The simulation to date has the following conditions:
The population correlation between factor 1 and factor 2 is \( r = .5 \) for all models. Latent M (mean of posterior) and Laten D (mode of the posterior) are both included as they are the two main ways of summarizing results from Bayes analyses in Mplus. Latent M is the defaul while Latent D is asymtotically equivilent to maximum liklihood as the sample.
Tau equivilence model with various sample sizes (\( N = 100,250,500,1000 \)):
## N = 100
## estimate bias efficency MSE
## scale 0.393 -0.214 0.085 0.053
## Latent_M 0.487 -0.027 0.107 0.012
## Latent_D 0.493 -0.014 0.134 0.018
## fs 0.507 0.014 0.115 0.013
## PV1 0.480 -0.040 0.160 0.027
## PV5 0.480 -0.039 0.126 0.017
## PV10 0.484 -0.032 0.114 0.014
## PV20 0.480 -0.041 0.117 0.015
## PV100 0.481 -0.038 0.112 0.014
## N = 250
## estimate bias efficency MSE
## scale 0.396 -0.207 0.053 0.046
## Latent_M 0.495 -0.011 0.069 0.005
## Latent_D 0.498 -0.003 0.108 0.012
## fs 0.519 0.038 0.074 0.007
## PV1 0.491 -0.018 0.128 0.017
## PV5 0.492 -0.017 0.087 0.008
## PV10 0.490 -0.021 0.090 0.008
## PV20 0.491 -0.019 0.084 0.007
## PV100 0.490 -0.020 0.083 0.007
## N = 500
## estimate bias efficency MSE
## scale 0.398 -0.204 0.040 0.043
## Latent_M 0.497 -0.006 0.055 0.003
## Latent_D 0.497 -0.007 0.118 0.014
## fs 0.517 0.034 0.111 0.013
## PV1 0.491 -0.018 0.097 0.010
## PV5 0.495 -0.010 0.075 0.006
## PV10 0.493 -0.015 0.083 0.007
## PV20 0.490 -0.020 0.093 0.009
## PV100 0.491 -0.018 0.084 0.007
## N = 1000
## estimate bias efficency MSE
## scale 0.397 -0.207 0.026 0.043
## Latent_M 0.499 -0.001 0.034 0.001
## Latent_D 0.498 -0.003 0.036 0.001
## fs 0.524 0.048 0.035 0.003
## PV1 0.499 -0.002 0.041 0.002
## PV5 0.497 -0.006 0.041 0.002
## PV10 0.496 -0.009 0.062 0.004
## PV20 0.497 -0.007 0.049 0.002
## PV100 0.497 -0.005 0.046 0.002
With a high reliability tau equivilence model, all methods apart from scale scores do quite well.One plausible value tends to be poor.
Strong reliability model with various sample sizes (\( N = 100,250,500,1000 \)):
## N = 100
## estimate bias efficency MSE
## scale 0.384 -0.232 0.085 0.061
## Latent_M 0.499 -0.002 0.099 0.010
## Latent_D 0.510 0.020 0.121 0.015
## fs 0.520 0.039 0.107 0.013
## PV1 0.492 -0.017 0.170 0.029
## PV5 0.494 -0.011 0.111 0.013
## PV10 0.493 -0.015 0.112 0.013
## PV20 0.495 -0.009 0.106 0.011
## PV100 0.494 -0.012 0.105 0.011
## N = 250
## estimate bias efficency MSE
## scale 0.383 -0.234 0.055 0.058
## Latent_M 0.496 -0.008 0.066 0.004
## Latent_D 0.498 -0.004 0.105 0.011
## fs 0.517 0.035 0.095 0.010
## PV1 0.496 -0.008 0.114 0.013
## PV5 0.495 -0.009 0.075 0.006
## PV10 0.494 -0.012 0.077 0.006
## PV20 0.493 -0.015 0.080 0.007
## PV100 0.494 -0.012 0.071 0.005
## N = 500
## estimate bias efficency MSE
## scale 0.385 -0.229 0.039 0.054
## Latent_M 0.500 0.000 0.045 0.002
## Latent_D 0.502 0.003 0.052 0.003
## fs 0.526 0.052 0.048 0.005
## PV1 0.499 -0.003 0.106 0.011
## PV5 0.498 -0.004 0.060 0.004
## PV10 0.499 -0.002 0.052 0.003
## PV20 0.498 -0.004 0.068 0.005
## PV100 0.497 -0.007 0.059 0.004
## N = 1000
## estimate bias efficency MSE
## scale 0.383 -0.233 0.028 0.055
## Latent_M 0.498 -0.004 0.032 0.001
## Latent_D 0.500 0.000 0.036 0.001
## fs 0.522 0.044 0.032 0.003
## PV1 0.500 0.000 0.033 0.001
## PV5 0.492 -0.017 0.071 0.005
## PV10 0.496 -0.007 0.039 0.002
## PV20 0.496 -0.009 0.043 0.002
## PV100 0.497 -0.005 0.034 0.001
In this model, scale scores do poorly but for factor scores vs other methods there is a trade off. Bias is smaller for latent variables and PVs but efficency is better for factor scores. One plausible value tends to be poor.
Weak reliability model with various sample sizes (\( N = 100,250,500,1000 \)):
## N = 100
## estimate bias efficency MSE
## scale 0.184 -0.633 0.098 0.410
## Latent_M 0.394 -0.211 0.205 0.087
## Latent_D 0.426 -0.148 0.316 0.122
## fs 0.351 -0.298 0.202 0.130
## PV1 0.396 -0.208 0.321 0.147
## PV5 0.389 -0.222 0.234 0.104
## PV10 0.382 -0.237 0.226 0.107
## PV20 0.390 -0.220 0.219 0.097
## PV100 0.389 -0.221 0.211 0.094
## N = 250
## estimate bias efficency MSE
## scale 0.186 -0.627 0.060 0.397
## Latent_M 0.465 -0.070 0.144 0.026
## Latent_D 0.475 -0.049 0.206 0.045
## fs 0.407 -0.186 0.127 0.051
## PV1 0.459 -0.082 0.223 0.056
## PV5 0.470 -0.060 0.164 0.031
## PV10 0.462 -0.076 0.155 0.030
## PV20 0.460 -0.081 0.147 0.028
## PV100 0.463 -0.075 0.144 0.026
## N = 500
## estimate bias efficency MSE
## scale 0.189 -0.622 0.046 0.389
## Latent_M 0.485 -0.031 0.119 0.015
## Latent_D 0.492 -0.016 0.150 0.023
## fs 0.424 -0.153 0.100 0.033
## PV1 0.480 -0.040 0.192 0.038
## PV5 0.477 -0.047 0.147 0.024
## PV10 0.480 -0.039 0.126 0.018
## PV20 0.478 -0.045 0.133 0.020
## PV100 0.478 -0.045 0.125 0.018
## N = 1000
## estimate bias efficency MSE
## scale 0.187 -0.626 0.029 0.392
## Latent_M 0.488 -0.024 0.081 0.007
## Latent_D 0.485 -0.029 0.101 0.011
## fs 0.428 -0.145 0.066 0.025
## PV1 0.490 -0.020 0.156 0.025
## PV5 0.491 -0.018 0.107 0.012
## PV10 0.488 -0.023 0.095 0.010
## PV20 0.488 -0.024 0.083 0.007
## PV100 0.486 -0.027 0.086 0.008
Similar findings from the above model but the results are clearer. It is clear from the results that 5 PVs do quite well but more PVs do seem to be slightly better.
## N = 100
## estimate bias efficency MSE
## scale 0.300 -0.401 0.092 0.169
## Latent_M 0.572 0.143 0.168 0.049
## Latent_D 0.617 0.234 0.257 0.121
## fs 0.509 0.018 0.160 0.026
## PV1 0.579 0.158 0.264 0.095
## PV5 0.564 0.129 0.193 0.054
## PV10 0.560 0.120 0.190 0.050
## PV20 0.563 0.127 0.177 0.047
## PV100 0.561 0.123 0.173 0.045
## N = 250
## estimate bias efficency MSE
## scale 0.303 -0.393 0.056 0.158
## Latent_M 0.643 0.287 0.118 0.096
## Latent_D 0.684 0.368 0.168 0.163
## fs 0.566 0.133 0.093 0.026
## PV1 0.632 0.265 0.193 0.107
## PV5 0.626 0.253 0.143 0.084
## PV10 0.632 0.265 0.135 0.089
## PV20 0.635 0.271 0.126 0.089
## PV100 0.633 0.266 0.123 0.086
## N = 500
## estimate bias efficency MSE
## scale 0.307 -0.387 0.042 0.151
## Latent_M 0.683 0.366 0.088 0.141
## Latent_D 0.687 0.373 0.123 0.154
## fs 0.592 0.184 0.067 0.038
## PV1 0.667 0.335 0.164 0.139
## PV5 0.667 0.335 0.100 0.122
## PV10 0.676 0.352 0.092 0.132
## PV20 0.674 0.348 0.091 0.129
## PV100 0.674 0.348 0.089 0.129
## N = 1000
## estimate bias efficency MSE
## scale 0.305 -0.389 0.027 0.152
## Latent_M 0.692 0.384 0.069 0.153
## Latent_D 0.700 0.400 0.086 0.168
## fs 0.599 0.199 0.046 0.042
## PV1 0.689 0.379 0.086 0.151
## PV5 0.686 0.373 0.093 0.148
## PV10 0.688 0.376 0.079 0.148
## PV20 0.687 0.375 0.069 0.145
## PV100 0.684 0.367 0.075 0.141
## N = 100
## estimate bias efficency MSE
## scale 0.384 -0.232 0.085 0.061
## Latent_M 0.499 -0.002 0.099 0.010
## Latent_D 0.510 0.020 0.121 0.015
## fs 0.520 0.039 0.107 0.013
## PV1 0.492 -0.017 0.170 0.029
## PV5 0.494 -0.011 0.111 0.013
## PV10 0.493 -0.015 0.112 0.013
## PV20 0.495 -0.009 0.106 0.011
## PV100 0.494 -0.012 0.105 0.011
## N = 250
## estimate bias efficency MSE
## scale 0.383 -0.234 0.055 0.058
## Latent_M 0.496 -0.008 0.066 0.004
## Latent_D 0.498 -0.004 0.105 0.011
## fs 0.517 0.035 0.095 0.010
## PV1 0.496 -0.008 0.114 0.013
## PV5 0.495 -0.009 0.075 0.006
## PV10 0.494 -0.012 0.077 0.006
## PV20 0.493 -0.015 0.080 0.007
## PV100 0.494 -0.012 0.071 0.005
## N = 500
## estimate bias efficency MSE
## scale 0.385 -0.229 0.039 0.054
## Latent_M 0.500 0.000 0.045 0.002
## Latent_D 0.502 0.003 0.052 0.003
## fs 0.526 0.052 0.048 0.005
## PV1 0.499 -0.003 0.106 0.011
## PV5 0.498 -0.004 0.060 0.004
## PV10 0.499 -0.002 0.052 0.003
## PV20 0.498 -0.004 0.068 0.005
## PV100 0.497 -0.007 0.059 0.004
## N = 1000
## estimate bias efficency MSE
## scale 0.383 -0.233 0.028 0.055
## Latent_M 0.498 -0.004 0.032 0.001
## Latent_D 0.500 0.000 0.036 0.001
## fs 0.522 0.044 0.032 0.003
## PV1 0.500 0.000 0.033 0.001
## PV5 0.492 -0.017 0.071 0.005
## PV10 0.496 -0.007 0.039 0.002
## PV20 0.496 -0.009 0.043 0.002
## PV100 0.497 -0.005 0.034 0.001
In the case of poor reliability and moderate factor laodings factor scores tend to do better than latent variables or PVs. I wonder if this is because the attentuation associated with scale scores and factor scores blanaces out with the higher correlations associated with not modelling non-zero cross loadings. For strong reliability PVs and latents are better.
## N = 100
## estimate bias efficency MSE
## scale 0.327 -0.346 0.092 0.128
## Latent_M 0.500 -0.001 0.146 0.021
## Latent_D 0.521 0.042 0.199 0.041
## fs 0.523 0.047 0.155 0.026
## PV1 0.495 -0.010 0.226 0.051
## PV5 0.492 -0.016 0.170 0.029
## PV10 0.494 -0.012 0.156 0.024
## PV20 0.496 -0.009 0.155 0.024
## PV100 0.493 -0.014 0.151 0.023
## N = 250
## estimate bias efficency MSE
## scale 0.335 -0.330 0.056 0.112
## Latent_M 0.528 0.055 0.098 0.013
## Latent_D 0.540 0.080 0.115 0.020
## fs 0.560 0.119 0.094 0.023
## PV1 0.507 0.014 0.176 0.031
## PV5 0.527 0.053 0.107 0.014
## PV10 0.528 0.057 0.098 0.013
## PV20 0.525 0.051 0.098 0.012
## PV100 0.525 0.050 0.096 0.012
## N = 500
## estimate bias efficency MSE
## scale 0.333 -0.335 0.041 0.114
## Latent_M 0.529 0.058 0.071 0.008
## Latent_D 0.526 0.052 0.127 0.019
## fs 0.553 0.105 0.070 0.016
## PV1 0.537 0.075 0.080 0.012
## PV5 0.524 0.048 0.099 0.012
## PV10 0.525 0.050 0.087 0.010
## PV20 0.522 0.044 0.107 0.013
## PV100 0.522 0.044 0.093 0.011
## N = 1000
## estimate bias efficency MSE
## scale 0.336 -0.329 0.029 0.109
## Latent_M 0.538 0.075 0.047 0.008
## Latent_D 0.542 0.085 0.056 0.010
## fs 0.568 0.135 0.046 0.020
## PV1 0.527 0.054 0.109 0.015
## PV5 0.534 0.068 0.061 0.008
## PV10 0.534 0.067 0.061 0.008
## PV20 0.534 0.067 0.051 0.007
## PV100 0.534 0.069 0.053 0.008
This is the model in which the advatnages of PVs and latent variables are most apparent.
Control files and all scripts are on my bitbucket account. If interested let me know and I can add you as collaborators.
## N = 100
## estimate bias efficency MSE
## scale 0.383 -0.235 0.085 0.062
## Latent_M 0.490 -0.019 0.111 0.013
## Latent_D 0.497 -0.007 0.152 0.023
## fs 0.509 0.018 0.123 0.015
## PV1 0.480 -0.039 0.176 0.033
## PV5 0.485 -0.029 0.132 0.018
## PV10 0.481 -0.037 0.125 0.017
## PV20 0.483 -0.033 0.120 0.015
## PV100 0.483 -0.034 0.118 0.015
## N = 250
## estimate bias efficency MSE
## scale 0.383 -0.233 0.056 0.057
## Latent_M 0.493 -0.015 0.071 0.005
## Latent_D 0.502 0.004 0.086 0.007
## fs 0.518 0.037 0.077 0.007
## PV1 0.486 -0.027 0.126 0.017
## PV5 0.489 -0.021 0.087 0.008
## PV10 0.487 -0.026 0.089 0.009
## PV20 0.485 -0.030 0.090 0.009
## PV100 0.486 -0.028 0.083 0.008
## N = 500
## estimate bias efficency MSE
## scale 0.382 -0.236 0.036 0.057
## Latent_M 0.496 -0.008 0.045 0.002
## Latent_D 0.497 -0.006 0.060 0.004
## fs 0.523 0.046 0.051 0.005
## PV1 0.493 -0.014 0.060 0.004
## PV5 0.494 -0.011 0.054 0.003
## PV10 0.496 -0.009 0.046 0.002
## PV20 0.496 -0.009 0.046 0.002
## PV100 0.495 -0.010 0.047 0.002
## N = 1000
## estimate bias efficency MSE
## scale 0.383 -0.235 0.025 0.056
## Latent_M 0.503 0.005 0.032 0.001
## Latent_D 0.507 0.015 0.040 0.002
## fs 0.529 0.057 0.036 0.005
## PV1 0.500 0.001 0.041 0.002
## PV5 0.499 -0.001 0.049 0.002
## PV10 0.501 0.002 0.037 0.001
## PV20 0.501 0.002 0.039 0.001
## PV100 0.501 0.002 0.034 0.001
Missing data here was moderate and larger for factor 1 than factor 2. In this case the data are MAR however the variable representing the missing data mechanism is not included in the model as is realistic in most applied research situations.
Control files and all scripts are on my bitbucket account. If interested let me know and I can add you as collaborators.