A complete bioinformatics workflow in R

Code By: Nathan L. Brouwer

“Worked example: Building a phylogeny in R”

Introduction

In bioinformatics, a phylogeny of species, proteins, or genes can be built to show how

Vocab

Make a list of at least 10 vocab terms that are important (don’t have to define)

Key functions

rentrez::entrez_fetch() compbio4all::entrez_fetch_list() compbio4all::print_msa() (Coghlan 2011) Biostrings::AAStringSet() msa::msa()

Software Preliminaires

Add the necessary calls to library() to load call packages Indicate which packages cam from Bioconducotr, CRAN, and GitHub

Load packages into memory

# github packages
library(compbio4all)


# CRAN packages
library(rentrez)
library(seqinr)
library(ape)

# Bioconductor packages
library(msa)
library(Biostrings)

downloading macromolecular sequences

We are exploring sequences, and we will be using the entrez_fetch() function to download them; this function accesses gene/protein sequences from the NCBI database. This function is from the rentrez package, which stands for "R-Entrez rentrez::entrez_fetch

# Human shroom 3 (H. sapiens)
hShroom3 <- entrez_fetch(db = "protein", 
                          id = "NP_065910", 
                          rettype = "fasta")

TODO:cat() is doing some formatting by enforcing line breaks

cat(hShroom3)
## >NP_065910.3 protein Shroom3 [Homo sapiens]
## MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKL
## QAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAA
## WSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYL
## RRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGR
## ERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNI
## PRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSL
## GSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGM
## LYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFC
## SVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDF
## QEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTK
## AEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQ
## GFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEP
## LGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGS
## PESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPH
## TPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFP
## ESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAY
## LQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLS
## GANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSG
## FGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTP
## CPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGP
## RGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTS
## DPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPV
## YSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEA
## ESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDK
## SLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYY
## SVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEA
## LISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHED
## ARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDF
## IPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL

TODO: This code chunk is automatically downloading sequence data from the NCBI database for various shroom proteins. Each of the shroom proteins has a unique id/accession number.

# Mouse shroom 3a (M. musculus)
mShroom3a <- entrez_fetch(db = "protein", 
                          id = "AAF13269", 
                          rettype = "fasta")

# Human shroom 2 (H. sapiens)
hShroom2 <- entrez_fetch(db = "protein", 
                          id = "CAA58534", 
                          rettype = "fasta")


# Sea-urchin shroom
sShroom <- entrez_fetch(db = "protein", 
                          id = "XP_783573", 
                          rettype = "fasta")

TODO: This code chuck helps us know how long each sequence is, by letting us know how many characters are in each object(each sequence).

nchar(hShroom3)
## [1] 2070
nchar(mShroom3a)
## [1] 2083
nchar(sShroom)
## [1] 1758
nchar(hShroom2)
## [1] 1673

Prepping macromolecular sequences

TODO: This function “cleans” the data from the sequences by removing the parts that are not sequence information. This function essentially makes the data usable.

fasta_cleaner
## function (fasta_object, parse = TRUE) 
## {
##     fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)", "\\4", 
##         fasta_object)
##     fasta_object <- gsub("\n", "", fasta_object)
##     if (parse == TRUE) {
##         fasta_object <- stringr::str_split(fasta_object, pattern = "", 
##             simplify = FALSE)
##     }
##     return(fasta_object[[1]])
## }
## <bytecode: 0x00000000232bad10>
## <environment: namespace:compbio4all>

TODO: If you can’t download compbio4all, run the code chunk below to access the fasta_cleaner() function.

fasta_cleaner <- function(fasta_object, parse = TRUE){
                                                            
 fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)","\\4",fasta_object)
 fasta_object <- gsub("\n", "", fasta_object)
                                                            
 if(parse == TRUE){
   fasta_object <- stringr::str_split(fasta_object,
                                      pattern = "",
                                     simplify = FALSE)
 }
                                                            
 return(fasta_object[[1]])
}

TODO: This code chunk is cleaning each of the sequences.

hShroom3  <- fasta_cleaner(hShroom3,  parse = F)
mShroom3a <- fasta_cleaner(mShroom3a, parse = F)
hShroom2  <- fasta_cleaner(hShroom2,  parse = F)
sShroom   <- fasta_cleaner(sShroom,   parse = F)
hShroom3
## [1] "MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKLQAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAAWSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYLRRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGRERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNIPRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSLGSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGMLYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFCSVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDFQEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTKAEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQGFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEPLGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGSPESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPHTPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFPESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAYLQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLSGANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSGFGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTPCPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGPRGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTSDPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPVYSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEAESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDKSLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYYSVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEALISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHEDARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDFIPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL"

aligning sequences

TODO: This code chunk is aligning human versus mouse shroom using the global alignment function pairwiseAlignment():

# add necessary function
align.h3.vs.m3a <-Biostrings::pairwiseAlignment(
                  hShroom3,
                  mShroom3a)

TODO: This shows you part of the human versus mouse shroom alignment. The dashes show indels.

align.h3.vs.m3a
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: MMRTTEDFHKPSATLN-SNTATKGRYIYLEAFLE...KAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL
## subject: MK-TPENLEEPSATPNPSRTPTE-RFVYLEALLE...KAGAISLPPALTGHATPGGTSVFGGVFPTLTSPL
## score: 2189.934

TODO: pid(), the percent sequence identity, shows how similar the the two sequences are as a percentage.

# add necessary function
Biostrings::pid(align.h3.vs.m3a)
## [1] 70.56511

TODO: The previous code chunks aligned human shroom 3 with mouse shroom 3. This code chunk aligns human shroom 3 with human shroom 2.

align.h3.vs.h2 <- Biostrings::pairwiseAlignment(
                  hShroom3,
                  hShroom2)

TODO: This scores how similar h3 is to h2, but its hard to interpret.

score(align.h3.vs.h2)
## [1] -5673.853

TODO: pid() gives you a % to show how similar two sequnces are, wheras score() gives you a number, which can hard to interpret. Also,indels contribute negatively to an alignment score, but aren’t used in the most common calculations for PID

Biostrings::pid(align.h3.vs.h2)
## [1] 33.83277

The shroom family of genes

TODO: This table is from a published paper and has the accession numbers of 15 shroom genes.

shroom_table <- c("CAA78718" , "X. laevis Apx" ,         "xShroom1",
            "NP_597713" , "H. sapiens APXL2" ,     "hShroom1",
            "CAA58534" , "H. sapiens APXL",        "hShroom2",
            "ABD19518" , "M. musculus Apxl" ,      "mShroom2",
            "AAF13269" , "M. musculus ShroomL" ,   "mShroom3a",
            "AAF13270" , "M. musculus ShroomS" ,   "mShroom3b",
            "NP_065910", "H. sapiens Shroom" ,     "hShroom3",
            "ABD59319" , "X. laevis Shroom-like",  "xShroom3",
            "NP_065768", "H. sapiens KIAA1202" ,   "hShroom4a",
            "AAK95579" , "H. sapiens SHAP-A" ,     "hShroom4b",
            #"DQ435686" , "M. musculus KIAA1202" ,  "mShroom4",
            "ABA81834" , "D. melanogaster Shroom", "dmShroom",
            "EAA12598" , "A. gambiae Shroom",      "agShroom",
            "XP_392427" , "A. mellifera Shroom" ,  "amShroom",
            "XP_783573" , "S. purpuratus Shroom" , "spShroom") #sea urchin

TODO: This is converting data into the most usable format.

# convert the vector to a matrix using matrix() function
shroom_table_matrix <- matrix(shroom_table,
                                  byrow = T,
                                  nrow = 14)
# convert matrix to a datarframe using data.frame() function
shroom_table <- data.frame(shroom_table_matrix, 
                     stringsAsFactors = F)

# naming dataframe columns using names() function
names(shroom_table) <- c("accession", "name.orig","name.new")

# Create simplified species names
shroom_table$spp <- "Homo"
shroom_table$spp[grep("laevis",shroom_table$name.orig)] <- "Xenopus"
shroom_table$spp[grep("musculus",shroom_table$name.orig)] <- "Mus"
shroom_table$spp[grep("melanogaster",shroom_table$name.orig)] <- "Drosophila"
shroom_table$spp[grep("gambiae",shroom_table$name.orig)] <- "mosquito"
shroom_table$spp[grep("mellifera",shroom_table$name.orig)] <- "bee"
shroom_table$spp[grep("purpuratus",shroom_table$name.orig)] <- "sea urchin"

TODO: This gives us a finished shroom table, with accession numbers, the original name, new names, and the species a shroom protein is from.

shroom_table
##    accession              name.orig  name.new        spp
## 1   CAA78718          X. laevis Apx  xShroom1    Xenopus
## 2  NP_597713       H. sapiens APXL2  hShroom1       Homo
## 3   CAA58534        H. sapiens APXL  hShroom2       Homo
## 4   ABD19518       M. musculus Apxl  mShroom2        Mus
## 5   AAF13269    M. musculus ShroomL mShroom3a        Mus
## 6   AAF13270    M. musculus ShroomS mShroom3b        Mus
## 7  NP_065910      H. sapiens Shroom  hShroom3       Homo
## 8   ABD59319  X. laevis Shroom-like  xShroom3    Xenopus
## 9  NP_065768    H. sapiens KIAA1202 hShroom4a       Homo
## 10  AAK95579      H. sapiens SHAP-A hShroom4b       Homo
## 11  ABA81834 D. melanogaster Shroom  dmShroom Drosophila
## 12  EAA12598      A. gambiae Shroom  agShroom   mosquito
## 13 XP_392427    A. mellifera Shroom  amShroom        bee
## 14 XP_783573   S. purpuratus Shroom  spShroom sea urchin

downloading multiple sequences

TODO: The $ allows us to download mutliple sequences at the same time.

shroom_table$accession
##  [1] "CAA78718"  "NP_597713" "CAA58534"  "ABD19518"  "AAF13269"  "AAF13270" 
##  [7] "NP_065910" "ABD59319"  "NP_065768" "AAK95579"  "ABA81834"  "EAA12598" 
## [13] "XP_392427" "XP_783573"

TODO: This chunk gives a whole set of accession numbers to the entrez_fetch() function, which is a vectorized function, which can handle a vector of inputs.

# add necessary function
shrooms <- rentrez::entrez_fetch(db = "protein", 
                          id = shroom_table$accession, 
                          rettype = "fasta")

TODO: This allows us the see each shroom protein sequence

cat(shrooms)

TODO: This will download all of the shroom sequences again and format the sequences into an R data format called a list. This makes the sequence data usable.

shrooms_list <- entrez_fetch_list(db = "protein", 
                          id = shroom_table$accession, 
                          rettype = "fasta")

TODO: This shows that we have an R list with 14 elements in it.

length(shrooms_list)
## [1] 14

TODO: This is cleaning all 14 of the shroom sequences. This for() loop allows us to do it in a more efficient way.

for(i in 1:length(shrooms_list)){
  shrooms_list[[i]] <- fasta_cleaner(shrooms_list[[i]], parse = F)
}

TODO: In this code chunk we are creating an empty, the for() loop allows us to put each element of the shrooms_list into the vector we created, and then we name the vector using the names() function.

# making the empty vector
shrooms_vector <- rep(NA, length(shrooms_list))

# run the loop
for(i in 1:length(shrooms_vector)){
  shrooms_vector[i] <- shrooms_list[[i]]
}

# name the vectors
names(shrooms_vector) <- names(shrooms_list)

TODO: This converts our vector into a string set, a form of data that helps organize sequence data.

# add necessary function
shrooms_vector_ss <- Biostrings::AAStringSet(shrooms_vector)

MSA

Multiple sequence alignments allow us to align more than 2 sequences.This section will align all of the sequences, and later on the mutliple sequence alignment we created will be used to create phylogenetic trees.

Building a Multiple Sequence Alignment (MSA)

TODO: This sequence uses msa() package to use ClustalW, a mutliple sequence alignment algorithm, which will create an MSA

# add necessary function
library(msa)
shrooms_align <-msa(shrooms_vector_ss,
                     method = "ClustalW")
## use default substitution matrix

Viewing an MSA

TODO: This section will create a graphic that allows us to visualize the MSA we built

Viewing an MSA in R

TODO: A portion of the MSA is shown below, this area has lots of indels.

shrooms_align
## CLUSTAL 2.1  
## 
## Call:
##    msa(shrooms_vector_ss, method = "ClustalW")
## 
## MsaAAMultipleAlignment with 14 rows and 2252 columns
##      aln                                                   names
##  [1] -------------------------...------------------------- NP_065768
##  [2] -------------------------...------------------------- AAK95579
##  [3] -------------------------...SVFGGVFPTLTSPL----------- AAF13269
##  [4] -------------------------...SVFGGVFPTLTSPL----------- AAF13270
##  [5] -------------------------...CTFSGIFPTLTSPL----------- NP_065910
##  [6] -------------------------...NKS--LPPPLTSSL----------- ABD59319
##  [7] -------------------------...------------------------- CAA58534
##  [8] -------------------------...------------------------- ABD19518
##  [9] -------------------------...LT----------------------- NP_597713
## [10] -------------------------...------------------------- CAA78718
## [11] -------------------------...------------------------- EAA12598
## [12] -------------------------...------------------------- ABA81834
## [13] MTELQPSPPGYRVQDEAPGPPSCPP...------------------------- XP_392427
## [14] -------------------------...AATSSSSNGIGGPEQLNSNATSSYC XP_783573
##  Con -------------------------...------------------------- Consensus

TODO: This chunk makes tweaks to the msa visualization to make it work with other functions.

# This helps shrooms_align work better with other functions
class(shrooms_align) <- "AAMultipleAlignment"

# This helps the object work with functions in the seqinr package
shrooms_align_seqinr <- msaConvert(shrooms_align, type = "seqinr::alignment")

TODO: This chunk displays the msa, but on a small monitor this isn’t really useful.

print_msa(alignment = shrooms_align_seqinr, 
          chunksize = 60)

Displaying an MSA XXXXXXXX

TODO: This shows part of the MSA in a pretty, color-coded plot.

## add necessary function
library(ggmsa)
## Registered S3 methods overwritten by 'ggalt':
##   method                  from   
##   grid.draw.absoluteGrob  ggplot2
##   grobHeight.absoluteGrob ggplot2
##   grobWidth.absoluteGrob  ggplot2
##   grobX.absoluteGrob      ggplot2
##   grobY.absoluteGrob      ggplot2
ggmsa::ggmsa(shrooms_align,   # shrooms_align, NOT shrooms_align_seqinr
      start = 2000, 
      end = 2100) 

Saving an MSA as PDF

TODO: This chunk is saving the MSA plot as a PDF file. Add the package the function is coming from using :: notation This may not work for everyone. If its not working you can comment it out.

install.packages("tinytex")
tinytex::msaPrettyPrint()
msaPrettyPrint(shrooms_align,             # alignment
               file = "shroom_msa.pdf",   # file name
               y=c(2000, 2100),           # range
               askForOverwrite=FALSE)

TODO: This lets you know where R is saving things

getwd()
## [1] "C:/Users/saumi/Documents/comp bio"

A subset of sequences

To make things easier we’ll move forward with just a subset of sequences:

  • XP_392427: amShroom (bee shroom)
  • EAA12598: agShroom (mosquito shroom)
  • ABA81834: dmShroom (Drosophila shroom)
  • XP_783573: spShroom (sea urchin shroom)
  • CAA78718: xShroom1 (frog shroom)

Our main working object shrooms_vector_ss has the names of our genes listed

names(shrooms_vector_ss)
##  [1] "CAA78718"  "NP_597713" "CAA58534"  "ABD19518"  "AAF13269"  "AAF13270" 
##  [7] "NP_065910" "ABD59319"  "NP_065768" "AAK95579"  "ABA81834"  "EAA12598" 
## [13] "XP_392427" "XP_783573"

We can select the ones we want to focus on be first making a vector of the names

names.focal <- c("XP_392427","EAA12598","ABA81834","XP_783573","CAA78718")

We can use this vector and bracket notation to select the what we want from shrooms_vector_ss:

shrooms_vector_ss[names.focal]
## AAStringSet object of length 5:
##     width seq                                               names               
## [1]  2126 MTELQPSPPGYRVQDEAPGPPSC...GREIQDKVKLGEEQLAALREAID XP_392427
## [2]   674 IPFSSSPKNRSNSKASYLPRQPR...ADKIKLGEEQLAALKDTLVQSEC EAA12598
## [3]  1576 MKMRNHKENGNGSEMGESTKSLA...AVRIKGSEEQLSSLSDALVQSDC ABA81834
## [4]  1661 MMKDAMYPTTTSTTSSSVNPLPK...TSSSSNGIGGPEQLNSNATSSYC XP_783573
## [5]  1420 MSAFGNTIERWNIKSTGVIAGLG...KNLEEKIKVYEEQFESIHNSLPP CAA78718

Let’s assign the subset of sequences to a new object called shrooms_vector_ss_subset.

shrooms_vector_ss_subset <- shrooms_vector_ss[names.focal]

Let’s make another MSA with just this subset. If msa isn’t working for you you can comment this out.

shrooms_align_subset <- msa(shrooms_vector_ss_subset,
                     method = "ClustalW")
## use default substitution matrix

To view it using ggmsa we need to do those annoying conversions again.

class(shrooms_align_subset) <- "AAMultipleAlignment"
shrooms_align_subset_seqinr <- msaConvert(shrooms_align_subset, type = "seqinr::alignment")

THen we can plot it

ggmsa::ggmsa(shrooms_align_subset,   # shrooms_align, NOT shrooms_align_seqinr
      start = 2030, 
      end = 2100) 

We can save our new smaller MSA like this.

msaPrettyPrint(shrooms_align_subset,             # alignment
               file = "shroom_msa_subset.pdf",   # file name
               y=c(2030, 2100),           # range
               askForOverwrite=FALSE)

Genetic distances of sequence in subset

While an MSA is a good way to examine a sequence its hard to assess all of the information visually. A phylogenetic tree allows you to summarize patterns in an MSA. The fastest way to make phylogenetic trees to is first summarize an MSA using a genetic distance matrix. The more amino acids that are identical to each other, the smaller the genetic distance is between them and the less evolution has occurred.

We usually work in terms of difference or genetic distance (a.k.a. evolutionary distance), though often we also talk in terms of similarity or identity.

Calculating genetic distance from an MSA is done using the seqinr::dist.alignment() function.

shrooms_subset_dist <- seqinr::dist.alignment(shrooms_align_subset_seqinr, 
                                       matrix = "identity")

This produces a “dist” class object.

is(shrooms_subset_dist)
## [1] "dist"     "oldClass"
class(shrooms_subset_dist)
## [1] "dist"

If you’ve been having trouble with the MSA software, the data necessary to build the distance matrix directly in R is in this code chunk (you can ignore the details).

shrooms_subset_dist_alt <- matrix(data = NA,
                              nrow = 5, 
                              ncol = 5)
distances <- c(0.8260049, 
               0.8478722, 0.9000568, 
               0.9244596, 0.9435187, 0.9372139, 
               0.9238779, 0.9370038, 0.9323225,0.9413209)
shrooms_subset_dist_alt[lower.tri(shrooms_subset_dist_alt)] <- distances
seqnames <- c("EAA12598","ABA81834","XP_392427", "XP_783573","CAA78718")
colnames(shrooms_subset_dist_alt) <- seqnames
row.names(shrooms_subset_dist_alt)  <- seqnames
shrooms_subset_dist_alt <- as.dist(shrooms_subset_dist_alt)
shrooms_subset_dist <- shrooms_subset_dist_alt

We’ve made a matrix using dist.alignment(); let’s round it off so its easier to look at using the round() function.

shrooms_subset_dist_rounded <- round(shrooms_subset_dist,
                              digits = 3)

If we want to look at it we can type

shrooms_subset_dist_rounded
##           EAA12598 ABA81834 XP_392427 XP_783573
## ABA81834     0.826                             
## XP_392427    0.848    0.944                    
## XP_783573    0.900    0.937     0.937          
## CAA78718     0.924    0.924     0.932     0.941

Not that we have 5 sequence, but the matrix is 4 x 4. This is because redundant information is dropped, including distances from one sequence to itself. This makes it so that the first column is EAA12598, but the first row is ABA81834.

Phylognetic trees of subset sequences (finally!)

We got our sequences, built a multiple sequence alignment, and calculated the genetic distance between sequences. Now we are - finally - ready to build a phylogenetic tree.

First, we let R figure out the structure of the tree. There are MANY ways to build phylogenetic trees. We’ll use a common one used for exploring sequences called neighbor joining algorithm via the function nj(). Neighbor joining uses genetic distances to cluster sequences into clades.

nj() is simple function that takes only a single argument, a distance matrix.

# Note - not using rounded values
install.packages("ape")
## Warning: package 'ape' is in use and will not be installed
library(ape)
tree_subset <- nj(shrooms_subset_dist)

Plotting phylogenetic trees

Now we’ll make a quick plot of our tree using plot() (and add a little label using an important function called mtext()).

# plot tree
plot.phylo(tree_subset, main="Phylogenetic Tree", 
            type = "unrooted", 
            use.edge.length = F)
# add label
mtext(text = "Shroom family gene tree - UNrooted, no branch lengths")

This is an unrooted tree with no outgroup defined. For the sake of plotting we’ve also ignored the evolutionary distance between the sequences, so the branch lengths don’t have meaning.

To make a rooted tree we remove type = "unrooted. In the case of neighbor joining, the algorithm tries to figure out the outgroup on its own.

# plot tree
plot.phylo(tree_subset, main="Phylogenetic Tree", 
            use.edge.length = F)
# add label
mtext(text = "Shroom family gene tree - rooted, no branch lenths")

We can include information about branch length by setting use.edge.length = ... to T.

# plot tree
plot.phylo(tree_subset, main="Phylogenetic Tree", 
            use.edge.length = T)
# add label
mtext(text = "Shroom family gene tree - rooted, with branch lenths")

Now the length of the branches indicates the evolutionary distance between sequences and correlate to the distances reported in our distance matrix. The branches are all very long, indicating that these genes have been evolving independently for many millions of years.

An important note: the vertical lines on the tree have no meaning, only the horizontal ones.

Because the branch lengths are all so long I find this tree a bit hard to view when its rooted. Let’s make it unrooted again.

# plot tree
plot.phylo(tree_subset, main="Phylogenetic Tree", 
           type = "unrooted",
            use.edge.length = T)
# add label
mtext(text = "Shroom family gene tree - unrooted, with branch lenths")

Now you can see that the ABA and EAA sequences form a clade, and that the distance between them is somewhat smaller than the distance between other sequences. If we go back to our original distance matrix, we can see that the smallest genetic distance is between ABA and EAA at 0.826.

shrooms_subset_dist_rounded
##           EAA12598 ABA81834 XP_392427 XP_783573
## ABA81834     0.826                             
## XP_392427    0.848    0.944                    
## XP_783573    0.900    0.937     0.937          
## CAA78718     0.924    0.924     0.932     0.941

We can confirm that this is the minimum using the min() function.

min(shrooms_subset_dist_rounded)
## [1] 0.826