Xgboost Model summary

[Xgboost 설명] : https://brunch.co.kr/@snobberys/137

summary(H3_bst)
##                Length Class              Mode       
## handle              1 xgb.Booster.handle externalptr
## raw            601195 -none-             raw        
## niter               1 -none-             numeric    
## evaluation_log      2 data.table         list       
## call               18 -none-             call       
## params              6 -none-             list       
## callbacks           2 -none-             list       
## feature_names       5 -none-             character  
## nfeatures           1 -none-             numeric

Model Accuracy

모델의 정확도를 3가지 기준으로 설정 R Square 값을 일반적으로 확인 함.

[R square] : https://m.blog.naver.com/tlrror9496/222055889079

##       RMSE   Rsquared        MAE 
## 5.28365889 0.04794296 4.16244195

Redidual

모델의 예측값과 실측값을 차이를 나타냄

Fit Plots

Importance Model

Feature Impact Summary

Feature Pattern, Group 2, Focus 100EA

## All the features will be used.
## Data has N = 277 | zoom in length is 50 at location 100.

Interaction effect plot

## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'

Tree plot

Importance Model