10             0.717
##     MRT11             0.540
##     MRT12             0.871
##     MRT13             0.764
##     MRT14             0.526
semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord" and the response by Zumbo & Kroc (2019). Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##                 MAP       DAP
## alpha     0.7581073 0.8504509
## alpha.ord 0.8425892 0.8879304
## omega     0.7981565 0.8685976
## omega2    0.7981565 0.8685976
## omega3    0.7982473 0.8687667
## avevar    0.5856229 0.6753288
semTools::discriminantValidity(fit)
## Some of the latent variable variances are estimated instead of fixed to 1. The model is re-estimated by scaling the latent variables by fixing their variances and freeing all factor loadings.
## Warning in lavaan::lavTestLRT(object, constrained): lavaan WARNING: some models have the same degrees of freedom
##   lhs op rhs est ci.lower ci.upper Df AIC BIC    Chisq Chisq diff Df diff Pr(>Chisq)
## 1 MAP ~~ DAP   0        0        0 20  NA  NA 560.5338   493.0501       0         NA

Metas de Aproximação Correlated

modelo<-
'
MAP =~ MRT7 + MRT8 + MRT9 + MRT10
DAP =~ MRT11 + MRT12 + MRT13 + MRT14
'
fit<-cfa(model=modelo,data=banco_geral,estimator="ULSMV",ordered=T,orthogonal=F)
summary(fit,standardized=T,fit=T,rsquare=T)
## lavaan 0.6-9 ended normally after 19 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        57
##                                                       
##   Number of observations                           327
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                29.381      42.084
##   Degrees of freedom                                19          19
##   P-value (Unknown)                                 NA       0.002
##   Scaling correction factor                                  0.806
##   Shift parameter                                            5.635
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1603.098    1057.251
##   Degrees of freedom                                28          28
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.536
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.993       0.978
##   Tucker-Lewis Index (TLI)                       0.990       0.967
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.041       0.061
##   90 Percent confidence interval - lower         0.000       0.036
##   90 Percent confidence interval - upper         0.069       0.086
##   P-value RMSEA <= 0.05                          0.672       0.212
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.050       0.050
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP =~                                                                
##     MRT7              1.000                               0.791    0.791
##     MRT8              0.779    0.050   15.537    0.000    0.616    0.616
##     MRT9              0.976    0.054   17.980    0.000    0.773    0.773
##     MRT10             1.083    0.058   18.776    0.000    0.857    0.857
##   DAP =~                                                                
##     MRT11             1.000                               0.740    0.740
##     MRT12             1.258    0.051   24.769    0.000    0.931    0.931
##     MRT13             1.169    0.046   25.306    0.000    0.864    0.864
##     MRT14             0.991    0.046   21.436    0.000    0.733    0.733
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP ~~                                                                
##     DAP               0.080    0.034    2.333    0.020    0.137    0.137
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.000                               0.000    0.000
##    .MRT8              0.000                               0.000    0.000
##    .MRT9              0.000                               0.000    0.000
##    .MRT10             0.000                               0.000    0.000
##    .MRT11             0.000                               0.000    0.000
##    .MRT12             0.000                               0.000    0.000
##    .MRT13             0.000                               0.000    0.000
##    .MRT14             0.000                               0.000    0.000
##     MAP               0.000                               0.000    0.000
##     DAP               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     MRT7|t1          -2.505    0.250  -10.034    0.000   -2.505   -2.505
##     MRT7|t2          -2.162    0.177  -12.251    0.000   -2.162   -2.162
##     MRT7|t3          -1.719    0.123  -13.960    0.000   -1.719   -1.719
##     MRT7|t4          -1.276    0.094  -13.516    0.000   -1.276   -1.276
##     MRT7|t5          -0.701    0.076   -9.228    0.000   -0.701   -0.701
##     MRT7|t6          -0.104    0.070   -1.491    0.136   -0.104   -0.104
##     MRT8|t1          -1.686    0.120  -14.009    0.000   -1.686   -1.686
##     MRT8|t2          -1.626    0.116  -14.068    0.000   -1.626   -1.626
##     MRT8|t3          -1.276    0.094  -13.516    0.000   -1.276   -1.276
##     MRT8|t4          -0.653    0.075   -8.698    0.000   -0.653   -0.653
##     MRT8|t5           0.035    0.069    0.497    0.619    0.035    0.035
##     MRT8|t6           0.663    0.075    8.805    0.000    0.663    0.663
##     MRT9|t1          -2.505    0.250  -10.034    0.000   -2.505   -2.505
##     MRT9|t2          -2.250    0.192  -11.736    0.000   -2.250   -2.250
##     MRT9|t3          -1.754    0.126  -13.895    0.000   -1.754   -1.754
##     MRT9|t4          -1.226    0.092  -13.306    0.000   -1.226   -1.226
##     MRT9|t5          -0.597    0.074   -8.057    0.000   -0.597   -0.597
##     MRT9|t6          -0.073    0.069   -1.049    0.294   -0.073   -0.073
##     MRT10|t1         -2.250    0.192  -11.736    0.000   -2.250   -2.250
##     MRT10|t2         -1.919    0.143  -13.410    0.000   -1.919   -1.919
##     MRT10|t3         -1.598    0.113  -14.080    0.000   -1.598   -1.598
##     MRT10|t4         -1.050    0.085  -12.314    0.000   -1.050   -1.050
##     MRT10|t5         -0.389    0.071   -5.452    0.000   -0.389   -0.389
##     MRT10|t6          0.181    0.070    2.594    0.009    0.181    0.181
##     MRT11|t1         -0.615    0.074   -8.272    0.000   -0.615   -0.615
##     MRT11|t2         -0.356    0.071   -5.014    0.000   -0.356   -0.356
##     MRT11|t3         -0.158    0.070   -2.263    0.024   -0.158   -0.158
##     MRT11|t4          0.348    0.071    4.904    0.000    0.348    0.348
##     MRT11|t5          0.731    0.077    9.543    0.000    0.731    0.731
##     MRT11|t6          1.105    0.087   12.667    0.000    1.105    1.105
##     MRT12|t1         -0.741    0.077   -9.647    0.000   -0.741   -0.741
##     MRT12|t2         -0.482    0.072   -6.652    0.000   -0.482   -0.482
##     MRT12|t3         -0.228    0.070   -3.255    0.001   -0.228   -0.228
##     MRT12|t4          0.348    0.071    4.904    0.000    0.348    0.348
##     MRT12|t5          0.751    0.077    9.752    0.000    0.751    0.751
##     MRT12|t6          1.077    0.086   12.493    0.000    1.077    1.077
##     MRT13|t1         -0.490    0.073   -6.761    0.000   -0.490   -0.490
##     MRT13|t2         -0.260    0.070   -3.695    0.000   -0.260   -0.260
##     MRT13|t3          0.050    0.069    0.718    0.473    0.050    0.050
##     MRT13|t4          0.588    0.074    7.950    0.000    0.588    0.588
##     MRT13|t5          0.925    0.081   11.372    0.000    0.925    0.925
##     MRT13|t6          1.179    0.090   13.078    0.000    1.179    1.179
##     MRT14|t1         -1.194    0.091  -13.156    0.000   -1.194   -1.194
##     MRT14|t2         -0.792    0.078  -10.166    0.000   -0.792   -0.792
##     MRT14|t3         -0.543    0.073   -7.411    0.000   -0.543   -0.543
##     MRT14|t4         -0.081    0.069   -1.159    0.246   -0.081   -0.081
##     MRT14|t5          0.332    0.071    4.685    0.000    0.332    0.332
##     MRT14|t6          0.634    0.075    8.485    0.000    0.634    0.634
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.374                               0.374    0.374
##    .MRT8              0.620                               0.620    0.620
##    .MRT9              0.403                               0.403    0.403
##    .MRT10             0.266                               0.266    0.266
##    .MRT11             0.453                               0.453    0.453
##    .MRT12             0.133                               0.133    0.133
##    .MRT13             0.253                               0.253    0.253
##    .MRT14             0.462                               0.462    0.462
##     MAP               0.626    0.048   12.997    0.000    1.000    1.000
##     DAP               0.547    0.040   13.672    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     MRT7              1.000                               1.000    1.000
##     MRT8              1.000                               1.000    1.000
##     MRT9              1.000                               1.000    1.000
##     MRT10             1.000                               1.000    1.000
##     MRT11             1.000                               1.000    1.000
##     MRT12             1.000                               1.000    1.000
##     MRT13             1.000                               1.000    1.000
##     MRT14             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     MRT7              0.626
##     MRT8              0.380
##     MRT9              0.597
##     MRT10             0.734
##     MRT11             0.547
##     MRT12             0.867
##     MRT13             0.747
##     MRT14             0.538
semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord" and the response by Zumbo & Kroc (2019). Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##                 MAP       DAP
## alpha     0.7581073 0.8504509
## alpha.ord 0.8425892 0.8879304
## omega     0.8000553 0.8683032
## omega2    0.8000553 0.8683032
## omega3    0.8029488 0.8689059
## avevar    0.5843403 0.6746781
semTools::discriminantValidity(fit)
## Some of the latent variable variances are estimated instead of fixed to 1. The model is re-estimated by scaling the latent variables by fixing their variances and freeing all factor loadings.
##   lhs op rhs       est   ci.lower  ci.upper Df AIC BIC    Chisq Chisq diff Df diff   Pr(>Chisq)
## 1 MAP ~~ DAP 0.1374306 0.02541487 0.2494464 20  NA  NA 560.5338    205.496       1 1.319964e-46

Modelagem por tipo de Mindset

modelo<-
'
MAP =~ MRT7 + MRT8 + MRT9 + MRT10
DAP =~ MRT11 + MRT12 + MRT13 + MRT14

FIXO =~ DMI1 + DMI2 + DMI4 + DMI6
CRESCIMENTO =~ DMI3 + DMI5 + DMI7 + DMI8

FPT=~FPT1 + FPT2 + FPT3 + FPT4 + FPT5 + FPT6 + FPT7

DMI1    ~~  DMI2

MAP~~0*DAP
'
fit<-cfa(model=modelo,data=banco_geral,estimator="WLSMV",ordered=T)
summary(fit,standardized=T,fit=T,rsquare=T)
## lavaan 0.6-9 ended normally after 56 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       171
##                                                       
##   Number of observations                           327
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               396.435     427.305
##   Degrees of freedom                               220         220
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.219
##   Shift parameter                                          102.063
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             16523.497    7030.461
##   Degrees of freedom                               253         253
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.401
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.989       0.969
##   Tucker-Lewis Index (TLI)                       0.988       0.965
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.050       0.054
##   90 Percent confidence interval - lower         0.042       0.046
##   90 Percent confidence interval - upper         0.057       0.061
##   P-value RMSEA <= 0.05                          0.523       0.203
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.067       0.067
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP =~                                                                
##     MRT7              1.000                               0.809    0.809
##     MRT8              0.743    0.052   14.368    0.000    0.601    0.601
##     MRT9              0.996    0.041   24.296    0.000    0.806    0.806
##     MRT10             1.027    0.050   20.684    0.000    0.831    0.831
##   DAP =~                                                                
##     MRT11             1.000                               0.744    0.744
##     MRT12             1.250    0.046   27.226    0.000    0.929    0.929
##     MRT13             1.165    0.039   30.029    0.000    0.866    0.866
##     MRT14             0.986    0.043   22.841    0.000    0.733    0.733
##   FIXO =~                                                               
##     DMI1              1.000                               0.573    0.573
##     DMI2              1.174    0.081   14.539    0.000    0.673    0.673
##     DMI4              1.374    0.120   11.496    0.000    0.787    0.787
##     DMI6              1.490    0.131   11.385    0.000    0.854    0.854
##   CRESCIMENTO =~                                                        
##     DMI3              1.000                               0.835    0.835
##     DMI5              0.990    0.033   29.559    0.000    0.826    0.826
##     DMI7              1.042    0.033   31.537    0.000    0.870    0.870
##     DMI8              0.980    0.034   28.687    0.000    0.818    0.818
##   FPT =~                                                                
##     FPT1              1.000                               0.768    0.768
##     FPT2              0.616    0.065    9.456    0.000    0.473    0.473
##     FPT3              0.950    0.046   20.583    0.000    0.729    0.729
##     FPT4              0.894    0.047   19.126    0.000    0.687    0.687
##     FPT5              1.025    0.042   24.629    0.000    0.787    0.787
##     FPT6              0.786    0.054   14.545    0.000    0.603    0.603
##     FPT7              0.854    0.049   17.445    0.000    0.655    0.655
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .DMI1 ~~                                                               
##    .DMI2              0.305    0.043    7.177    0.000    0.305    0.503
##   MAP ~~                                                                
##     DAP               0.000                               0.000    0.000
##     FIXO             -0.168    0.030   -5.678    0.000   -0.362   -0.362
##     CRESCIMENTO       0.300    0.038    7.919    0.000    0.444    0.444
##     FPT               0.258    0.034    7.560    0.000    0.416    0.416
##   DAP ~~                                                                
##     FIXO              0.042    0.026    1.624    0.104    0.099    0.099
##     CRESCIMENTO       0.051    0.037    1.367    0.172    0.082    0.082
##     FPT               0.049    0.033    1.498    0.134    0.086    0.086
##   FIXO ~~                                                               
##     CRESCIMENTO      -0.383    0.042   -9.054    0.000   -0.802   -0.802
##     FPT              -0.013    0.027   -0.463    0.644   -0.029   -0.029
##   CRESCIMENTO ~~                                                        
##     FPT               0.152    0.037    4.109    0.000    0.236    0.236
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.000                               0.000    0.000
##    .MRT8              0.000                               0.000    0.000
##    .MRT9              0.000                               0.000    0.000
##    .MRT10             0.000                               0.000    0.000
##    .MRT11             0.000                               0.000    0.000
##    .MRT12             0.000                               0.000    0.000
##    .MRT13             0.000                               0.000    0.000
##    .MRT14             0.000                               0.000    0.000
##    .DMI1              0.000                               0.000    0.000
##    .DMI2              0.000                               0.000    0.000
##    .DMI4              0.000                               0.000    0.000
##    .DMI6              0.000                               0.000    0.000
##    .DMI3              0.000                               0.000    0.000
##    .DMI5              0.000                               0.000    0.000
##    .DMI7              0.000                               0.000    0.000
##    .DMI8              0.000                               0.000    0.000
##    .FPT1              0.000                               0.000    0.000
##    .FPT2              0.000                               0.000    0.000
##    .FPT3              0.000                               0.000    0.000
##    .FPT4              0.000                               0.000    0.000
##    .FPT5              0.000                               0.000    0.000
##    .FPT6              0.000                               0.000    0.000
##    .FPT7              0.000                               0.000    0.000
##     MAP               0.000                               0.000    0.000
##     DAP               0.000                               0.000    0.000
##     FIXO              0.000                               0.000    0.000
##     CRESCIMENTO       0.000                               0.000    0.000
##     FPT               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     MRT7|t1          -2.505    0.250  -10.034    0.000   -2.505   -2.505
##     MRT7|t2          -2.162    0.177  -12.251    0.000   -2.162   -2.162
##     MRT7|t3          -1.719    0.123  -13.960    0.000   -1.719   -1.719
##     MRT7|t4          -1.276    0.094  -13.516    0.000   -1.276   -1.276
##     MRT7|t5          -0.701    0.076   -9.228    0.000   -0.701   -0.701
##     MRT7|t6          -0.104    0.070   -1.491    0.136   -0.104   -0.104
##     MRT8|t1          -1.686    0.120  -14.009    0.000   -1.686   -1.686
##     MRT8|t2          -1.626    0.116  -14.068    0.000   -1.626   -1.626
##     MRT8|t3          -1.276    0.094  -13.516    0.000   -1.276   -1.276
##     MRT8|t4          -0.653    0.075   -8.698    0.000   -0.653   -0.653
##     MRT8|t5           0.035    0.069    0.497    0.619    0.035    0.035
##     MRT8|t6           0.663    0.075    8.805    0.000    0.663    0.663
##     MRT9|t1          -2.505    0.250  -10.034    0.000   -2.505   -2.505
##     MRT9|t2          -2.250    0.192  -11.736    0.000   -2.250   -2.250
##     MRT9|t3          -1.754    0.126  -13.895    0.000   -1.754   -1.754
##     MRT9|t4          -1.226    0.092  -13.306    0.000   -1.226   -1.226
##     MRT9|t5          -0.597    0.074   -8.057    0.000   -0.597   -0.597
##     MRT9|t6          -0.073    0.069   -1.049    0.294   -0.073   -0.073
##     MRT10|t1         -2.250    0.192  -11.736    0.000   -2.250   -2.250
##     MRT10|t2         -1.919    0.143  -13.410    0.000   -1.919   -1.919
##     MRT10|t3         -1.598    0.113  -14.080    0.000   -1.598   -1.598
##     MRT10|t4         -1.050    0.085  -12.314    0.000   -1.050   -1.050
##     MRT10|t5         -0.389    0.071   -5.452    0.000   -0.389   -0.389
##     MRT10|t6          0.181    0.070    2.594    0.009    0.181    0.181
##     MRT11|t1         -0.615    0.074   -8.272    0.000   -0.615   -0.615
##     MRT11|t2         -0.356    0.071   -5.014    0.000   -0.356   -0.356
##     MRT11|t3         -0.158    0.070   -2.263    0.024   -0.158   -0.158
##     MRT11|t4          0.348    0.071    4.904    0.000    0.348    0.348
##     MRT11|t5          0.731    0.077    9.543    0.000    0.731    0.731
##     MRT11|t6          1.105    0.087   12.667    0.000    1.105    1.105
##     MRT12|t1         -0.741    0.077   -9.647    0.000   -0.741   -0.741
##     MRT12|t2         -0.482    0.072   -6.652    0.000   -0.482   -0.482
##     MRT12|t3         -0.228    0.070   -3.255    0.001   -0.228   -0.228
##     MRT12|t4          0.348    0.071    4.904    0.000    0.348    0.348
##     MRT12|t5          0.751    0.077    9.752    0.000    0.751    0.751
##     MRT12|t6          1.077    0.086   12.493    0.000    1.077    1.077
##     MRT13|t1         -0.490    0.073   -6.761    0.000   -0.490   -0.490
##     MRT13|t2         -0.260    0.070   -3.695    0.000   -0.260   -0.260
##     MRT13|t3          0.050    0.069    0.718    0.473    0.050    0.050
##     MRT13|t4          0.588    0.074    7.950    0.000    0.588    0.588
##     MRT13|t5          0.925    0.081   11.372    0.000    0.925    0.925
##     MRT13|t6          1.179    0.090   13.078    0.000    1.179    1.179
##     MRT14|t1         -1.194    0.091  -13.156    0.000   -1.194   -1.194
##     MRT14|t2         -0.792    0.078  -10.166    0.000   -0.792   -0.792
##     MRT14|t3         -0.543    0.073   -7.411    0.000   -0.543   -0.543
##     MRT14|t4         -0.081    0.069   -1.159    0.246   -0.081   -0.081
##     MRT14|t5          0.332    0.071    4.685    0.000    0.332    0.332
##     MRT14|t6          0.634    0.075    8.485    0.000    0.634    0.634
##     DMI1|t1           0.324    0.071    4.575    0.000    0.324    0.324
##     DMI1|t2           0.653    0.075    8.698    0.000    0.653    0.653
##     DMI1|t3           0.857    0.080   10.777    0.000    0.857    0.857
##     DMI1|t4           0.986    0.083   11.853    0.000    0.986    0.986
##     DMI1|t5           1.276    0.094   13.516    0.000    1.276    1.276
##     DMI1|t6           1.473    0.105   14.019    0.000    1.473    1.473
##     DMI2|t1           0.096    0.070    1.380    0.168    0.096    0.096
##     DMI2|t2           0.625    0.075    8.379    0.000    0.625    0.625
##     DMI2|t3           0.879    0.080   10.977    0.000    0.879    0.879
##     DMI2|t4           1.119    0.088   12.752    0.000    1.119    1.119
##     DMI2|t5           1.473    0.105   14.019    0.000    1.473    1.473
##     DMI2|t6           1.754    0.126   13.895    0.000    1.754    1.754
##     DMI4|t1           0.065    0.069    0.939    0.348    0.065    0.065
##     DMI4|t2           0.490    0.073    6.761    0.000    0.490    0.490
##     DMI4|t3           0.751    0.077    9.752    0.000    0.751    0.751
##     DMI4|t4           1.134    0.088   12.836    0.000    1.134    1.134
##     DMI4|t5           1.408    0.101   13.909    0.000    1.408    1.408
##     DMI4|t6           1.686    0.120   14.009    0.000    1.686    1.686
##     DMI6|t1           0.073    0.069    1.049    0.294    0.073    0.073
##     DMI6|t2           0.499    0.073    6.869    0.000    0.499    0.499
##     DMI6|t3           0.846    0.079   10.676    0.000    0.846    0.846
##     DMI6|t4           1.024    0.084   12.132    0.000    1.024    1.024
##     DMI6|t5           1.330    0.097   13.704    0.000    1.330    1.330
##     DMI6|t6           1.754    0.126   13.895    0.000    1.754    1.754
##     DMI3|t1          -1.872    0.138  -13.573    0.000   -1.872   -1.872
##     DMI3|t2          -1.598    0.113  -14.080    0.000   -1.598   -1.598
##     DMI3|t3          -1.330    0.097  -13.704    0.000   -1.330   -1.330
##     DMI3|t4          -1.050    0.085  -12.314    0.000   -1.050   -1.050
##     DMI3|t5          -0.663    0.075   -8.805    0.000   -0.663   -0.663
##     DMI3|t6          -0.220    0.070   -3.145    0.002   -0.220   -0.220
##     DMI5|t1          -1.754    0.126  -13.895    0.000   -1.754   -1.754
##     DMI5|t2          -1.626    0.116  -14.068    0.000   -1.626   -1.626
##     DMI5|t3          -1.349    0.098  -13.760    0.000   -1.349   -1.349
##     DMI5|t4          -0.974    0.083  -11.758    0.000   -0.974   -0.974
##     DMI5|t5          -0.644    0.075   -8.592    0.000   -0.644   -0.644
##     DMI5|t6          -0.158    0.070   -2.263    0.024   -0.158   -0.158
##     DMI7|t1          -2.026    0.156  -12.959    0.000   -2.026   -2.026
##     DMI7|t2          -1.719    0.123  -13.960    0.000   -1.719   -1.719
##     DMI7|t3          -1.368    0.099  -13.814    0.000   -1.368   -1.368
##     DMI7|t4          -1.091    0.087  -12.580    0.000   -1.091   -1.091
##     DMI7|t5          -0.663    0.075   -8.805    0.000   -0.663   -0.663
##     DMI7|t6          -0.197    0.070   -2.814    0.005   -0.197   -0.197
##     DMI8|t1          -2.089    0.165  -12.647    0.000   -2.089   -2.089
##     DMI8|t2          -1.872    0.138  -13.573    0.000   -1.872   -1.872
##     DMI8|t3          -1.520    0.108  -14.065    0.000   -1.520   -1.520
##     DMI8|t4          -1.134    0.088  -12.836    0.000   -1.134   -1.134
##     DMI8|t5          -0.606    0.074   -8.164    0.000   -0.606   -0.606
##     DMI8|t6          -0.027    0.069   -0.387    0.699   -0.027   -0.027
##     FPT1|t1          -2.026    0.156  -12.959    0.000   -2.026   -2.026
##     FPT1|t2          -1.545    0.110  -14.078    0.000   -1.545   -1.545
##     FPT1|t3          -1.294    0.095  -13.582    0.000   -1.294   -1.294
##     FPT1|t4          -0.846    0.079  -10.676    0.000   -0.846   -0.846
##     FPT1|t5          -0.212    0.070   -3.035    0.002   -0.212   -0.212
##     FPT1|t6           0.543    0.073    7.411    0.000    0.543    0.543
##     FPT2|t1          -2.741    0.329   -8.345    0.000   -2.741   -2.741
##     FPT2|t2          -2.359    0.214  -11.040    0.000   -2.359   -2.359
##     FPT2|t3          -2.089    0.165  -12.647    0.000   -2.089   -2.089
##     FPT2|t4          -1.496    0.107  -14.045    0.000   -1.496   -1.496
##     FPT2|t5          -0.782    0.078  -10.063    0.000   -0.782   -0.782
##     FPT2|t6          -0.065    0.069   -0.939    0.348   -0.065   -0.065
##     FPT3|t1          -2.089    0.165  -12.647    0.000   -2.089   -2.089
##     FPT3|t2          -1.655    0.118  -14.044    0.000   -1.655   -1.655
##     FPT3|t3          -1.077    0.086  -12.493    0.000   -1.077   -1.077
##     FPT3|t4          -0.606    0.074   -8.164    0.000   -0.606   -0.606
##     FPT3|t5           0.324    0.071    4.575    0.000    0.324    0.324
##     FPT3|t6           1.011    0.084   12.040    0.000    1.011    1.011
##     FPT4|t1          -1.473    0.105  -14.019    0.000   -1.473   -1.473
##     FPT4|t2          -1.037    0.085  -12.224    0.000   -1.037   -1.037
##     FPT4|t3          -0.499    0.073   -6.869    0.000   -0.499   -0.499
##     FPT4|t4           0.111    0.070    1.601    0.109    0.111    0.111
##     FPT4|t5           0.663    0.075    8.805    0.000    0.663    0.663
##     FPT4|t6           1.368    0.099   13.814    0.000    1.368    1.368
##     FPT5|t1          -1.969    0.149  -13.209    0.000   -1.969   -1.969
##     FPT5|t2          -1.545    0.110  -14.078    0.000   -1.545   -1.545
##     FPT5|t3          -0.925    0.081  -11.372    0.000   -0.925   -0.925
##     FPT5|t4          -0.422    0.072   -5.889    0.000   -0.422   -0.422
##     FPT5|t5           0.348    0.071    4.904    0.000    0.348    0.348
##     FPT5|t6           1.024    0.084   12.132    0.000    1.024    1.024
##     FPT6|t1          -1.242    0.093  -13.379    0.000   -1.242   -1.242
##     FPT6|t2          -1.037    0.085  -12.224    0.000   -1.037   -1.037
##     FPT6|t3          -0.543    0.073   -7.411    0.000   -0.543   -0.543
##     FPT6|t4          -0.150    0.070   -2.153    0.031   -0.150   -0.150
##     FPT6|t5           0.340    0.071    4.794    0.000    0.340    0.340
##     FPT6|t6           0.891    0.080   11.077    0.000    0.891    0.891
##     FPT7|t1          -1.210    0.091  -13.232    0.000   -1.210   -1.210
##     FPT7|t2          -0.803    0.078  -10.269    0.000   -0.803   -0.803
##     FPT7|t3          -0.268    0.070   -3.805    0.000   -0.268   -0.268
##     FPT7|t4           0.212    0.070    3.035    0.002    0.212    0.212
##     FPT7|t5           0.741    0.077    9.647    0.000    0.741    0.741
##     FPT7|t6           1.312    0.096   13.644    0.000    1.312    1.312
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.346                               0.346    0.346
##    .MRT8              0.639                               0.639    0.639
##    .MRT9              0.351                               0.351    0.351
##    .MRT10             0.310                               0.310    0.310
##    .MRT11             0.447                               0.447    0.447
##    .MRT12             0.137                               0.137    0.137
##    .MRT13             0.250                               0.250    0.250
##    .MRT14             0.462                               0.462    0.462
##    .DMI1              0.672                               0.672    0.672
##    .DMI2              0.548                               0.548    0.548
##    .DMI4              0.380                               0.380    0.380
##    .DMI6              0.271                               0.271    0.271
##    .DMI3              0.303                               0.303    0.303
##    .DMI5              0.317                               0.317    0.317
##    .DMI7              0.244                               0.244    0.244
##    .DMI8              0.331                               0.331    0.331
##    .FPT1              0.410                               0.410    0.410
##    .FPT2              0.777                               0.777    0.777
##    .FPT3              0.468                               0.468    0.468
##    .FPT4              0.529                               0.529    0.529
##    .FPT5              0.381                               0.381    0.381
##    .FPT6              0.636                               0.636    0.636
##    .FPT7              0.570                               0.570    0.570
##     MAP               0.654    0.043   15.084    0.000    1.000    1.000
##     DAP               0.553    0.038   14.491    0.000    1.000    1.000
##     FIXO              0.328    0.054    6.035    0.000    1.000    1.000
##     CRESCIMENTO       0.697    0.040   17.582    0.000    1.000    1.000
##     FPT               0.590    0.041   14.258    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     MRT7              1.000                               1.000    1.000
##     MRT8              1.000                               1.000    1.000
##     MRT9              1.000                               1.000    1.000
##     MRT10             1.000                               1.000    1.000
##     MRT11             1.000                               1.000    1.000
##     MRT12             1.000                               1.000    1.000
##     MRT13             1.000                               1.000    1.000
##     MRT14             1.000                               1.000    1.000
##     DMI1              1.000                               1.000    1.000
##     DMI2              1.000                               1.000    1.000
##     DMI4              1.000                               1.000    1.000
##     DMI6              1.000                               1.000    1.000
##     DMI3              1.000                               1.000    1.000
##     DMI5              1.000                               1.000    1.000
##     DMI7              1.000                               1.000    1.000
##     DMI8              1.000                               1.000    1.000
##     FPT1              1.000                               1.000    1.000
##     FPT2              1.000                               1.000    1.000
##     FPT3              1.000                               1.000    1.000
##     FPT4              1.000                               1.000    1.000
##     FPT5              1.000                               1.000    1.000
##     FPT6              1.000                               1.000    1.000
##     FPT7              1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     MRT7              0.654
##     MRT8              0.361
##     MRT9              0.649
##     MRT10             0.690
##     MRT11             0.553
##     MRT12             0.863
##     MRT13             0.750
##     MRT14             0.538
##     DMI1              0.328
##     DMI2              0.452
##     DMI4              0.620
##     DMI6              0.729
##     DMI3              0.697
##     DMI5              0.683
##     DMI7              0.756
##     DMI8              0.669
##     FPT1              0.590
##     FPT2              0.223
##     FPT3              0.532
##     FPT4              0.471
##     FPT5              0.619
##     FPT6              0.364
##     FPT7              0.430
semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord" and the response by Zumbo & Kroc (2019). Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##                 MAP       DAP      FIXO CRESCIMENTO       FPT
## alpha     0.7581073 0.8504509 0.7570879   0.8392356 0.8184692
## alpha.ord 0.8425892 0.8879304 0.8435195   0.9021933 0.8453989
## omega     0.8003491 0.8689805 0.7074952   0.8647073 0.8345881
## omega2    0.8003491 0.8689805 0.7074952   0.8647073 0.8345881
## omega3    0.8048260 0.8710353 0.7029781   0.8660632 0.8421209
## avevar    0.5887517 0.6760014 0.5322392   0.7011918 0.4613295
semTools::discriminantValidity(fit)
## Some of the latent variable variances are estimated instead of fixed to 1. The model is re-estimated by scaling the latent variables by fixing their variances and freeing all factor loadings.
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## Warning in lavaan::lavTestLRT(object, constrained): lavaan WARNING: some models have the same degrees of freedom
##            lhs op         rhs         est    ci.lower    ci.upper  Df AIC BIC     Chisq Chisq diff Df diff   Pr(>Chisq)
## 1          MAP ~~         DAP  0.00000000  0.00000000  0.00000000 220  NA  NA 1175.0309 778.595429       0           NA
## 2          MAP ~~        FIXO -0.36230776 -0.46651581 -0.25809971 221  NA  NA  679.7601  95.170604       1 1.746648e-22
## 3          MAP ~~ CRESCIMENTO  0.44398001  0.34817592  0.53978409 221  NA  NA  720.2077  90.621900       1 1.739246e-21
## 4          MAP ~~         FPT  0.41615465  0.32446982  0.50783948 221  NA  NA  829.4929 110.184325       1 8.928985e-26
## 5          DAP ~~        FIXO  0.09932215 -0.01915672  0.21780102 221  NA  NA 1042.0643 132.962440       1 9.213857e-31
## 6          DAP ~~ CRESCIMENTO  0.08180594 -0.03463651  0.19824840 221  NA  NA 1416.3590 176.175962       1 3.314450e-40
## 7          DAP ~~         FPT  0.08610217 -0.02515776  0.19736210 221  NA  NA 1794.5270 178.359273       1 1.105774e-40
## 8         FIXO ~~ CRESCIMENTO -0.80170045 -0.86767208 -0.73572882 221  NA  NA  411.5994   8.895148       1 2.859295e-03
## 9         FIXO ~~         FPT -0.02879729 -0.15138262  0.09378803 221  NA  NA 1218.6212 136.612089       1 1.466001e-31
## 10 CRESCIMENTO ~~         FPT  0.23641259  0.12655566  0.34626953 221  NA  NA 1251.5642 132.919814       1 9.413827e-31

Correlações entre as variáveis

round(lavInspect(fit,"cor.lv"),2)
##             MAP   DAP   FIXO  CRESCI FPT  
## MAP          1.00                         
## DAP          0.00  1.00                   
## FIXO        -0.36  0.10  1.00             
## CRESCIMENTO  0.44  0.08 -0.80  1.00       
## FPT          0.42  0.09 -0.03  0.24   1.00

Significância das correlações

pvalue<-parameterestimates(fit,standardized = T)
pvalue<-pvalue[(pvalue$op=="~~"&(pvalue$lhs!=pvalue$rhs)),c(1:3,7)]
pvalue[c(-1:-2),]
##             lhs op         rhs pvalue
## 192         MAP ~~        FIXO  0.000
## 193         MAP ~~ CRESCIMENTO  0.000
## 194         MAP ~~         FPT  0.000
## 195         DAP ~~        FIXO  0.104
## 196         DAP ~~ CRESCIMENTO  0.172
## 197         DAP ~~         FPT  0.134
## 198        FIXO ~~ CRESCIMENTO  0.000
## 199        FIXO ~~         FPT  0.644
## 200 CRESCIMENTO ~~         FPT  0.000
banco_moderacao<-lavaan::predict(fit)
write.csv(banco_moderacao,"professores.csv")

Modelagem por tipo de Mindset

modelo<-
'
MAP =~ MRT7 + MRT8 + MRT9 + MRT10
DAP =~ MRT11 + MRT12 + MRT13 + MRT14

FIXO =~ DMI1 + DMI2 + DMI4 + DMI6
CRESCIMENTO =~ DMI3 + DMI5 + DMI7 + DMI8

FPT=~FPT1 + FPT2 + FPT3 + FPT4 + FPT5 + FPT6 + FPT7

DMI1    ~~  DMI2

MAP~~DAP
'
fit<-cfa(model=modelo,data=banco_geral,estimator="WLSMV",ordered=T)
summary(fit,standardized=T,fit=T,rsquare=T)
## lavaan 0.6-9 ended normally after 51 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       172
##                                                       
##   Number of observations                           327
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               356.237     412.380
##   Degrees of freedom                               219         219
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.131
##   Shift parameter                                           97.516
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             16523.497    7030.461
##   Degrees of freedom                               253         253
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.401
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.992       0.971
##   Tucker-Lewis Index (TLI)                       0.990       0.967
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.044       0.052
##   90 Percent confidence interval - lower         0.035       0.044
##   90 Percent confidence interval - upper         0.052       0.060
##   P-value RMSEA <= 0.05                          0.891       0.323
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.064       0.064
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP =~                                                                
##     MRT7              1.000                               0.804    0.804
##     MRT8              0.761    0.052   14.631    0.000    0.612    0.612
##     MRT9              0.996    0.042   23.903    0.000    0.801    0.801
##     MRT10             1.037    0.050   20.855    0.000    0.834    0.834
##   DAP =~                                                                
##     MRT11             1.000                               0.745    0.745
##     MRT12             1.247    0.045   27.556    0.000    0.929    0.929
##     MRT13             1.160    0.038   30.217    0.000    0.864    0.864
##     MRT14             0.987    0.043   22.794    0.000    0.736    0.736
##   FIXO =~                                                               
##     DMI1              1.000                               0.573    0.573
##     DMI2              1.174    0.081   14.538    0.000    0.673    0.673
##     DMI4              1.374    0.120   11.495    0.000    0.787    0.787
##     DMI6              1.490    0.131   11.384    0.000    0.854    0.854
##   CRESCIMENTO =~                                                        
##     DMI3              1.000                               0.835    0.835
##     DMI5              0.990    0.033   29.565    0.000    0.826    0.826
##     DMI7              1.042    0.033   31.543    0.000    0.870    0.870
##     DMI8              0.980    0.034   28.694    0.000    0.818    0.818
##   FPT =~                                                                
##     FPT1              1.000                               0.768    0.768
##     FPT2              0.616    0.065    9.455    0.000    0.473    0.473
##     FPT3              0.950    0.046   20.587    0.000    0.729    0.729
##     FPT4              0.894    0.047   19.124    0.000    0.686    0.686
##     FPT5              1.025    0.042   24.629    0.000    0.787    0.787
##     FPT6              0.786    0.054   14.545    0.000    0.603    0.603
##     FPT7              0.854    0.049   17.445    0.000    0.656    0.656
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .DMI1 ~~                                                               
##    .DMI2              0.305    0.043    7.178    0.000    0.305    0.503
##   MAP ~~                                                                
##     DAP               0.087    0.035    2.504    0.012    0.146    0.146
##     FIXO             -0.167    0.029   -5.679    0.000   -0.362   -0.362
##     CRESCIMENTO       0.298    0.038    7.929    0.000    0.444    0.444
##     FPT               0.257    0.034    7.543    0.000    0.416    0.416
##   DAP ~~                                                                
##     FIXO              0.042    0.026    1.623    0.105    0.099    0.099
##     CRESCIMENTO       0.051    0.037    1.368    0.171    0.082    0.082
##     FPT               0.049    0.033    1.500    0.134    0.086    0.086
##   FIXO ~~                                                               
##     CRESCIMENTO      -0.383    0.042   -9.053    0.000   -0.802   -0.802
##     FPT              -0.013    0.027   -0.463    0.644   -0.029   -0.029
##   CRESCIMENTO ~~                                                        
##     FPT               0.152    0.037    4.109    0.000    0.236    0.236
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.000                               0.000    0.000
##    .MRT8              0.000                               0.000    0.000
##    .MRT9              0.000                               0.000    0.000
##    .MRT10             0.000                               0.000    0.000
##    .MRT11             0.000                               0.000    0.000
##    .MRT12             0.000                               0.000    0.000
##    .MRT13             0.000                               0.000    0.000
##    .MRT14             0.000                               0.000    0.000
##    .DMI1              0.000                               0.000    0.000
##    .DMI2              0.000                               0.000    0.000
##    .DMI4              0.000                               0.000    0.000
##    .DMI6              0.000                               0.000    0.000
##    .DMI3              0.000                               0.000    0.000
##    .DMI5              0.000                               0.000    0.000
##    .DMI7              0.000                               0.000    0.000
##    .DMI8              0.000                               0.000    0.000
##    .FPT1              0.000                               0.000    0.000
##    .FPT2              0.000                               0.000    0.000
##    .FPT3              0.000                               0.000    0.000
##    .FPT4              0.000                               0.000    0.000
##    .FPT5              0.000                               0.000    0.000
##    .FPT6              0.000                               0.000    0.000
##    .FPT7              0.000                               0.000    0.000
##     MAP               0.000                               0.000    0.000
##     DAP               0.000                               0.000    0.000
##     FIXO              0.000                               0.000    0.000
##     CRESCIMENTO       0.000                               0.000    0.000
##     FPT               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     MRT7|t1          -2.505    0.250  -10.034    0.000   -2.505   -2.505
##     MRT7|t2          -2.162    0.177  -12.251    0.000   -2.162   -2.162
##     MRT7|t3          -1.719    0.123  -13.960    0.000   -1.719   -1.719
##     MRT7|t4          -1.276    0.094  -13.516    0.000   -1.276   -1.276
##     MRT7|t5          -0.701    0.076   -9.228    0.000   -0.701   -0.701
##     MRT7|t6          -0.104    0.070   -1.491    0.136   -0.104   -0.104
##     MRT8|t1          -1.686    0.120  -14.009    0.000   -1.686   -1.686
##     MRT8|t2          -1.626    0.116  -14.068    0.000   -1.626   -1.626
##     MRT8|t3          -1.276    0.094  -13.516    0.000   -1.276   -1.276
##     MRT8|t4          -0.653    0.075   -8.698    0.000   -0.653   -0.653
##     MRT8|t5           0.035    0.069    0.497    0.619    0.035    0.035
##     MRT8|t6           0.663    0.075    8.805    0.000    0.663    0.663
##     MRT9|t1          -2.505    0.250  -10.034    0.000   -2.505   -2.505
##     MRT9|t2          -2.250    0.192  -11.736    0.000   -2.250   -2.250
##     MRT9|t3          -1.754    0.126  -13.895    0.000   -1.754   -1.754
##     MRT9|t4          -1.226    0.092  -13.306    0.000   -1.226   -1.226
##     MRT9|t5          -0.597    0.074   -8.057    0.000   -0.597   -0.597
##     MRT9|t6          -0.073    0.069   -1.049    0.294   -0.073   -0.073
##     MRT10|t1         -2.250    0.192  -11.736    0.000   -2.250   -2.250
##     MRT10|t2         -1.919    0.143  -13.410    0.000   -1.919   -1.919
##     MRT10|t3         -1.598    0.113  -14.080    0.000   -1.598   -1.598
##     MRT10|t4         -1.050    0.085  -12.314    0.000   -1.050   -1.050
##     MRT10|t5         -0.389    0.071   -5.452    0.000   -0.389   -0.389
##     MRT10|t6          0.181    0.070    2.594    0.009    0.181    0.181
##     MRT11|t1         -0.615    0.074   -8.272    0.000   -0.615   -0.615
##     MRT11|t2         -0.356    0.071   -5.014    0.000   -0.356   -0.356
##     MRT11|t3         -0.158    0.070   -2.263    0.024   -0.158   -0.158
##     MRT11|t4          0.348    0.071    4.904    0.000    0.348    0.348
##     MRT11|t5          0.731    0.077    9.543    0.000    0.731    0.731
##     MRT11|t6          1.105    0.087   12.667    0.000    1.105    1.105
##     MRT12|t1         -0.741    0.077   -9.647    0.000   -0.741   -0.741
##     MRT12|t2         -0.482    0.072   -6.652    0.000   -0.482   -0.482
##     MRT12|t3         -0.228    0.070   -3.255    0.001   -0.228   -0.228
##     MRT12|t4          0.348    0.071    4.904    0.000    0.348    0.348
##     MRT12|t5          0.751    0.077    9.752    0.000    0.751    0.751
##     MRT12|t6          1.077    0.086   12.493    0.000    1.077    1.077
##     MRT13|t1         -0.490    0.073   -6.761    0.000   -0.490   -0.490
##     MRT13|t2         -0.260    0.070   -3.695    0.000   -0.260   -0.260
##     MRT13|t3          0.050    0.069    0.718    0.473    0.050    0.050
##     MRT13|t4          0.588    0.074    7.950    0.000    0.588    0.588
##     MRT13|t5          0.925    0.081   11.372    0.000    0.925    0.925
##     MRT13|t6          1.179    0.090   13.078    0.000    1.179    1.179
##     MRT14|t1         -1.194    0.091  -13.156    0.000   -1.194   -1.194
##     MRT14|t2         -0.792    0.078  -10.166    0.000   -0.792   -0.792
##     MRT14|t3         -0.543    0.073   -7.411    0.000   -0.543   -0.543
##     MRT14|t4         -0.081    0.069   -1.159    0.246   -0.081   -0.081
##     MRT14|t5          0.332    0.071    4.685    0.000    0.332    0.332
##     MRT14|t6          0.634    0.075    8.485    0.000    0.634    0.634
##     DMI1|t1           0.324    0.071    4.575    0.000    0.324    0.324
##     DMI1|t2           0.653    0.075    8.698    0.000    0.653    0.653
##     DMI1|t3           0.857    0.080   10.777    0.000    0.857    0.857
##     DMI1|t4           0.986    0.083   11.853    0.000    0.986    0.986
##     DMI1|t5           1.276    0.094   13.516    0.000    1.276    1.276
##     DMI1|t6           1.473    0.105   14.019    0.000    1.473    1.473
##     DMI2|t1           0.096    0.070    1.380    0.168    0.096    0.096
##     DMI2|t2           0.625    0.075    8.379    0.000    0.625    0.625
##     DMI2|t3           0.879    0.080   10.977    0.000    0.879    0.879
##     DMI2|t4           1.119    0.088   12.752    0.000    1.119    1.119
##     DMI2|t5           1.473    0.105   14.019    0.000    1.473    1.473
##     DMI2|t6           1.754    0.126   13.895    0.000    1.754    1.754
##     DMI4|t1           0.065    0.069    0.939    0.348    0.065    0.065
##     DMI4|t2           0.490    0.073    6.761    0.000    0.490    0.490
##     DMI4|t3           0.751    0.077    9.752    0.000    0.751    0.751
##     DMI4|t4           1.134    0.088   12.836    0.000    1.134    1.134
##     DMI4|t5           1.408    0.101   13.909    0.000    1.408    1.408
##     DMI4|t6           1.686    0.120   14.009    0.000    1.686    1.686
##     DMI6|t1           0.073    0.069    1.049    0.294    0.073    0.073
##     DMI6|t2           0.499    0.073    6.869    0.000    0.499    0.499
##     DMI6|t3           0.846    0.079   10.676    0.000    0.846    0.846
##     DMI6|t4           1.024    0.084   12.132    0.000    1.024    1.024
##     DMI6|t5           1.330    0.097   13.704    0.000    1.330    1.330
##     DMI6|t6           1.754    0.126   13.895    0.000    1.754    1.754
##     DMI3|t1          -1.872    0.138  -13.573    0.000   -1.872   -1.872
##     DMI3|t2          -1.598    0.113  -14.080    0.000   -1.598   -1.598
##     DMI3|t3          -1.330    0.097  -13.704    0.000   -1.330   -1.330
##     DMI3|t4          -1.050    0.085  -12.314    0.000   -1.050   -1.050
##     DMI3|t5          -0.663    0.075   -8.805    0.000   -0.663   -0.663
##     DMI3|t6          -0.220    0.070   -3.145    0.002   -0.220   -0.220
##     DMI5|t1          -1.754    0.126  -13.895    0.000   -1.754   -1.754
##     DMI5|t2          -1.626    0.116  -14.068    0.000   -1.626   -1.626
##     DMI5|t3          -1.349    0.098  -13.760    0.000   -1.349   -1.349
##     DMI5|t4          -0.974    0.083  -11.758    0.000   -0.974   -0.974
##     DMI5|t5          -0.644    0.075   -8.592    0.000   -0.644   -0.644
##     DMI5|t6          -0.158    0.070   -2.263    0.024   -0.158   -0.158
##     DMI7|t1          -2.026    0.156  -12.959    0.000   -2.026   -2.026
##     DMI7|t2          -1.719    0.123  -13.960    0.000   -1.719   -1.719
##     DMI7|t3          -1.368    0.099  -13.814    0.000   -1.368   -1.368
##     DMI7|t4          -1.091    0.087  -12.580    0.000   -1.091   -1.091
##     DMI7|t5          -0.663    0.075   -8.805    0.000   -0.663   -0.663
##     DMI7|t6          -0.197    0.070   -2.814    0.005   -0.197   -0.197
##     DMI8|t1          -2.089    0.165  -12.647    0.000   -2.089   -2.089
##     DMI8|t2          -1.872    0.138  -13.573    0.000   -1.872   -1.872
##     DMI8|t3          -1.520    0.108  -14.065    0.000   -1.520   -1.520
##     DMI8|t4          -1.134    0.088  -12.836    0.000   -1.134   -1.134
##     DMI8|t5          -0.606    0.074   -8.164    0.000   -0.606   -0.606
##     DMI8|t6          -0.027    0.069   -0.387    0.699   -0.027   -0.027
##     FPT1|t1          -2.026    0.156  -12.959    0.000   -2.026   -2.026
##     FPT1|t2          -1.545    0.110  -14.078    0.000   -1.545   -1.545
##     FPT1|t3          -1.294    0.095  -13.582    0.000   -1.294   -1.294
##     FPT1|t4          -0.846    0.079  -10.676    0.000   -0.846   -0.846
##     FPT1|t5          -0.212    0.070   -3.035    0.002   -0.212   -0.212
##     FPT1|t6           0.543    0.073    7.411    0.000    0.543    0.543
##     FPT2|t1          -2.741    0.329   -8.345    0.000   -2.741   -2.741
##     FPT2|t2          -2.359    0.214  -11.040    0.000   -2.359   -2.359
##     FPT2|t3          -2.089    0.165  -12.647    0.000   -2.089   -2.089
##     FPT2|t4          -1.496    0.107  -14.045    0.000   -1.496   -1.496
##     FPT2|t5          -0.782    0.078  -10.063    0.000   -0.782   -0.782
##     FPT2|t6          -0.065    0.069   -0.939    0.348   -0.065   -0.065
##     FPT3|t1          -2.089    0.165  -12.647    0.000   -2.089   -2.089
##     FPT3|t2          -1.655    0.118  -14.044    0.000   -1.655   -1.655
##     FPT3|t3          -1.077    0.086  -12.493    0.000   -1.077   -1.077
##     FPT3|t4          -0.606    0.074   -8.164    0.000   -0.606   -0.606
##     FPT3|t5           0.324    0.071    4.575    0.000    0.324    0.324
##     FPT3|t6           1.011    0.084   12.040    0.000    1.011    1.011
##     FPT4|t1          -1.473    0.105  -14.019    0.000   -1.473   -1.473
##     FPT4|t2          -1.037    0.085  -12.224    0.000   -1.037   -1.037
##     FPT4|t3          -0.499    0.073   -6.869    0.000   -0.499   -0.499
##     FPT4|t4           0.111    0.070    1.601    0.109    0.111    0.111
##     FPT4|t5           0.663    0.075    8.805    0.000    0.663    0.663
##     FPT4|t6           1.368    0.099   13.814    0.000    1.368    1.368
##     FPT5|t1          -1.969    0.149  -13.209    0.000   -1.969   -1.969
##     FPT5|t2          -1.545    0.110  -14.078    0.000   -1.545   -1.545
##     FPT5|t3          -0.925    0.081  -11.372    0.000   -0.925   -0.925
##     FPT5|t4          -0.422    0.072   -5.889    0.000   -0.422   -0.422
##     FPT5|t5           0.348    0.071    4.904    0.000    0.348    0.348
##     FPT5|t6           1.024    0.084   12.132    0.000    1.024    1.024
##     FPT6|t1          -1.242    0.093  -13.379    0.000   -1.242   -1.242
##     FPT6|t2          -1.037    0.085  -12.224    0.000   -1.037   -1.037
##     FPT6|t3          -0.543    0.073   -7.411    0.000   -0.543   -0.543
##     FPT6|t4          -0.150    0.070   -2.153    0.031   -0.150   -0.150
##     FPT6|t5           0.340    0.071    4.794    0.000    0.340    0.340
##     FPT6|t6           0.891    0.080   11.077    0.000    0.891    0.891
##     FPT7|t1          -1.210    0.091  -13.232    0.000   -1.210   -1.210
##     FPT7|t2          -0.803    0.078  -10.269    0.000   -0.803   -0.803
##     FPT7|t3          -0.268    0.070   -3.805    0.000   -0.268   -0.268
##     FPT7|t4           0.212    0.070    3.035    0.002    0.212    0.212
##     FPT7|t5           0.741    0.077    9.647    0.000    0.741    0.741
##     FPT7|t6           1.312    0.096   13.644    0.000    1.312    1.312
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.353                               0.353    0.353
##    .MRT8              0.626                               0.626    0.626
##    .MRT9              0.359                               0.359    0.359
##    .MRT10             0.305                               0.305    0.305
##    .MRT11             0.445                               0.445    0.445
##    .MRT12             0.137                               0.137    0.137
##    .MRT13             0.254                               0.254    0.254
##    .MRT14             0.459                               0.459    0.459
##    .DMI1              0.672                               0.672    0.672
##    .DMI2              0.548                               0.548    0.548
##    .DMI4              0.380                               0.380    0.380
##    .DMI6              0.271                               0.271    0.271
##    .DMI3              0.303                               0.303    0.303
##    .DMI5              0.317                               0.317    0.317
##    .DMI7              0.244                               0.244    0.244
##    .DMI8              0.331                               0.331    0.331
##    .FPT1              0.410                               0.410    0.410
##    .FPT2              0.776                               0.776    0.776
##    .FPT3              0.468                               0.468    0.468
##    .FPT4              0.529                               0.529    0.529
##    .FPT5              0.381                               0.381    0.381
##    .FPT6              0.636                               0.636    0.636
##    .FPT7              0.570                               0.570    0.570
##     MAP               0.647    0.043   15.011    0.000    1.000    1.000
##     DAP               0.555    0.038   14.624    0.000    1.000    1.000
##     FIXO              0.328    0.054    6.034    0.000    1.000    1.000
##     CRESCIMENTO       0.697    0.040   17.587    0.000    1.000    1.000
##     FPT               0.590    0.041   14.257    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     MRT7              1.000                               1.000    1.000
##     MRT8              1.000                               1.000    1.000
##     MRT9              1.000                               1.000    1.000
##     MRT10             1.000                               1.000    1.000
##     MRT11             1.000                               1.000    1.000
##     MRT12             1.000                               1.000    1.000
##     MRT13             1.000                               1.000    1.000
##     MRT14             1.000                               1.000    1.000
##     DMI1              1.000                               1.000    1.000
##     DMI2              1.000                               1.000    1.000
##     DMI4              1.000                               1.000    1.000
##     DMI6              1.000                               1.000    1.000
##     DMI3              1.000                               1.000    1.000
##     DMI5              1.000                               1.000    1.000
##     DMI7              1.000                               1.000    1.000
##     DMI8              1.000                               1.000    1.000
##     FPT1              1.000                               1.000    1.000
##     FPT2              1.000                               1.000    1.000
##     FPT3              1.000                               1.000    1.000
##     FPT4              1.000                               1.000    1.000
##     FPT5              1.000                               1.000    1.000
##     FPT6              1.000                               1.000    1.000
##     FPT7              1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     MRT7              0.647
##     MRT8              0.374
##     MRT9              0.641
##     MRT10             0.695
##     MRT11             0.555
##     MRT12             0.863
##     MRT13             0.746
##     MRT14             0.541
##     DMI1              0.328
##     DMI2              0.452
##     DMI4              0.620
##     DMI6              0.729
##     DMI3              0.697
##     DMI5              0.683
##     DMI7              0.756
##     DMI8              0.669
##     FPT1              0.590
##     FPT2              0.224
##     FPT3              0.532
##     FPT4              0.471
##     FPT5              0.619
##     FPT6              0.364
##     FPT7              0.430
semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord" and the response by Zumbo & Kroc (2019). Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##                 MAP       DAP      FIXO CRESCIMENTO       FPT
## alpha     0.7581073 0.8504509 0.7570879   0.8392356 0.8184692
## alpha.ord 0.8425892 0.8879304 0.8435195   0.9021933 0.8453989
## omega     0.8016734 0.8692052 0.7074828   0.8647086 0.8345871
## omega2    0.8016734 0.8692052 0.7074828   0.8647086 0.8345871
## omega3    0.8083108 0.8718638 0.7029603   0.8660657 0.8421198
## avevar    0.5893862 0.6764462 0.5322326   0.7011917 0.4613299
semTools::discriminantValidity(fit)
## Some of the latent variable variances are estimated instead of fixed to 1. The model is re-estimated by scaling the latent variables by fixing their variances and freeing all factor loadings.
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.

## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
##            lhs op         rhs         est    ci.lower    ci.upper  Df AIC BIC     Chisq Chisq diff Df diff   Pr(>Chisq)
## 1          MAP ~~         DAP  0.14593377  0.03493199  0.25693554 220  NA  NA 1175.0309  174.67626       1 7.045364e-40
## 2          MAP ~~        FIXO -0.36197800 -0.46605290 -0.25790310 220  NA  NA  640.1636   95.56837       1 1.428708e-22
## 3          MAP ~~ CRESCIMENTO  0.44393295  0.34825346  0.53961244 220  NA  NA  680.4071   90.83328       1 1.563022e-21
## 4          MAP ~~         FPT  0.41565907  0.32405352  0.50726462 220  NA  NA  790.6365  110.69806       1 6.890536e-26
## 5          DAP ~~        FIXO  0.09921869 -0.01921834  0.21765571 220  NA  NA 1002.2764  133.05007       1 8.816006e-31
## 6          DAP ~~ CRESCIMENTO  0.08186309 -0.03452932  0.19825550 220  NA  NA 1376.6949  176.28673       1 3.134896e-40
## 7          DAP ~~         FPT  0.08615814 -0.02507110  0.19738737 220  NA  NA 1754.8554  178.40073       1 1.082962e-40
## 8         FIXO ~~ CRESCIMENTO -0.80169941 -0.86767176 -0.73572707 220  NA  NA  371.4012    8.89524       1 2.859150e-03
## 9         FIXO ~~         FPT -0.02880366 -0.15138879  0.09378147 220  NA  NA 1178.4054  136.60914       1 1.468182e-31
## 10 CRESCIMENTO ~~         FPT  0.23641266  0.12655595  0.34626937 220  NA  NA 1211.3634  132.92039       1 9.411095e-31

Correlações entre as variáveis

round(lavInspect(fit,"cor.lv"),2)
##             MAP   DAP   FIXO  CRESCI FPT  
## MAP          1.00                         
## DAP          0.15  1.00                   
## FIXO        -0.36  0.10  1.00             
## CRESCIMENTO  0.44  0.08 -0.80  1.00       
## FPT          0.42  0.09 -0.03  0.24   1.00

Significância das correlações

pvalue<-parameterestimates(fit,standardized = T)
pvalue<-pvalue[(pvalue$op=="~~"&(pvalue$lhs!=pvalue$rhs)),c(1:3,7)]
pvalue[c(-1:-2),]
##             lhs op         rhs pvalue
## 192         MAP ~~        FIXO  0.000
## 193         MAP ~~ CRESCIMENTO  0.000
## 194         MAP ~~         FPT  0.000
## 195         DAP ~~        FIXO  0.105
## 196         DAP ~~ CRESCIMENTO  0.171
## 197         DAP ~~         FPT  0.134
## 198        FIXO ~~ CRESCIMENTO  0.000
## 199        FIXO ~~         FPT  0.644
## 200 CRESCIMENTO ~~         FPT  0.000
banco_moderacao<-predict(fit)
write.csv(banco_moderacao,"professores.csv")

Modelo Mediacional Mindset FIXO

modelo<-
'
# Medida 
MAP =~ MRT7 + MRT8 + MRT9 + MRT10
DAP =~ MRT11 + MRT12 + MRT13 + MRT14

FIXO =~ DMI1 + DMI2 + DMI4 + DMI6
DMI1    ~~  DMI2

FPT=~FPT1 + FPT2 + FPT3 + FPT4 + FPT5 + FPT6 + FPT7

# Estrutural 
MAP ~ c1.1*FIXO + b1.1*FPT
DAP ~ c1.2*FIXO + b1.2*FPT
FPT ~ a1.1*FIXO 

#Correlated Outcome
MAP~~DAP

#Constrains

# A trajectory
FIXO_FPT := a1.1 

# B trajectory
FPT_MAP := b1.1
# AB Indirect effect
# Mediação FIXO -> FPT -> MAP
FIXO_FPT_MAP := a1.1*b1.1
# C reduced on M
FIXO_MAP_R := c1.1
# C total effect
FIXO_MAP := (c1.1) + (FIXO_FPT_MAP)

# B trajectory
FPT_DAP := b1.2
# AB Indirect effect
# Mediação FIXO -> FPT -> DAP
FIXO_FPT_DAP := a1.1*b1.2
# C reduced on M
FIXO_DAP_R := c1.2
# C total effect
FIXO_DAP := (c1.2) + (FIXO_FPT_DAP)
'
#fit<-lavaan::cfa(model=modelo,data=banco_geral,estimator="DWLS",ordered=T,orthogonal=T,se="bootstrap", test="scaled.shifted",verbose=TRUE)
fit<-lavaan::cfa(model=modelo,data=banco_geral,estimator = "ML", test = "yuan.bentler.mplus", se = "bootstrap",verbose=F)
summary(fit,standardized=T,fit=T,rsquare=T)
## lavaan 0.6-9 ended normally after 51 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        45
##                                                       
##   Number of observations                           327
##                                                       
## Model Test User Model:
##                                                Standard      Robust
##   Test Statistic                                249.510     218.462
##   Degrees of freedom                                145         145
##   P-value (Chi-square)                            0.000       0.000
##   Scaling correction factor                                   1.142
##        Yuan-Bentler correction (Mplus variant)                     
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2224.853    1776.799
##   Degrees of freedom                               171         171
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.252
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.949       0.954
##   Tucker-Lewis Index (TLI)                       0.940       0.946
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.958
##   Robust Tucker-Lewis Index (TLI)                            0.951
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10809.711  -10809.711
##   Scaling correction factor                                  1.573
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -10684.955  -10684.955
##   Scaling correction factor                                  1.244
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               21709.421   21709.421
##   Bayesian (BIC)                             21879.970   21879.970
##   Sample-size adjusted Bayesian (BIC)        21737.232   21737.232
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.047       0.039
##   90 Percent confidence interval - lower         0.037       0.029
##   90 Percent confidence interval - upper         0.057       0.049
##   P-value RMSEA <= 0.05                          0.686       0.965
##                                                                   
##   Robust RMSEA                                               0.042
##   90 Percent confidence interval - lower                     0.030
##   90 Percent confidence interval - upper                     0.053
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.054       0.054
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP =~                                                                
##     MRT7              1.000                               0.878    0.730
##     MRT8              0.863    0.126    6.833    0.000    0.757    0.499
##     MRT9              0.980    0.119    8.215    0.000    0.860    0.710
##     MRT10             1.167    0.191    6.113    0.000    1.025    0.770
##   DAP =~                                                                
##     MRT11             1.000                               1.459    0.689
##     MRT12             1.258    0.099   12.649    0.000    1.837    0.896
##     MRT13             1.159    0.100   11.578    0.000    1.691    0.820
##     MRT14             0.944    0.098    9.673    0.000    1.377    0.674
##   FIXO =~                                                               
##     DMI1              1.000                               0.961    0.507
##     DMI2              1.148    0.134    8.589    0.000    1.104    0.653
##     DMI4              1.204    0.223    5.394    0.000    1.158    0.662
##     DMI6              1.322    0.284    4.655    0.000    1.271    0.719
##   FPT =~                                                                
##     FPT1              1.000                               1.059    0.720
##     FPT2              0.341    0.074    4.589    0.000    0.361    0.347
##     FPT3              0.908    0.079   11.532    0.000    0.961    0.696
##     FPT4              1.019    0.102    9.957    0.000    1.078    0.658
##     FPT5              1.083    0.084   12.834    0.000    1.146    0.780
##     FPT6              1.040    0.135    7.715    0.000    1.100    0.584
##     FPT7              1.039    0.113    9.209    0.000    1.100    0.618
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP ~                                                                 
##     FIXO    (c1.1)   -0.240    0.089   -2.679    0.007   -0.263   -0.263
##     FPT     (b1.1)    0.308    0.062    4.951    0.000    0.371    0.371
##   DAP ~                                                                 
##     FIXO    (c1.2)    0.121    0.110    1.091    0.275    0.079    0.079
##     FPT     (b1.2)    0.103    0.100    1.033    0.302    0.075    0.075
##   FPT ~                                                                 
##     FIXO    (a1.1)    0.042    0.096    0.439    0.660    0.038    0.038
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .DMI1 ~~                                                               
##    .DMI2              0.748    0.244    3.063    0.002    0.748    0.358
##  .MAP ~~                                                                
##    .DAP               0.142    0.079    1.782    0.075    0.124    0.124
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.673    0.105    6.440    0.000    0.673    0.466
##    .MRT8              1.734    0.222    7.800    0.000    1.734    0.751
##    .MRT9              0.727    0.114    6.402    0.000    0.727    0.496
##    .MRT10             0.719    0.221    3.249    0.001    0.719    0.407
##    .MRT11             2.356    0.286    8.250    0.000    2.356    0.525
##    .MRT12             0.825    0.206    3.996    0.000    0.825    0.197
##    .MRT13             1.390    0.220    6.306    0.000    1.390    0.327
##    .MRT14             2.284    0.230    9.947    0.000    2.284    0.546
##    .DMI1              2.671    0.396    6.751    0.000    2.671    0.743
##    .DMI2              1.637    0.301    5.436    0.000    1.637    0.573
##    .DMI4              1.717    0.304    5.651    0.000    1.717    0.562
##    .DMI6              1.514    0.348    4.352    0.000    1.514    0.484
##    .FPT1              1.044    0.112    9.299    0.000    1.044    0.482
##    .FPT2              0.953    0.117    8.162    0.000    0.953    0.880
##    .FPT3              0.982    0.112    8.775    0.000    0.982    0.515
##    .FPT4              1.522    0.176    8.624    0.000    1.522    0.567
##    .FPT5              0.847    0.110    7.679    0.000    0.847    0.392
##    .FPT6              2.344    0.258    9.093    0.000    2.344    0.659
##    .FPT7              1.961    0.215    9.108    0.000    1.961    0.618
##    .MAP               0.617    0.138    4.459    0.000    0.801    0.801
##    .DAP               2.104    0.304    6.915    0.000    0.988    0.988
##     FIXO              0.924    0.298    3.102    0.002    1.000    1.000
##    .FPT               1.119    0.178    6.297    0.000    0.999    0.999
## 
## R-Square:
##                    Estimate
##     MRT7              0.534
##     MRT8              0.249
##     MRT9              0.504
##     MRT10             0.593
##     MRT11             0.475
##     MRT12             0.803
##     MRT13             0.673
##     MRT14             0.454
##     DMI1              0.257
##     DMI2              0.427
##     DMI4              0.438
##     DMI6              0.516
##     FPT1              0.518
##     FPT2              0.120
##     FPT3              0.485
##     FPT4              0.433
##     FPT5              0.608
##     FPT6              0.341
##     FPT7              0.382
##     MAP               0.199
##     DAP               0.012
##     FPT               0.001
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     FIXO_FPT          0.042    0.096    0.439    0.661    0.038    0.038
##     FPT_MAP           0.308    0.062    4.949    0.000    0.371    0.371
##     FIXO_FPT_MAP      0.013    0.029    0.450    0.653    0.014    0.014
##     FIXO_MAP_R       -0.240    0.090   -2.678    0.007   -0.263   -0.263
##     FIXO_MAP         -0.227    0.102   -2.223    0.026   -0.248   -0.248
##     FPT_DAP           0.103    0.100    1.033    0.302    0.075    0.075
##     FIXO_FPT_DAP      0.004    0.013    0.325    0.745    0.003    0.003
##     FIXO_DAP_R        0.121    0.111    1.091    0.275    0.079    0.079
##     FIXO_DAP          0.125    0.110    1.135    0.256    0.082    0.082
pvalue<-parameterEstimates(fit, boot.ci.type = "perc",standardized = T)
pvalue<-pvalue[(pvalue$op==":="&(pvalue$lhs!=pvalue$rhs)),c(1,5,8,9,10,11)]
pvalue
##             lhs    est pvalue ci.lower ci.upper std.lv
## 50     FIXO_FPT  0.042  0.661   -0.192    0.192  0.038
## 51      FPT_MAP  0.308  0.000    0.183    0.429  0.371
## 52 FIXO_FPT_MAP  0.013  0.653   -0.057    0.057  0.014
## 53   FIXO_MAP_R -0.240  0.007   -0.468   -0.107 -0.263
## 54     FIXO_MAP -0.227  0.026   -0.485   -0.082 -0.248
## 55      FPT_DAP  0.103  0.302   -0.083    0.316  0.075
## 56 FIXO_FPT_DAP  0.004  0.745   -0.028    0.028  0.003
## 57   FIXO_DAP_R  0.121  0.275   -0.095    0.337  0.079
## 58     FIXO_DAP  0.125  0.256   -0.102    0.333  0.082
semPlot::semPaths(fit,what = "path",exoVar = FALSE,residuals = F,intercepts = F, thresholds = F, exoCov = F,structural = T,whatLabels = "std",layout = "tree3",curvature = 0,reorder=T,rotation=2)

Modelo Mediacional Mindset CRESCIMENTO

modelo<-
'
# Medida 
MAP =~ MRT7 + MRT8 + MRT9 + MRT10
DAP =~ MRT11 + MRT12 + MRT13 + MRT14

CRESCIMENTO =~ DMI3 + DMI5 + DMI7 + DMI8

FPT=~FPT1 + FPT2 + FPT3 + FPT4 + FPT5 + FPT6 + FPT7

# Estrutural 
MAP ~ c1.1*CRESCIMENTO + b1.1*FPT
DAP ~ c1.2*CRESCIMENTO + b1.2*FPT
FPT ~ a1.1*CRESCIMENTO 

#Correlated Outcome
MAP~~DAP

#Constrains

# A trajectory
CRES_FPT := a1.1 

# B trajectory
FPT_MAP := b1.1
# AB Indirect effect
# Mediação CRES -> FPT -> MAP
CRES_FPT_MAP := a1.1*b1.1
# C reduced on M
CRES_MAP_R := c1.1
# C total effect
CRES_MAP := (c1.1) + (CRES_FPT_MAP)

# B trajectory
FPT_DAP := b1.2
# AB Indirect effect
# Mediação CRES -> FPT -> DAP
CRES_FPT_DAP := a1.1*b1.2
# C reduced on M
CRES_DAP_R := c1.2
# C total effect
CRES_DAP := (c1.2) + (CRES_FPT_DAP)

'
#fit<-lavaan::cfa(model=modelo,data=banco_geral,estimator="DWLS",ordered=T,orthogonal=T,se="bootstrap", test="scaled.shifted",verbose=F)
fit<-lavaan::sem(model=modelo,data=banco_geral,estimator="ML",ordered=F,orthogonal=T,se="bootstrap", test="yuan.bentler.mplus",verbose=F)
summary(fit,standardized=T,fit=T,rsquare=T)
## lavaan 0.6-9 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        44
##                                                       
##   Number of observations                           327
##                                                       
## Model Test User Model:
##                                                Standard      Robust
##   Test Statistic                                231.448     200.962
##   Degrees of freedom                                146         146
##   P-value (Chi-square)                            0.000       0.002
##   Scaling correction factor                                   1.152
##        Yuan-Bentler correction (Mplus variant)                     
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2398.966    1870.834
##   Degrees of freedom                               171         171
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.282
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.962       0.968
##   Tucker-Lewis Index (TLI)                       0.955       0.962
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.971
##   Robust Tucker-Lewis Index (TLI)                            0.966
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10483.744  -10483.744
##   Scaling correction factor                                  1.732
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -10368.020  -10368.020
##   Scaling correction factor                                  1.286
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               21055.488   21055.488
##   Bayesian (BIC)                             21222.246   21222.246
##   Sample-size adjusted Bayesian (BIC)        21082.680   21082.680
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.042       0.034
##   90 Percent confidence interval - lower         0.032       0.022
##   90 Percent confidence interval - upper         0.052       0.044
##   P-value RMSEA <= 0.05                          0.893       0.996
##                                                                   
##   Robust RMSEA                                               0.036
##   90 Percent confidence interval - lower                     0.023
##   90 Percent confidence interval - upper                     0.048
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.047       0.047
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP =~                                                                
##     MRT7              1.000                               0.868    0.722
##     MRT8              0.876    0.127    6.916    0.000    0.761    0.501
##     MRT9              0.991    0.114    8.689    0.000    0.860    0.710
##     MRT10             1.190    0.180    6.603    0.000    1.033    0.777
##   DAP =~                                                                
##     MRT11             1.000                               1.459    0.689
##     MRT12             1.262    0.098   12.916    0.000    1.842    0.899
##     MRT13             1.156    0.095   12.224    0.000    1.687    0.818
##     MRT14             0.943    0.094    9.987    0.000    1.376    0.673
##   CRESCIMENTO =~                                                        
##     DMI3              1.000                               1.163    0.751
##     DMI5              0.988    0.099   10.031    0.000    1.149    0.730
##     DMI7              1.048    0.086   12.129    0.000    1.219    0.829
##     DMI8              0.828    0.101    8.160    0.000    0.963    0.705
##   FPT =~                                                                
##     FPT1              1.000                               1.061    0.721
##     FPT2              0.343    0.078    4.427    0.000    0.364    0.350
##     FPT3              0.909    0.079   11.454    0.000    0.964    0.699
##     FPT4              1.019    0.096   10.579    0.000    1.081    0.660
##     FPT5              1.077    0.084   12.816    0.000    1.143    0.777
##     FPT6              1.033    0.128    8.053    0.000    1.096    0.581
##     FPT7              1.034    0.114    9.096    0.000    1.097    0.616
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP ~                                                                 
##     CRESCIM (c1.1)    0.202    0.061    3.298    0.001    0.270    0.270
##     FPT     (b1.1)    0.258    0.060    4.283    0.000    0.316    0.316
##   DAP ~                                                                 
##     CRESCIM (c1.2)    0.119    0.081    1.478    0.139    0.095    0.095
##     FPT     (b1.2)    0.086    0.093    0.922    0.357    0.062    0.062
##   FPT ~                                                                 
##     CRESCIM (a1.1)    0.152    0.067    2.274    0.023    0.166    0.166
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .MAP ~~                                                                
##    .DAP               0.084    0.079    1.058    0.290    0.075    0.075
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.690    0.100    6.909    0.000    0.690    0.478
##    .MRT8              1.729    0.230    7.527    0.000    1.729    0.749
##    .MRT9              0.727    0.118    6.153    0.000    0.727    0.496
##    .MRT10             0.702    0.219    3.196    0.001    0.702    0.397
##    .MRT11             2.357    0.277    8.523    0.000    2.357    0.525
##    .MRT12             0.807    0.196    4.122    0.000    0.807    0.192
##    .MRT13             1.406    0.233    6.027    0.000    1.406    0.331
##    .MRT14             2.288    0.230    9.944    0.000    2.288    0.547
##    .DMI3              1.048    0.227    4.612    0.000    1.048    0.436
##    .DMI5              1.160    0.252    4.603    0.000    1.160    0.468
##    .DMI7              0.678    0.155    4.370    0.000    0.678    0.313
##    .DMI8              0.941    0.167    5.640    0.000    0.941    0.504
##    .FPT1              1.039    0.112    9.274    0.000    1.039    0.480
##    .FPT2              0.951    0.122    7.785    0.000    0.951    0.878
##    .FPT3              0.976    0.113    8.657    0.000    0.976    0.512
##    .FPT4              1.516    0.173    8.758    0.000    1.516    0.565
##    .FPT5              0.856    0.110    7.815    0.000    0.856    0.396
##    .FPT6              2.354    0.256    9.210    0.000    2.354    0.662
##    .FPT7              1.968    0.210    9.390    0.000    1.968    0.621
##    .MAP               0.602    0.143    4.214    0.000    0.799    0.799
##    .DAP               2.098    0.300    6.990    0.000    0.985    0.985
##     CRESCIMENTO       1.353    0.254    5.327    0.000    1.000    1.000
##    .FPT               1.094    0.176    6.204    0.000    0.972    0.972
## 
## R-Square:
##                    Estimate
##     MRT7              0.522
##     MRT8              0.251
##     MRT9              0.504
##     MRT10             0.603
##     MRT11             0.475
##     MRT12             0.808
##     MRT13             0.669
##     MRT14             0.453
##     DMI3              0.564
##     DMI5              0.532
##     DMI7              0.687
##     DMI8              0.496
##     FPT1              0.520
##     FPT2              0.122
##     FPT3              0.488
##     FPT4              0.435
##     FPT5              0.604
##     FPT6              0.338
##     FPT7              0.379
##     MAP               0.201
##     DAP               0.015
##     FPT               0.028
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     CRES_FPT          0.152    0.067    2.273    0.023    0.166    0.166
##     FPT_MAP           0.258    0.060    4.281    0.000    0.316    0.316
##     CRES_FPT_MAP      0.039    0.020    1.957    0.050    0.052    0.052
##     CRES_MAP_R        0.202    0.061    3.297    0.001    0.270    0.270
##     CRES_MAP          0.241    0.069    3.507    0.000    0.323    0.323
##     FPT_DAP           0.086    0.093    0.921    0.357    0.062    0.062
##     CRES_FPT_DAP      0.013    0.018    0.732    0.464    0.010    0.010
##     CRES_DAP_R        0.119    0.081    1.478    0.140    0.095    0.095
##     CRES_DAP          0.132    0.079    1.681    0.093    0.105    0.105
pvalue<-parameterEstimates(fit, boot.ci.type = "perc",standardized = T)
pvalue<-pvalue[(pvalue$op==":="&(pvalue$lhs!=pvalue$rhs)),c(1,5,8,9,10,11)]
pvalue
##             lhs   est pvalue ci.lower ci.upper std.lv
## 49     CRES_FPT 0.152  0.023    0.034    0.298  0.166
## 50      FPT_MAP 0.258  0.000    0.156    0.390  0.316
## 51 CRES_FPT_MAP 0.039  0.050    0.009    0.090  0.052
## 52   CRES_MAP_R 0.202  0.001    0.097    0.339  0.270
## 53     CRES_MAP 0.241  0.000    0.124    0.395  0.323
## 54      FPT_DAP 0.086  0.357   -0.096    0.267  0.062
## 55 CRES_FPT_DAP 0.013  0.464   -0.015    0.056  0.010
## 56   CRES_DAP_R 0.119  0.140   -0.043    0.279  0.095
## 57     CRES_DAP 0.132  0.093   -0.023    0.291  0.105
semPlot::semPaths(fit,what = "path",exoVar = FALSE,residuals = F,intercepts = F, thresholds = F, exoCov = F,structural = T,whatLabels = "std",layout = "tree3",curvature = 0,reorder=T,rotation=2)

Terceiro passo criar um modelo estrutal - geral

modelo<-
'
# Medida 
MAP =~ MRT7 + MRT8 + MRT9 + MRT10
DAP =~ MRT11 + MRT12 + MRT13 + MRT14

FIXO =~ DMI1 + DMI2 + DMI4 + DMI6
CRESCIMENTO =~ DMI3 + DMI5 + DMI7 + DMI8

FPT=~FPT1 + FPT2 + FPT3 + FPT4 + FPT5 + FPT6 + FPT7

DMI1    ~~  DMI2
#DMI4   ~~  DMI6

# Estrutural 
MAP ~ c1.1*FIXO + c2.1*CRESCIMENTO + b1.1*FPT
DAP ~ c1.2*FIXO + c2.2*CRESCIMENTO + b1.2*FPT
FPT ~ a1.1*FIXO + a2.1*CRESCIMENTO

#Correlated Outcome
MAP~~DAP

#Correlated Predictors
FIXO ~~ CRESCIMENTO

#Constrains CRES

# A trajectory
CRES_FPT := a2.1 

# B trajectory
FPT_MAP := b1.1
# AB Indirect effect
# Mediação CRES -> FPT -> MAP
CRES_FPT_MAP := a2.1*b1.1
# C reduced on M
CRES_MAP_R := c2.1
# C total effect
CRES_MAP := (c2.1) + (CRES_FPT_MAP)

# B trajectory
FPT_DAP := b1.2
# AB Indirect effect
# Mediação CRES -> FPT -> DAP
CRES_FPT_DAP := a2.1*b1.2
# C reduced on M
CRES_DAP_R := c2.2
# C total effect
CRES_DAP := (c2.2) + (CRES_FPT_DAP)

#Constrains FIXO

# A trajectory
FIXO_FPT := a1.1 

# B trajectory
FPT_MAP := b1.1
# AB Indirect effect
# Mediação FIXO -> FPT -> MAP
FIXO_FPT_MAP := a1.1*b1.1
# C reduced on M
FIXO_MAP_R := c1.1
# C total effect
FIXO_MAP := (c1.1) + (FIXO_FPT_MAP)

# B trajectory
FPT_DAP := b1.2
# AB Indirect effect
# Mediação FIXO -> FPT -> DAP
FIXO_FPT_DAP := a1.1*b1.2
# C reduced on M
FIXO_DAP_R := c1.2
# C total effect
FIXO_DAP := (c1.2) + (FIXO_FPT_DAP)
'
fit<-lavaan::sem(model=modelo,data=banco_geral,estimator="ML",ordered=F,orthogonal=T,se="bootstrap", test="yuan.bentler.mplus",verbose=F)
summary(fit,standardized=T,fit=T,rsquare=T)
## lavaan 0.6-9 ended normally after 61 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        57
##                                                       
##   Number of observations                           327
##                                                       
## Model Test User Model:
##                                                Standard      Robust
##   Test Statistic                                367.901     331.301
##   Degrees of freedom                                219         219
##   P-value (Chi-square)                            0.000       0.000
##   Scaling correction factor                                   1.110
##        Yuan-Bentler correction (Mplus variant)                     
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2980.477    2415.358
##   Degrees of freedom                               253         253
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.234
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.945       0.948
##   Tucker-Lewis Index (TLI)                       0.937       0.940
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.953
##   Robust Tucker-Lewis Index (TLI)                            0.946
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12867.238  -12867.238
##   Scaling correction factor                                  1.751
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -12683.287  -12683.287
##   Scaling correction factor                                  1.243
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               25848.476   25848.476
##   Bayesian (BIC)                             26064.504   26064.504
##   Sample-size adjusted Bayesian (BIC)        25883.702   25883.702
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.046       0.040
##   90 Percent confidence interval - lower         0.037       0.031
##   90 Percent confidence interval - upper         0.054       0.048
##   P-value RMSEA <= 0.05                          0.811       0.985
##                                                                   
##   Robust RMSEA                                               0.042
##   90 Percent confidence interval - lower                     0.032
##   90 Percent confidence interval - upper                     0.051
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.053       0.053
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP =~                                                                
##     MRT7              1.000                               0.873    0.727
##     MRT8              0.873    0.127    6.895    0.000    0.762    0.502
##     MRT9              0.985    0.116    8.486    0.000    0.860    0.710
##     MRT10             1.177    0.178    6.616    0.000    1.027    0.773
##   DAP =~                                                                
##     MRT11             1.000                               1.457    0.688
##     MRT12             1.263    0.100   12.682    0.000    1.840    0.898
##     MRT13             1.159    0.096   12.103    0.000    1.689    0.819
##     MRT14             0.945    0.095    9.956    0.000    1.377    0.674
##   FIXO =~                                                               
##     DMI1              1.000                               0.923    0.487
##     DMI2              1.129    0.123    9.149    0.000    1.042    0.617
##     DMI4              1.268    0.211    5.996    0.000    1.170    0.669
##     DMI6              1.421    0.236    6.017    0.000    1.312    0.741
##   CRESCIMENTO =~                                                        
##     DMI3              1.000                               1.152    0.743
##     DMI5              1.006    0.092   10.920    0.000    1.159    0.735
##     DMI7              1.041    0.075   13.795    0.000    1.199    0.815
##     DMI8              0.859    0.102    8.424    0.000    0.989    0.724
##   FPT =~                                                                
##     FPT1              1.000                               1.058    0.719
##     FPT2              0.341    0.073    4.655    0.000    0.361    0.347
##     FPT3              0.910    0.076   12.004    0.000    0.963    0.698
##     FPT4              1.017    0.098   10.347    0.000    1.076    0.657
##     FPT5              1.082    0.090   12.022    0.000    1.145    0.779
##     FPT6              1.041    0.135    7.731    0.000    1.101    0.584
##     FPT7              1.041    0.121    8.615    0.000    1.102    0.619
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   MAP ~                                                                 
##     FIXO    (c1.1)   -0.151    0.121   -1.245    0.213   -0.159   -0.159
##     CRESCIM (c2.1)    0.120    0.092    1.300    0.194    0.158    0.158
##     FPT     (b1.1)    0.280    0.064    4.385    0.000    0.339    0.339
##   DAP ~                                                                 
##     FIXO    (c1.2)    0.411    0.206    1.993    0.046    0.260    0.260
##     CRESCIM (c2.2)    0.346    0.151    2.296    0.022    0.274    0.274
##     FPT     (b1.2)    0.034    0.105    0.322    0.747    0.025    0.025
##   FPT ~                                                                 
##     FIXO    (a1.1)    0.301    0.144    2.096    0.036    0.262    0.262
##     CRESCIM (a2.1)    0.317    0.110    2.881    0.004    0.345    0.345
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .DMI1 ~~                                                               
##    .DMI2              0.847    0.235    3.614    0.000    0.847    0.385
##  .MAP ~~                                                                
##    .DAP               0.112    0.072    1.568    0.117    0.102    0.102
##   FIXO ~~                                                               
##     CRESCIMENTO      -0.721    0.146   -4.948    0.000   -0.678   -0.678
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .MRT7              0.682    0.099    6.883    0.000    0.682    0.472
##    .MRT8              1.727    0.225    7.686    0.000    1.727    0.748
##    .MRT9              0.728    0.122    5.975    0.000    0.728    0.496
##    .MRT10             0.713    0.217    3.279    0.001    0.713    0.403
##    .MRT11             2.363    0.277    8.515    0.000    2.363    0.527
##    .MRT12             0.812    0.204    3.988    0.000    0.812    0.193
##    .MRT13             1.399    0.219    6.404    0.000    1.399    0.329
##    .MRT14             2.284    0.230    9.941    0.000    2.284    0.546
##    .DMI1              2.743    0.366    7.497    0.000    2.743    0.763
##    .DMI2              1.769    0.291    6.071    0.000    1.769    0.620
##    .DMI4              1.689    0.277    6.085    0.000    1.689    0.552
##    .DMI6              1.409    0.309    4.566    0.000    1.409    0.450
##    .DMI3              1.074    0.224    4.792    0.000    1.074    0.448
##    .DMI5              1.139    0.247    4.612    0.000    1.139    0.459
##    .DMI7              0.726    0.164    4.423    0.000    0.726    0.335
##    .DMI8              0.890    0.172    5.167    0.000    0.890    0.476
##    .FPT1              1.044    0.116    8.982    0.000    1.044    0.482
##    .FPT2              0.954    0.114    8.333    0.000    0.954    0.880
##    .FPT3              0.978    0.111    8.776    0.000    0.978    0.513
##    .FPT4              1.526    0.176    8.686    0.000    1.526    0.569
##    .FPT5              0.850    0.105    8.102    0.000    0.850    0.393
##    .FPT6              2.342    0.258    9.084    0.000    2.342    0.659
##    .FPT7              1.957    0.220    8.913    0.000    1.957    0.617
##    .MAP               0.599    0.131    4.562    0.000    0.786    0.786
##    .DAP               2.019    0.300    6.724    0.000    0.951    0.951
##     FIXO              0.852    0.249    3.416    0.001    1.000    1.000
##     CRESCIMENTO       1.326    0.229    5.787    0.000    1.000    1.000
##    .FPT               1.047    0.176    5.945    0.000    0.935    0.935
## 
## R-Square:
##                    Estimate
##     MRT7              0.528
##     MRT8              0.252
##     MRT9              0.504
##     MRT10             0.597
##     MRT11             0.473
##     MRT12             0.807
##     MRT13             0.671
##     MRT14             0.454
##     DMI1              0.237
##     DMI2              0.380
##     DMI4              0.448
##     DMI6              0.550
##     DMI3              0.552
##     DMI5              0.541
##     DMI7              0.665
##     DMI8              0.524
##     FPT1              0.518
##     FPT2              0.120
##     FPT3              0.487
##     FPT4              0.431
##     FPT5              0.607
##     FPT6              0.341
##     FPT7              0.383
##     MAP               0.214
##     DAP               0.049
##     FPT               0.065
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     CRES_FPT          0.317    0.110    2.879    0.004    0.345    0.345
##     FPT_MAP           0.280    0.064    4.383    0.000    0.339    0.339
##     CRES_FPT_MAP      0.089    0.038    2.339    0.019    0.117    0.117
##     CRES_MAP_R        0.120    0.092    1.299    0.194    0.158    0.158
##     CRES_MAP          0.208    0.094    2.215    0.027    0.275    0.275
##     FPT_DAP           0.034    0.106    0.322    0.748    0.025    0.025
##     CRES_FPT_DAP      0.011    0.039    0.279    0.780    0.009    0.009
##     CRES_DAP_R        0.346    0.151    2.295    0.022    0.274    0.274
##     CRES_DAP          0.357    0.140    2.543    0.011    0.282    0.282
##     FIXO_FPT          0.301    0.144    2.095    0.036    0.262    0.262
##     FPT_MAP           0.280    0.064    4.383    0.000    0.339    0.339
##     FIXO_FPT_MAP      0.084    0.046    1.818    0.069    0.089    0.089
##     FIXO_MAP_R       -0.151    0.121   -1.245    0.213   -0.159   -0.159
##     FIXO_MAP         -0.067    0.120   -0.557    0.578   -0.070   -0.070
##     FPT_DAP           0.034    0.106    0.322    0.748    0.025    0.025
##     FIXO_FPT_DAP      0.010    0.038    0.267    0.789    0.006    0.006
##     FIXO_DAP_R        0.411    0.206    1.992    0.046    0.260    0.260
##     FIXO_DAP          0.421    0.195    2.161    0.031    0.267    0.267
pvalue<-parameterEstimates(fit, boot.ci.type = "perc",standardized = T)
pvalue<-pvalue[(pvalue$op==":="&(pvalue$lhs!=pvalue$rhs)),c(1,5,8,9,10,11)]
pvalue
##             lhs    est pvalue ci.lower ci.upper std.lv
## 63     CRES_FPT  0.317  0.004    0.132    0.573  0.345
## 64      FPT_MAP  0.280  0.000    0.171    0.423  0.339
## 65 CRES_FPT_MAP  0.089  0.019    0.034    0.174  0.117
## 66   CRES_MAP_R  0.120  0.194   -0.058    0.294  0.158
## 67     CRES_MAP  0.208  0.027    0.032    0.404  0.275
## 68      FPT_DAP  0.034  0.748   -0.178    0.223  0.025
## 69 CRES_FPT_DAP  0.011  0.780   -0.066    0.091  0.009
## 70   CRES_DAP_R  0.346  0.022    0.058    0.667  0.274
## 71     CRES_DAP  0.357  0.011    0.077    0.648  0.282
## 72     FIXO_FPT  0.301  0.036    0.054    0.664  0.262
## 73      FPT_MAP  0.280  0.000    0.171    0.423  0.339
## 74 FIXO_FPT_MAP  0.084  0.069    0.015    0.195  0.089
## 75   FIXO_MAP_R -0.151  0.213   -0.438    0.033 -0.159
## 76     FIXO_MAP -0.067  0.578   -0.335    0.137 -0.070
## 77      FPT_DAP  0.034  0.748   -0.178    0.223  0.025
## 78 FIXO_FPT_DAP  0.010  0.789   -0.069    0.089  0.006
## 79   FIXO_DAP_R  0.411  0.046    0.036    0.865  0.260
## 80     FIXO_DAP  0.421  0.031    0.059    0.865  0.267
semPlot::semPaths(fit,what = "path",exoVar = FALSE,residuals = F,intercepts = F, thresholds = F, exoCov = F,structural = T,whatLabels = "std",layout = "tree3",curvature = 0,reorder=T,rotation=2)