1 ETNIA
<- readRDS(file = "C:/Users/chris/OneDrive/Documentos/archivos_grandes/casen_2006_c.rds")
casen_2006 <- mutate_if(casen_2006, is.factor, as.character)
casen_2006 <- readRDS(file = "C:/Users/chris/OneDrive/Documentos/archivos_grandes/casen_2009_c.rds")
casen_2009 <- mutate_if(casen_2009, is.factor, as.character)
casen_2009 <- readRDS(file = "C:/Users/chris/OneDrive/Documentos/archivos_grandes/casen_2011_c.rds")
casen_2011 <- mutate_if(casen_2011, is.factor, as.character)
casen_2011 <- readRDS(file = "C:/Users/chris/OneDrive/Documentos/archivos_grandes/casen_2013_c.rds")
casen_2013 <- mutate_if(casen_2013, is.factor, as.character)
casen_2013 <- readRDS(file = "C:/Users/chris/OneDrive/Documentos/archivos_grandes/casen_2015_c.rds")
casen_2015 <- mutate_if(casen_2015, is.factor, as.character)
casen_2015 <- readRDS(file = "C:/Users/chris/OneDrive/Documentos/archivos_grandes/casen_2017_c.rds")
casen_2017 <- mutate_if(casen_2017, is.factor, as.character)
casen_2017 <- readRDS(file = "C:/Users/chris/OneDrive/Documentos/archivos_grandes/casen_2020_e1.rds")
casen_2020 <- mutate_if(casen_2020, is.factor, as.character) casen_2020
Homologación de alfabetismo
$E1[casen_2006$E1 == "No sabe /Sin dato"] <- NA
casen_2006
$e1[casen_2011$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2011$e1[casen_2011$e1 == "No, sólo lee"] <- "No"
casen_2011$e1[casen_2011$e1 == "No, ninguno"] <- "No"
casen_2011$e1[casen_2011$e1 == "No, sólo escribe"] <- "No"
casen_2011
$e1[casen_2013$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2013$e1[casen_2013$e1 == "No, ninguno"] <- "No"
casen_2013$e1[casen_2013$e1 == "No, sólo lee"] <- "No"
casen_2013$e1[casen_2013$e1 == "No, sólo escribe"] <- "No"
casen_2013$e1[casen_2013$e1 == "NS/NR"] <- NA
casen_2013
$e1[casen_2015$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2015$e1[casen_2015$e1 == "No, ninguno"] <- "No"
casen_2015$e1[casen_2015$e1 == "No, sólo lee"] <- "No"
casen_2015$e1[casen_2015$e1 == "No, sólo escribe"] <- "No"
casen_2015
$e1[casen_2017$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2017$e1[casen_2017$e1 == "No, sólo lee"] <- "No"
casen_2017$e1[casen_2017$e1 == "No, ninguno"] <- "No"
casen_2017$e1[casen_2017$e1 == "No sabe/responde"] <- NA
casen_2017$e1[casen_2017$e1 == "No, sólo escribe"] <- "No"
casen_2017
$e1[casen_2020$e1 == 1] <- "Sí"
casen_2020$e1[casen_2020$e1 == 0] <- "No" casen_2020
Homologación de etnia
<- function(union_etnia){
fn_etnia $Etnia[union_etnia$Etnia == "Aimara" ] <- "Aymara"
union_etnia$Etnia[union_etnia$Etnia == "No pertenece a ninguno de estos pueblos indígenas" ] <- "No pertenece a ningún pueblo indígena"
union_etnia$Etnia[union_etnia$Etnia == "Mapuche"] <- "Mapuche"
union_etnia$Etnia[union_etnia$Etnia == "Diaguita"] <- "Diaguita"
union_etnia$Etnia[union_etnia$Etnia == "Atacameño" ] <- "Atacameño"
union_etnia$Etnia[union_etnia$Etnia == "Atacameño (Likan-Antai)" ] <- "Atacameño"
union_etnia$Etnia[union_etnia$Etnia == "Atacameño (Likán Antai)" ] <- "Atacameño"
union_etnia$Etnia[union_etnia$Etnia == "Atacameño (Likán-Antai)" ] <- "Atacameño"
union_etnia$Etnia[union_etnia$Etnia == "Quechua" ] <- "Quechua"
union_etnia$Etnia[union_etnia$Etnia == "Yámana o Yagán" ] <- "Yagán"
union_etnia$Etnia[union_etnia$Etnia == "Yagan" ] <- "Yagán"
union_etnia$Etnia[union_etnia$Etnia == "Yagán (Yámana)" ] <- "Yagán"
union_etnia$Etnia[union_etnia$Etnia == "Rapa-Nui o Pascuenses"] <- "Pascuense"
union_etnia$Etnia[union_etnia$Etnia == "Rapa-Nui"] <- "Pascuense"
union_etnia$Etnia[union_etnia$Etnia == "Rapa Nui (Pascuense)"] <- "Pascuense"
union_etnia$Etnia[union_etnia$Etnia == "Rapa Nui"] <- "Pascuense"
union_etnia$Etnia[union_etnia$Etnia == "Collas"] <- "Coya"
union_etnia$Etnia[union_etnia$Etnia == "Kawashkar o Alacalufes" ] <- "Alacalufe"
union_etnia$Etnia[union_etnia$Etnia == "Kawashkar" ] <- "Alacalufe"
union_etnia$Etnia[union_etnia$Etnia == "Kawésqar (Alacalufes)" ] <- "Alacalufe"
union_etnia$Etnia[union_etnia$Etnia == "Kawésqar" ] <- "Alacalufe"
union_etnia$Etnia[union_etnia$Etnia == "Kawaskar" ] <- "Alacalufe"
union_etnia$Etnia[union_etnia$Etnia == "Chango" ] <- "Chango"
union_etnia$Etnia[union_etnia$Etnia == "Sin dato"] <- NA
union_etnia$Etnia[union_etnia$Etnia == "NS/NR" ] <- NA
union_etnia$Etnia[union_etnia$Etnia == "No sabe/no responde" ] <- NA
union_etnia
<<- union_etnia
union_etnia }
Homologación de migración
for (i in unique(casen_2020$r2_pais_esp)) {
<- gsub("(^[[:space:]]+|[[:space:]]+$)", "", i)
pais <- tolower(pais)
pais $r2_pais_esp[casen_2020$r2_pais_esp == i] <- str_to_title(pais)
casen_2020
}
$r2p_cod[casen_2011$r2p_cod == "No contesta"] <- "NS/NR"
casen_2011$r2_p_cod[casen_2013$r2_p_cod == "No contesta"] <- "NS/NR"
casen_2013$r2espp_cod[casen_2015$r2espp_cod == "No contesta"] <- "NS/NR"
casen_2015$r2_p_cod[casen_2017$r2_p_cod == "No Bien Especificado"] <- "NS/NR"
casen_2017$r2_p_cod[casen_2017$r2_p_cod == "No Responde"] <- "NS/NR"
casen_2017$r2_pais_esp[casen_2020$r2_pais_esp == "No Bien Especificado"] <- "NS/NR"
casen_2020$r2_pais_esp[casen_2020$r2_pais_esp == ""] <- NA casen_2020
1.1 Se obtiene el universo de categorías para cada año
2006
<- casen_2006
ab <- unique(ab$Z) unique_d_2006
2009
<- casen_2009
ab <- unique(ab$ZONA) unique_d_2009
<- casen_2011
ab <- unique(ab$z) unique_d_2011
2013
<- casen_2013
ab <- unique(ab$zona) unique_d_2013
2015
<- casen_2015
ab <- unique(ab$zona) unique_d_2015
2017
<- casen_2017
ab <- unique(ab$zona) unique_d_2017
2020:
<- casen_2020
ab <- unique(ab$zona) unique_d_2020
2 Diccionario PADRE
Se unen todas las categorías de respuesta, se excluyen las repetidas y se les asocia un código:
<- as.data.frame(unique_d_2006)
unique_d_2006 colnames(unique_d_2006)[1] <- "super"
<- as.data.frame(unique_d_2009)
unique_d_2009 colnames(unique_d_2009)[1] <- "super"
<- as.data.frame(unique_d_2011)
unique_d_2011 colnames(unique_d_2011)[1] <- "super"
<- as.data.frame(unique_d_2013)
unique_d_2013 colnames(unique_d_2013)[1] <- "super"
<- as.data.frame(unique_d_2015)
unique_d_2015 colnames(unique_d_2015)[1] <- "super"
<- as.data.frame(unique_d_2017)
unique_d_2017 colnames(unique_d_2017)[1] <- "super"
<- as.data.frame(unique_d_2020)
unique_d_2020 colnames(unique_d_2020)[1] <- "super"
<- rbind(unique_d_2006, unique_d_2009, unique_d_2011, unique_d_2013, unique_d_2015, unique_d_2017, unique_d_2020) el_total
<- unique(el_total) el_total_final
2.1 Diccionario
$observation <- 1:nrow(el_total_final)
el_total_finaldatatable(el_total_final, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
options = list(dom = 'Bfrtip',
buttons = list('colvis', list(extend = 'collection',
buttons = list(
list(extend='copy'),
list(extend='excel',
filename = 'tabla_ytotcor_e5a'),
list(extend='pdf',
filename= 'tabla_ytotcor_e5a')),
text = 'Download')), scrollX = TRUE))
2.1.1 2006
<- casen_2006
ab
<- ab$COMUNA
b <- ab$Z
c <- ab$T4
d <- ab$SEXO
e <- ab$E1
f
= xtabs(ab$EXPC ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$EXPC ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2006"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2006
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2006['z'][d_2006['z'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
<- data.frame(lapply(d_2006 , as.character), stringsAsFactors=FALSE)
d_2006 $string_z <- d_2006$z
d_2006'z'][d_2006['z'] == 'Rural'] <- '1'
d_2006['z'][d_2006['z'] == 'Urbano'] <- '2'
d_2006['z'][d_2006['z'] == 'Urbana'] <- '3'
d_2006[
<- d_2006
d names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d
d_2006 <- d_2006[c(1,8,2,3,4,5,6,7)] d_2006
2.1.2 2009
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2009
ab
<- ab$COMUNA
b <- ab$Z
c <- ab$T5
d <- ab$SEXO
e <- ab$E1 f
= xtabs(ab$EXPC~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$EXPC ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab
<- as.data.frame(cross_tab)
tabla
<-tabla[!(tabla$Freq == 0),]
d $anio <- "2009"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d
d_2009 $string_z <- d_2009$z d_2009
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2009['z'][d_2009['z'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
<- data.frame(lapply(d_2009 , as.character), stringsAsFactors=FALSE)
d_2009 #d_2009$string_z <- d_2009$z
'z'][d_2009['z'] == 'Rural'] <- '1'
d_2009['z'][d_2009['z'] == 'Urbano'] <- '2'
d_2009['z'][d_2009['z'] == 'Urbana'] <- '3'
d_2009[
<- d_2009
d names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d
d_2009 <- d_2009[c(1,8,2,3,4,5,6,7)] d_2009
2.1.3 2011
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2011
ab
<- ab$comuna
b <- ab$z
c <- ab$r6
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc_full ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc_full ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2011"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2011
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2011['z'][d_2011['z'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
<- data.frame(lapply(d_2011 , as.character), stringsAsFactors=FALSE)
d_2011 $string_z <- d_2011$z
d_2011'z'][d_2011['z'] == 'Rural'] <- '1'
d_2011['z'][d_2011['z'] == 'Urbano'] <- '2'
d_2011['z'][d_2011['z'] == 'Urbana'] <- '3'
d_2011[
<- d_2011
d names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d
d_2011 <- d_2011[c(1,8,2,3,4,5,6,7)] d_2011
2.1.4 2013
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2013
ab
<- ab$comuna
b <- ab$zona
c <- ab$r6
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2013"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2013
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2013['z'][d_2013['z'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
<- data.frame(lapply(d_2013 , as.character), stringsAsFactors=FALSE)
d_2013 $string_z <- d_2013$z
d_2013'z'][d_2013['z'] == 'Rural'] <- '1'
d_2013['z'][d_2013['z'] == 'Urbano'] <- '2'
d_2013['z'][d_2013['z'] == 'Urbana'] <- '3'
d_2013[
<- d_2013
d names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d
d_2013 <- d_2013[c(1,8,2,3,4,5,6,7)] d_2013
2.1.5 2015
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2015
ab
<- ab$comuna
b <- ab$zona
c <- ab$r3
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc_todas ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc_todas ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2015"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2015
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2015['o15'][d_2015['o15'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
<- data.frame(lapply(d_2015 , as.character), stringsAsFactors=FALSE)
d_2015 $string_z <- d_2015$z
d_2015'z'][d_2015['z'] == 'Rural'] <- '1'
d_2015['z'][d_2015['z'] == 'Urbano'] <- '2'
d_2015['z'][d_2015['z'] == 'Urbana'] <- '3'
d_2015[
<- d_2015
d names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d
d_2015 <- d_2015[c(1,8,2,3,4,5,6,7)] d_2015
2.1.6 2017
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2017
ab
<- ab$comuna
b <- ab$zona
c <- ab$r3
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2017"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2017
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2017['o15'][d_2017['o15'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
<- data.frame(lapply(d_2017 , as.character), stringsAsFactors=FALSE)
d_2017 $string_z <- d_2017$z
d_2017'z'][d_2017['z'] == 'Rural'] <- '1'
d_2017['z'][d_2017['z'] == 'Urbano'] <- '2'
d_2017['z'][d_2017['z'] == 'Urbana'] <- '3'
d_2017[
<- d_2017
d names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d
d_2017 <- d_2017[c(1,8,2,3,4,5,6,7)] d_2017
3 2020
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2020
ab
<- ab$comuna
b <- ab$zona
c <- ab$r3
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2020"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
<- d d_2020
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2020['o15'][d_2020['o15'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
<- data.frame(lapply(d_2020 , as.character), stringsAsFactors=FALSE)
d_2020 $string_z <- d_2020$z
d_2020'z'][d_2020['z'] == 'Rural'] <- '1'
d_2020['z'][d_2020['z'] == 'Urbano'] <- '2'
d_2020['z'][d_2020['z'] == 'Urbana'] <- '3'
d_2020[
<- d_2020
d names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d
d_2020 <- d_2020[c(1,8,2,3,4,5,6,7)] d_2020
Unimos y desplegamos lña tabla corregida:
4 Tabla final etnia
<- rbind(d_2006,d_2009, d_2011, d_2013, d_2015, d_2017,d_2020)
union_etnia <-union_etnia
union fn_etnia(union)
<- readRDS("C:/Users/chris/OneDrive/Documentos/archivos_grandes/codigos_comunales_2006-2020.rds")
cod_com names(cod_com)[2] <- "comuna"
<- merge(x=union_etnia, y=cod_com, by="comuna")
tab_f <- c(sort(unique(tab_f$Etnia)[-6]),"No pertenece a ningún pueblo indígena",NA)
Etnia <- as.data.frame(Etnia)
Etnia$cod_etnia <- paste("00",seq(1:nrow(Etnia)), sep = "")
Etnia<- Etnia$cod_etnia
codigos <- seq(1:nrow(Etnia))
rango <- paste("",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(1),4)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(Etnia,cadena)
codigos colnames(codigos) <- c("Etnia","cadena","cod_etnia")
<- merge(x=tab_f, y=codigos, by="Etnia")
tab_f
$cod_sexo <- tab_f$Sexo
tab_f$cod_sexo[tab_f$cod_sexo == "Hombre"] <- "01"
tab_f$cod_sexo[tab_f$cod_sexo == "Mujer"] <- "02"
tab_f
$cod_alfa <- tab_f$`Sabe leer?`
tab_f$cod_alfa[tab_f$cod_alfa == "Sí"] <- "01"
tab_f$cod_alfa[tab_f$cod_alfa == "No"] <- "02"
tab_f
datatable(tab_f, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
options = list(dom = 'Bfrtip',
buttons = list('colvis', list(extend = 'collection',
buttons = list(
list(extend='copy'),
list(extend='excel',
filename = 'tabla'),
list(extend='pdf',
filename= 'tabla')),
text = 'Download')), scrollX = TRUE))
5 MIGRA
5.0.0.1 2011
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2011
ab
<- ab$comuna
b <- ab$z
c <- ab$r2p_cod
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc_full ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc_full ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2011"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Origen"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2011
6 2013
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2013
ab
<- ab$comuna
b <- ab$zona
c <- ab$r2_p_cod
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2013"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Origen"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2013
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2013['o15'][d_2013['o15'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
6.0.0.1 2015
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2015
ab
<- ab$comuna
b <- ab$zona
c <- ab$r2espp_cod
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc_todas ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc_todas ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2015"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Origen"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2015
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2015['o15'][d_2015['o15'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
6.0.0.2 2017
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2017
ab
<- ab$comuna
b <- ab$zona
c <- ab$r2_p_cod
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2017"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Origen"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2017
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2017['o15'][d_2017['o15'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
6.0.0.3 2020
Generamos las tablas de contingencia tal como acostumbramos:
<- casen_2020
ab
<- ab$comuna
b <- ab$zona
c <- ab$r2_pais_esp
d <- ab$sexo
e <- ab$e1
f
= xtabs(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),ab,mean))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d $anio <- "2020"
d
names(d)[1] <- "comuna"
names(d)[2] <- "z"
names(d)[3] <- "Origen"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
<- d d_2020
<- data.frame()
dataf1 for (n in 1:nrow(el_total_final)) {
<- rbind(dataf1,paste0("d_2020['o15'][d_2020['o15'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
dataf1
}<- as.data.frame(dataf1)
dataf1 write_xlsx(dataf1,"el_total_final.xlsx")
UNIMOS MIGRA
7 Tabla final migración
<- rbind(d_2011,d_2013,d_2015,d_2017,d_2020)
union
<- mutate_if(union, is.factor, as.character)
union
$cod_sexo <- union$Sexo
union$cod_sexo[union$cod_sexo == "Hombre"] <- "01"
union$cod_sexo[union$cod_sexo == "Mujer"] <- "02"
union
$cod_alfa <- union$`Sabe leer?`
union$cod_alfa[union$cod_alfa == "Sí"] <- "01"
union$cod_alfa[union$cod_alfa == "No"] <- "02" union
<- merge(x = union, y = cod_com, by = "comuna")
tab_f
<- tab_f[,c(1,2,3,4,5,9,6,10,7,8)]
tab_f
datatable(tab_f, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
options = list(dom = 'Bfrtip',
buttons = list('colvis', list(extend = 'collection',
buttons = list(
list(extend='copy'),
list(extend='excel',
filename = 'tabla'),
list(extend='pdf',
filename= 'tabla')),
text = 'Download')), scrollX = TRUE))