#
dta <- read.csv("D:/EDU MIS/project-research/data0505.csv", header = T)
options(digits = 3)
pacman::p_load(tidyverse, ggplot2, knitr, furniture, gmodels)
dta <- dta %>% mutate( Gender = relevel(Gender, ref = "女"),
Sector = relevel(Sector, ref = "私立"),
Field = relevel(Field, ref = "遊憩與運動學群"),
EduLv = factor(EduLv, levels=c("博士","碩士","普通大學","科技大學",
"技術學院","五專","三專",
"二專","高中","高職","國中")),
EduLv = relevel(EduLv, ref = "技術學院"),
Region = factor(Region, levels =c("宜花東離島","北北基","桃竹苗",
"中彰投","雲嘉南","高屏澎")),
Age = as.numeric(Age),
J_year = as.numeric(J_year),
JobZone = as.numeric(JobZone),
EduZone = as.numeric(EduZone),
JobZone_D = as.numeric(EduZone-JobZone),
Salary = as.numeric(Salary),
SubEduOver = relevel(SubEduOver, ref="符合工作要求"),
Core = recode_factor(as.factor(JobCor), "1" = "無關聯",
"2" = "部分關聯",
"3" = "核心關聯"),
SubEduOver = factor(SubEduOver,levels =c("符合工作要求","高於工作要求","低於工作要求")))
# data construction
glimpse(dta)
## Observations: 1,571
## Variables: 26
## $ SID <fctr> A1, A10, A100, A102, A103, A104, A105, A106, A107...
## $ Gender <fctr> 女, 女, 女, 女, 男, 女, 女, 女, 女, 女, 女, 男, 男, 男, 女, 男, 男...
## $ Sector <fctr> 國立(公立), 國立(公立), 私立, 國立(公立), 國立(公立), 國立(公立), 國立(公立...
## $ EduLv <fctr> 碩士, 碩士, 普通大學, 普通大學, 高職, 普通大學, 普通大學, 普通大學, 普通大學, 普...
## $ SubEduOver <fctr> 符合工作要求, 高於工作要求, 符合工作要求, 符合工作要求, 符合工作要求, 符合工作要求, 符...
## $ Require <fctr> 碩士, 高中/高職, 普通大學, 普通大學, 高中/高職, 普通大學, 普通大學, 普通大學, 普...
## $ Field <fctr> 教育學群, 資訊學群, 外語學群, 教育學群, 工程學群, 文史哲學群, 文史哲學群, 大眾傳播學...
## $ City <fctr> 臺南市, 高雄市, 苗栗縣, 新北市, 高雄市, 南投縣, 嘉義市, 臺北市, 臺北市, 南投縣,...
## $ Category <fctr> 受雇於公營機關, 受雇於公營機關, 受雇於公營機關, 受雇於公營機關, 受雇者於私營企業, 受雇於...
## $ Staff <fctr> 10-29人, 50-99人, 50-99人, 10-29人, 2-9人, 100-199人, 1...
## $ Hours <int> 48, 40, 70, 50, 57, 51, 64, 50, 50, 47, 50, 60, 45...
## $ J_year <dbl> 2, 8, 4, 1, 21, 1, 6, 0, 1, 1, 17, 7, 3, 23, 1, 2,...
## $ J_total <dbl> 2, 8, 4, 1, 30, 1, 6, 0, 2, 2, 28, 7, 30, 26, 1, 1...
## $ income <fctr> 2萬以下, 2-3萬以下, 3-4萬以下, 4-5萬以下, 3-4萬以下, 4-5萬以下, 2萬以...
## $ SubMismatch <int> 4, 2, 3, 4, 5, 4, 5, 4, 3, 3, 4, 4, 4, 4, 5, 5, 3,...
## $ JobSat <int> 6, 4, 3, 5, 5, 6, 7, 5, 3, 6, 3, 5, 4, 7, 3, 4, 4,...
## $ EduZone <dbl> 5, 5, 4, 4, 2, 4, 4, 4, 4, 4, 5, 5, 3, 5, 4, 4, 4,...
## $ Region <fctr> 雲嘉南, 高屏澎, 桃竹苗, 北北基, 高屏澎, 中彰投, 雲嘉南, 北北基, 北北基, 中彰投,...
## $ Salary <dbl> 20000, 25000, 35000, 45000, 35000, 45000, 20000, 3...
## $ Age <dbl> 26, 34, 30, 25, 62, 25, 21, 24, 25, 26, 57, 35, 54...
## $ JobZone <dbl> 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 3,...
## $ JobCor <int> 3, 1, 2, 3, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 3,...
## $ Core <fctr> 核心關聯, 無關聯, 部分關聯, 核心關聯, 無關聯, 部分關聯, 無關聯, 核心關聯, 無關聯,...
## $ ObjOver <fctr> over, over, adequate, adequate, under, adequate, ...
## $ X <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ JobZone_D <dbl> 1, 2, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, ...
# check and pick out
lapply(dta[,c("Sector", "Field", "City", "Region","EduLv", "SubEduOver", "ObjOver")], levels)
## $Sector
## [1] "私立" "國外學校" "國立(公立)"
##
## $Field
## [1] "遊憩與運動學群" "大眾傳播學群" "工程學群" "文史哲學群"
## [5] "外語學群" "生命科學學群" "生物資源學群" "地球與環境學群"
## [9] "法政學群" "社會與心理學群" "建築與設計學群" "財經學群"
## [13] "教育學群" "資訊學群" "管理學群" "數理化學群"
## [17] "醫藥衛生學群" "藝術學群"
##
## $City
## [1] "宜蘭縣" "花蓮縣" "金門縣" "南投縣" "屏東縣" "苗栗縣" "桃園市"
## [8] "高雄市" "基隆市" "雲林縣" "新北市" "新竹市" "新竹縣" "嘉義市"
## [15] "嘉義縣" "彰化縣" "臺中市" "臺北市" "臺東縣" "臺南市" "澎湖縣"
##
## $Region
## [1] "宜花東離島" "北北基" "桃竹苗" "中彰投" "雲嘉南"
## [6] "高屏澎"
##
## $EduLv
## [1] "技術學院" "博士" "碩士" "普通大學" "科技大學" "五專"
## [7] "三專" "二專" "高中" "高職" "國中"
##
## $SubEduOver
## [1] "符合工作要求" "高於工作要求" "低於工作要求"
##
## $ObjOver
## [1] "adequate" "over" "under"
# pick out
names(dta)
## [1] "SID" "Gender" "Sector" "EduLv" "SubEduOver"
## [6] "Require" "Field" "City" "Category" "Staff"
## [11] "Hours" "J_year" "J_total" "income" "SubMismatch"
## [16] "JobSat" "EduZone" "Region" "Salary" "Age"
## [21] "JobZone" "JobCor" "Core" "ObjOver" "X"
## [26] "JobZone_D"
po <- dplyr::select(dta, -City, -income, -JobSat, -X)%>%
filter(Age <= 65 & Age >= 20 & Category != "自營者" )
p <- filter(po,Age <= 40)
p <- p[p$EduLv %in% c("博士","碩士", "普通大學", "科技大學", "技術學院"),]
p <- p %>% mutate( EduLv = factor(EduLv, levels=c("博士","碩士","普通大學","科技大學",
"技術學院")),
EduLv = relevel(EduLv, ref = "技術學院"),
Category = factor(Category,levels=c("受雇者於私營企業","受雇於公營機關")))
# hunt for missing values by variables
apply(apply(p, 1, is.na), 1, sum)
## SID Gender Sector EduLv SubEduOver Require
## 0 0 0 0 0 0
## Field Category Staff Hours J_year J_total
## 0 0 0 0 0 0
## SubMismatch EduZone Region Salary Age JobZone
## 0 0 0 0 0 0
## JobCor Core ObjOver JobZone_D
## 0 0 0 0
summary(p$Salary)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 20000 35000 45000 44736 55000 300000
#
# define function
d <- function(x){
data.frame(n = t(t(table(x))),
prop = t(t(prop.table(table(x)))),
mean = aggregate(Salary ~ x, p, mean),
sd = aggregate(Salary ~ x, p, sd))
}
#
# table
des <- as.data.frame(rbind(d(p$Gender),d(p$Sector),d(p$EduLv),d(p$Field),d(p$Category),d(p$Region),d(p$SubEduOver),d(p$SubMismatch),d(p$ObjOver),d(p$Core)))%>%
select(c(1,3,6,8,10))
## Warning in `[<-.factor`(`*tmp*`, ri, value = 1:5): invalid factor level, NA
## generated
## Warning in `[<-.factor`(`*tmp*`, ri, value = 1:5): invalid factor level, NA
## generated
kable(des)
| n.x | n.Freq | prop.Freq | mean.Salary | sd.Salary |
|---|---|---|---|---|
| 女 | 817 | 0.608 | 40306 | 15519 |
| 男 | 526 | 0.392 | 51616 | 28691 |
| 私立 | 534 | 0.398 | 39026 | 18068 |
| 國外學校 | 19 | 0.014 | 57632 | 41075 |
| 國立(公立) | 790 | 0.588 | 48285 | 23474 |
| 技術學院 | 35 | 0.026 | 40857 | 24629 |
| 博士 | 5 | 0.004 | 71000 | 15166 |
| 碩士 | 415 | 0.309 | 56410 | 27934 |
| 普通大學 | 640 | 0.477 | 40234 | 16235 |
| 科技大學 | 248 | 0.185 | 36835 | 16548 |
| 遊憩與運動學群 | 27 | 0.020 | 39444 | 18415 |
| 大眾傳播學群 | 45 | 0.034 | 35889 | 12937 |
| 工程學群 | 213 | 0.159 | 57958 | 31424 |
| 文史哲學群 | 79 | 0.059 | 38861 | 14299 |
| 外語學群 | 69 | 0.051 | 40145 | 10501 |
| 生命科學學群 | 33 | 0.025 | 44091 | 16272 |
| 生物資源學群 | 22 | 0.016 | 42273 | 15791 |
| 地球與環境學群 | 21 | 0.016 | 44524 | 11170 |
| 法政學群 | 60 | 0.045 | 42417 | 14801 |
| 社會與心理學群 | 119 | 0.089 | 37437 | 11840 |
| 建築與設計學群 | 46 | 0.034 | 43696 | 42693 |
| 財經學群 | 97 | 0.072 | 42732 | 21759 |
| 教育學群 | 102 | 0.076 | 45833 | 12209 |
| 資訊學群 | 105 | 0.078 | 49000 | 25253 |
| 管理學群 | 129 | 0.096 | 38798 | 16462 |
| 數理化學群 | 58 | 0.043 | 51207 | 18995 |
| 醫藥衛生學群 | 87 | 0.065 | 45000 | 21861 |
| 藝術學群 | 31 | 0.023 | 33226 | 11147 |
| 受雇者於私營企業 | 822 | 0.612 | 44075 | 26847 |
| 受雇於公營機關 | 521 | 0.388 | 45777 | 12166 |
| 宜花東離島 | 49 | 0.036 | 44490 | 16840 |
| 北北基 | 441 | 0.328 | 44580 | 18868 |
| 桃竹苗 | 193 | 0.144 | 54378 | 28199 |
| 中彰投 | 206 | 0.153 | 43495 | 27264 |
| 雲嘉南 | 232 | 0.173 | 41185 | 16263 |
| 高屏澎 | 222 | 0.165 | 41577 | 22290 |
| 符合工作要求 | 911 | 0.678 | 47042 | 24476 |
| 高於工作要求 | 288 | 0.214 | 40694 | 16253 |
| 低於工作要求 | 144 | 0.107 | 38229 | 15196 |
| 1 | 169 | 0.126 | 39320 | 20463 |
| 2 | 238 | 0.177 | 41429 | 17779 |
| 3 | 341 | 0.254 | 42757 | 21788 |
| 4 | 413 | 0.308 | 46792 | 20122 |
| 5 | 182 | 0.136 | 53132 | 30886 |
| adequate | 413 | 0.308 | 42433 | 20377 |
| over | 872 | 0.649 | 45619 | 22868 |
| under | 58 | 0.043 | 47845 | 26376 |
| 無關聯 | 818 | 0.609 | 42586 | 21361 |
| 部分關聯 | 175 | 0.130 | 50171 | 27212 |
| 核心關聯 | 350 | 0.261 | 47043 | 21221 |
# correlation table
pc <- select(p, Salary,Age,Hours, J_year,J_total )
tableC(pc, cor_type="pearson")
## N = 1343
## Note: pearson correlation (p-value).
##
## ────────────────────────────────────────────────────────────────────────────
## [1] [2] [3] [4]
## [1]Salary 1.00
## [2]Age 0.303 (<.001) 1.00
## [3]Hours 0.143 (<.001) -0.021 (0.438) 1.00
## [4]J_year 0.178 (<.001) 0.617 (<.001) -0.049 (0.075) 1.00
## [5]J_total 0.18 (<.001) 0.786 (<.001) -0.044 (0.11) 0.747 (<.001)
## [5]
##
##
##
##
## 1.00
## ────────────────────────────────────────────────────────────────────────────
#
kable(table1(p,SubEduOver,splitby = ~ ObjOver, row_wise=T, output = 'text2'))
|
#
kable(table1(p,as.factor(SubMismatch),splitby = ~ Core, row_wise=T, output = 'text2'))
|
# salary
ggplot(p, aes(x = as.factor(Salary))) +
geom_bar(position="dodge")+
labs(x = "薪資",y = "人數") +
theme_bw() +
theme(axis.text.x = element_text(hjust = 1, angle =30))
# age
ggplot(p, aes(x = p$Age, y = p$Salary))+
geom_point(alpha = .5, size = .8)+
labs(x='age',y='salary')+
facet_wrap(~JobZone_D)
ggplot(p , aes(x = Age))+
geom_bar(position="dodge")+
geom_vline(xintercept = mean(p$Age), color = "black", linetype = 2) +
scale_x_continuous(limits=c(20,65), breaks=seq(20,65, by = 5))+
scale_y_continuous(limits=c(0,180), breaks=seq(0,180, by = 20))+
labs(x = "年齡",y = "人數")+
theme_bw()