setwd("~/Google Drive/Agrosavia/colaboraciones/Laura")
datos5<-read.table("veinteclo_boy2.csv", header=T, sep=',')
datos5$gen<-as.factor(datos5$gen)
datos5$bloque<-as.factor(datos5$bloque)
datos5$semana<-as.factor(datos5$semana)
attach(datos5)
library(ggplot2)
#Gráfica altura
ggplot(datos5, aes(semana, alt, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 68 rows containing non-finite values (stat_smooth).

# Gráfica diámetro patrón
ggplot(datos5, aes(semana, patrodia, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro del patrón") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )  
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 68 rows containing non-finite values (stat_smooth).

#Gráfica diámetro injerto
ggplot(datos5, aes(semana, injedia, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro del injerto") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 68 rows containing non-finite values (stat_smooth).

# Gráfica diámetro copa
ggplot(datos5, aes(semana, copdia, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro de la copa") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 68 rows containing non-finite values (stat_smooth).

# Gráfica área copa
ggplot(datos5, aes(semana, coparea, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Área de la copa") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 68 rows containing non-finite values (stat_smooth).

# Anova general
aov.alt<-aov(alt~semana*gen+bloque)
aov.patrodia<-aov(patrodia~semana*gen+bloque)
aov.injedia<-aov(injedia~semana*gen+bloque)
aov.copdia<-aov(copdia~semana*gen+bloque)
aov.coparea<-aov(coparea~semana*gen+bloque)
#Análisis para altura
library(nlme)
fit.compsym.alt <- gls(alt ~ semana*gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 55 14837.63 15120.09 -7363.814                        
## fit.ar1.alt         2 55 14832.74 15115.20 -7361.369                        
## fit.ar1het.alt      3 57 14121.39 14414.12 -7003.693 2 vs 3 715.3514  <.0001
anova(fit.ar1.alt)
## Denom. DF: 1256 
##             numDF  F-value p-value
## (Intercept)     1 5342.808  <.0001
## semana          2   22.241  <.0001
## gen            16    5.767  <.0001
## bloque          2    1.541  0.2145
## semana:gen     32    1.288  0.1316
anova(fit.ar1het.alt)
## Denom. DF: 1256 
##             numDF  F-value p-value
## (Intercept)     1 8103.217  <.0001
## semana          2   17.974  <.0001
## gen            16    8.514  <.0001
## bloque          2    0.197  0.8213
## semana:gen     32    0.820  0.7518
# Análisis para diámetro del patrón
fit.compsym.patrodia <- gls(patrodia ~ semana*gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.patrodia <- gls(patrodia ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.patrodia <- gls(patrodia ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.patrodia, fit.ar1.patrodia, fit.ar1het.patrodia) #compares the models
##                      Model df      AIC      BIC    logLik   Test    L.Ratio
## fit.compsym.patrodia     1 55 4287.376 4569.839 -2088.688                  
## fit.ar1.patrodia         2 55 4221.886 4504.349 -2055.943                  
## fit.ar1het.patrodia      3 57 4225.812 4518.546 -2055.906 2 vs 3 0.07456518
##                      p-value
## fit.compsym.patrodia        
## fit.ar1.patrodia            
## fit.ar1het.patrodia   0.9634
anova(fit.ar1.patrodia)
## Denom. DF: 1256 
##             numDF   F-value p-value
## (Intercept)     1 13914.439  <.0001
## semana          2    47.242  <.0001
## gen            16     5.928  <.0001
## bloque          2     0.606  0.5455
## semana:gen     32     0.394  0.9991
anova(fit.ar1het.patrodia)
## Denom. DF: 1256 
##             numDF   F-value p-value
## (Intercept)     1 13911.844  <.0001
## semana          2    46.973  <.0001
## gen            16     5.931  <.0001
## bloque          2     0.607  0.5452
## semana:gen     32     0.393  0.9991
# Análisis para diámetro del injerto
fit.compsym.injedia <- gls(injedia ~ semana*gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.injedia <- gls(injedia ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.injedia <- gls(injedia ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.injedia, fit.ar1.injedia, fit.ar1het.injedia) #compares the models
##                     Model df      AIC      BIC    logLik   Test  L.Ratio
## fit.compsym.injedia     1 55 3774.227 4056.689 -1832.113                
## fit.ar1.injedia         2 55 3708.044 3990.507 -1799.022                
## fit.ar1het.injedia      3 57 3686.006 3978.741 -1786.003 2 vs 3 26.03807
##                     p-value
## fit.compsym.injedia        
## fit.ar1.injedia            
## fit.ar1het.injedia   <.0001
anova(fit.ar1.injedia)
## Denom. DF: 1256 
##             numDF  F-value p-value
## (Intercept)     1 7976.138  <.0001
## semana          2   20.499  <.0001
## gen            16    9.046  <.0001
## bloque          2    9.995  <.0001
## semana:gen     32    0.381  0.9993
anova(fit.ar1het.injedia)
## Denom. DF: 1256 
##             numDF  F-value p-value
## (Intercept)     1 8618.521  <.0001
## semana          2   20.217  <.0001
## gen            16    9.978  <.0001
## bloque          2    9.803  0.0001
## semana:gen     32    0.353  0.9997
# Análisis para diámetro de la copa
fit.compsym.copdia <- gls(copdia ~ semana*gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.copdia <- gls(copdia ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.copdia <- gls(copdia ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.copdia, fit.ar1.copdia, fit.ar1het.copdia) #compares the models
##                    Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.copdia     1 55 13115.85 13398.31 -6502.925                        
## fit.ar1.copdia         2 55 13059.74 13342.20 -6474.871                        
## fit.ar1het.copdia      3 57 13008.16 13300.89 -6447.079 2 vs 3 55.58428  <.0001
anova(fit.ar1.copdia)
## Denom. DF: 1256 
##             numDF  F-value p-value
## (Intercept)     1 8434.983  <.0001
## semana          2   49.503  <.0001
## gen            16   12.835  <.0001
## bloque          2   11.074  <.0001
## semana:gen     32    0.708  0.8872
anova(fit.ar1het.copdia)
## Denom. DF: 1256 
##             numDF  F-value p-value
## (Intercept)     1 8413.016  <.0001
## semana          2   58.664  <.0001
## gen            16   12.238  <.0001
## bloque          2   11.879  <.0001
## semana:gen     32    0.774  0.8137
# Análisis para área de la copa
fit.compsym.coparea <- gls(coparea ~ semana*gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.coparea <- gls(coparea ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.coparea <- gls(coparea ~ semana*gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.coparea, fit.ar1.coparea, fit.ar1het.coparea) #compares the models
##                     Model df      AIC      BIC    logLik   Test  L.Ratio
## fit.compsym.coparea     1 55 4286.012 4568.475 -2088.006                
## fit.ar1.coparea         2 55 4278.074 4560.537 -2084.037                
## fit.ar1het.coparea      3 57 3811.960 4104.694 -1848.980 2 vs 3 470.1137
##                     p-value
## fit.compsym.coparea        
## fit.ar1.coparea            
## fit.ar1het.coparea   <.0001
anova(fit.ar1.coparea)
## Denom. DF: 1256 
##             numDF   F-value p-value
## (Intercept)     1 1635.1608  <.0001
## semana          2   36.5863  <.0001
## gen            16    7.8921  <.0001
## bloque          2   10.0799  <.0001
## semana:gen     32    0.9952  0.4756
anova(fit.ar1het.coparea)
## Denom. DF: 1256 
##             numDF   F-value p-value
## (Intercept)     1 2227.6517  <.0001
## semana          2   73.8807  <.0001
## gen            16   10.2599  <.0001
## bloque          2   12.9388  <.0001
## semana:gen     32    1.2593   0.153
#Tukey altura
library(multcompView)
interac.tuk.alt<-TukeyHSD(aov.alt, "semana:gen", ordered = TRUE)
semana.tuk.alt<-TukeyHSD(aov.alt, "semana", ordered = TRUE)
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
#Tukey diámetro del patrón
interac.tuk.patrodia<-TukeyHSD(aov.patrodia, "semana:gen", ordered = TRUE)
semana.tuk.patrodia<-TukeyHSD(aov.patrodia, "semana", ordered = TRUE)
gen.tuk.patrodia<-TukeyHSD(aov.patrodia, "gen", ordered = TRUE)
#Tukey diámetro del injerto
interac.tuk.injedia<-TukeyHSD(aov.injedia, "semana:gen", ordered = TRUE)
semana.tuk.injedia<-TukeyHSD(aov.injedia, "semana", ordered = TRUE)
gen.tuk.injedia<-TukeyHSD(aov.injedia, "gen", ordered = TRUE)
#Tukey diámetro de la copa
interac.tuk.copdia<-TukeyHSD(aov.copdia, "semana:gen", ordered = TRUE)
semana.tuk.copdia<-TukeyHSD(aov.copdia, "semana", ordered = TRUE)
gen.tuk.copdia<-TukeyHSD(aov.copdia, "gen", ordered = TRUE)
#Tukey área de la copa
interac.tuk.coparea<-TukeyHSD(aov.coparea, "semana:gen", ordered = TRUE)
semana.tuk.coparea<-TukeyHSD(aov.coparea, "semana", ordered = TRUE)
gen.tuk.coparea<-TukeyHSD(aov.coparea, "gen", ordered = TRUE)
#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## TCS01     bcd     TCS01
## TCS02       a     TCS02
## TCS03       a     TCS03
## TCS04     abc     TCS04
## TCS05     abc     TCS05
## TCS08       a     TCS08
## TCS10      cd     TCS10
## TCS11     abc     TCS11
## TCS12    abcd     TCS12
## TCS20     bcd     TCS20
## TCS43      ab     TCS43
## TCS44      ab     TCS44
## TCS45    abcd     TCS45
## TCS46       d     TCS46
## TCS47      ab     TCS47
## TCS48    abcd     TCS48
## TCS49    abcd     TCS49
# Semana
generate_label_df_semana_alt <- function(semana.tuk.alt, variable){
  Tukey.levels <- semana.tuk.alt[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.semana.alt <- generate_label_df_semana_alt(semana.tuk.alt, "semana")
labels.semana.alt
##     Letters treatment
## 100       a       100
## 112       a       112
## 123       a       123
# Interacción Semana:Genotipo
generate_label_df_interac_alt <- function(interac.tuk.alt, variable){
  Tukey.levels <- interac.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.alt <- generate_label_df_interac_alt(interac.tuk.alt, "semana:gen")
labels.interac.alt
##           Letters treatment
## 100:TCS01    abcd 100:TCS01
## 100:TCS02      ab 100:TCS02
## 100:TCS03      ab 100:TCS03
## 100:TCS04    abcd 100:TCS04
## 100:TCS05      ab 100:TCS05
## 100:TCS08      ab 100:TCS08
## 100:TCS10    abcd 100:TCS10
## 100:TCS11     abc 100:TCS11
## 100:TCS12    abcd 100:TCS12
## 100:TCS20    abcd 100:TCS20
## 100:TCS43      ab 100:TCS43
## 100:TCS44      ab 100:TCS44
## 100:TCS45    abcd 100:TCS45
## 100:TCS46    abcd 100:TCS46
## 100:TCS47     abc 100:TCS47
## 100:TCS48    abcd 100:TCS48
## 100:TCS49    abcd 100:TCS49
## 112:TCS01    abcd 112:TCS01
## 112:TCS02     abc 112:TCS02
## 112:TCS03      ab 112:TCS03
## 112:TCS04    abcd 112:TCS04
## 112:TCS05    abcd 112:TCS05
## 112:TCS08      ab 112:TCS08
## 112:TCS10    abcd 112:TCS10
## 112:TCS11    abcd 112:TCS11
## 112:TCS12    abcd 112:TCS12
## 112:TCS20    abcd 112:TCS20
## 112:TCS43    abcd 112:TCS43
## 112:TCS44    abcd 112:TCS44
## 112:TCS45    abcd 112:TCS45
## 112:TCS46     cde 112:TCS46
## 112:TCS47       a 112:TCS47
## 112:TCS48    abcd 112:TCS48
## 112:TCS49    abcd 112:TCS49
## 123:TCS01     bcd 123:TCS01
## 123:TCS02    abcd 123:TCS02
## 123:TCS03    abcd 123:TCS03
## 123:TCS04    abcd 123:TCS04
## 123:TCS05    abcd 123:TCS05
## 123:TCS08    abcd 123:TCS08
## 123:TCS10       e 123:TCS10
## 123:TCS11    abcd 123:TCS11
## 123:TCS12    abcd 123:TCS12
## 123:TCS20    bcde 123:TCS20
## 123:TCS43    abcd 123:TCS43
## 123:TCS44    abcd 123:TCS44
## 123:TCS45    abcd 123:TCS45
## 123:TCS46      de 123:TCS46
## 123:TCS47    abcd 123:TCS47
## 123:TCS48    abcd 123:TCS48
## 123:TCS49    abcd 123:TCS49
#Etiquetas Tukey diámetro del patrón
#Genotipos
generate_label_df_gen_patrodia <- function(gen.tuk.patrodia, variable){
  Tukey.levels <- gen.tuk.patrodia[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.patrodia <- generate_label_df_gen_patrodia(gen.tuk.patrodia, "gen")
labels.gen.patrodia
##       Letters treatment
## TCS01     def     TCS01
## TCS02    bcde     TCS02
## TCS03       a     TCS03
## TCS04     def     TCS04
## TCS05     bde     TCS05
## TCS08      ac     TCS08
## TCS10    abcd     TCS10
## TCS11     abc     TCS11
## TCS12     def     TCS12
## TCS20      ef     TCS20
## TCS43    bcde     TCS43
## TCS44     abc     TCS44
## TCS45     def     TCS45
## TCS46       f     TCS46
## TCS47     bde     TCS47
## TCS48     def     TCS48
## TCS49     def     TCS49
# Semana
generate_label_df_semana_patrodia <- function(semana.tuk.patrodia, variable){
  Tukey.levels <- semana.tuk.patrodia[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.semana.patrodia <- generate_label_df_semana_patrodia(semana.tuk.patrodia, "semana")
labels.semana.patrodia
##     Letters treatment
## 100       a       100
## 112       a       112
## 123       a       123
# Interacción Semana:Genotipo
generate_label_df_interac_patrodia <- function(interac.tuk.patrodia, variable){
  Tukey.levels <- interac.tuk.patrodia[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.patrodia <- generate_label_df_interac_patrodia(interac.tuk.patrodia, "semana:gen")
labels.interac.patrodia
##                Letters treatment
## 100:TCS01  abcdefghijk 100:TCS01
## 100:TCS02     abcdefgh 100:TCS02
## 100:TCS03           ab 100:TCS03
## 100:TCS04    abcdefghi 100:TCS04
## 100:TCS05   abcdefghij 100:TCS05
## 100:TCS08         abce 100:TCS08
## 100:TCS10    abcdefghi 100:TCS10
## 100:TCS11            a 100:TCS11
## 100:TCS12      abcdefg 100:TCS12
## 100:TCS20  abcdefghijk 100:TCS20
## 100:TCS43   abcdefghij 100:TCS43
## 100:TCS44           ab 100:TCS44
## 100:TCS45  abcdefghijk 100:TCS45
## 100:TCS46  abcdefghijk 100:TCS46
## 100:TCS47          abc 100:TCS47
## 100:TCS48   abcdefghij 100:TCS48
## 100:TCS49   abcdefghij 100:TCS49
## 112:TCS01   cdefghijkl 112:TCS01
## 112:TCS02 abcdefghijkl 112:TCS02
## 112:TCS03       abcdef 112:TCS03
## 112:TCS04    defghijkl 112:TCS04
## 112:TCS05  bcdefghijkl 112:TCS05
## 112:TCS08        abcde 112:TCS08
## 112:TCS10  abcdefghijk 112:TCS10
## 112:TCS11    abcdefghi 112:TCS11
## 112:TCS12   cdefghijkl 112:TCS12
## 112:TCS20      fghijkl 112:TCS20
## 112:TCS43 abcdefghijkl 112:TCS43
## 112:TCS44     abcdefgh 112:TCS44
## 112:TCS45 abcdefghijkl 112:TCS45
## 112:TCS46           kl 112:TCS46
## 112:TCS47    defghijkl 112:TCS47
## 112:TCS48 abcdefghijkl 112:TCS48
## 112:TCS49     dfghijkl 112:TCS49
## 123:TCS01        hijkl 123:TCS01
## 123:TCS02   cdefghijkl 123:TCS02
## 123:TCS03     abcdefgh 123:TCS03
## 123:TCS04      fghijkl 123:TCS04
## 123:TCS05  bcdefghijkl 123:TCS05
## 123:TCS08  abcdefghijk 123:TCS08
## 123:TCS10 abcdefghijkl 123:TCS10
## 123:TCS11   abcdefghij 123:TCS11
## 123:TCS12      fghijkl 123:TCS12
## 123:TCS20          jkl 123:TCS20
## 123:TCS43 abcdefghijkl 123:TCS43
## 123:TCS44  abcdefghijk 123:TCS44
## 123:TCS45          jkl 123:TCS45
## 123:TCS46            l 123:TCS46
## 123:TCS47       ghijkl 123:TCS47
## 123:TCS48         ijkl 123:TCS48
## 123:TCS49      fghijkl 123:TCS49
#Etiquetas Tukey diámetro del injerto
#Genotipos
generate_label_df_gen_injedia <- function(gen.tuk.injedia, variable){
  Tukey.levels <- gen.tuk.injedia[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.injedia <- generate_label_df_gen_injedia(gen.tuk.injedia, "gen")
labels.gen.injedia
##       Letters treatment
## TCS01      ef     TCS01
## TCS02     acd     TCS02
## TCS03      ab     TCS03
## TCS04     cde     TCS04
## TCS05      ac     TCS05
## TCS08       b     TCS08
## TCS10     acd     TCS10
## TCS11      ac     TCS11
## TCS12     def     TCS12
## TCS20     def     TCS20
## TCS43     acd     TCS43
## TCS44     acd     TCS44
## TCS45     def     TCS45
## TCS46       f     TCS46
## TCS47     cde     TCS47
## TCS48     cde     TCS48
## TCS49     def     TCS49
# Semana
generate_label_df_semana_injedia <- function(semana.tuk.injedia, variable){
  Tukey.levels <- semana.tuk.injedia[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.semana.injedia <- generate_label_df_semana_injedia(semana.tuk.injedia, "semana")
labels.semana.injedia
##     Letters treatment
## 100       a       100
## 112       a       112
## 123       a       123
# Interacción Semana:Genotipo
generate_label_df_interac_injedia <- function(interac.tuk.injedia, variable){
  Tukey.levels <- interac.tuk.injedia[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.injedia <- generate_label_df_interac_injedia(interac.tuk.injedia, "semana:gen")
labels.interac.injedia
##             Letters treatment
## 100:TCS01  cdefghij 100:TCS01
## 100:TCS02    abcdef 100:TCS02
## 100:TCS03       abc 100:TCS03
## 100:TCS04   cdefghi 100:TCS04
## 100:TCS05      abcd 100:TCS05
## 100:TCS08         b 100:TCS08
## 100:TCS10   abcdefg 100:TCS10
## 100:TCS11      abcd 100:TCS11
## 100:TCS12   abcdefg 100:TCS12
## 100:TCS20  cdefghij 100:TCS20
## 100:TCS43   abcdefg 100:TCS43
## 100:TCS44   abcdefg 100:TCS44
## 100:TCS45  cdefghij 100:TCS45
## 100:TCS46  cdefghij 100:TCS46
## 100:TCS47      abcd 100:TCS47
## 100:TCS48   cdefghi 100:TCS48
## 100:TCS49  cdefghij 100:TCS49
## 112:TCS01   defghij 112:TCS01
## 112:TCS02   abcdefg 112:TCS02
## 112:TCS03      abcd 112:TCS03
## 112:TCS04   cdefghi 112:TCS04
## 112:TCS05    abcdef 112:TCS05
## 112:TCS08        ab 112:TCS08
## 112:TCS10   abcdefg 112:TCS10
## 112:TCS11   abcdefg 112:TCS11
## 112:TCS12   defghij 112:TCS12
## 112:TCS20  cdefghij 112:TCS20
## 112:TCS43   abcdefg 112:TCS43
## 112:TCS44   abcdefg 112:TCS44
## 112:TCS45  cdefghij 112:TCS45
## 112:TCS46        ij 112:TCS46
## 112:TCS47  cdefghij 112:TCS47
## 112:TCS48 abcdefghi 112:TCS48
## 112:TCS49  cdefghij 112:TCS49
## 123:TCS01       hij 123:TCS01
## 123:TCS02  cdefghij 123:TCS02
## 123:TCS03    abcdef 123:TCS03
## 123:TCS04  cdefghij 123:TCS04
## 123:TCS05  acdefghi 123:TCS05
## 123:TCS08     abcde 123:TCS08
## 123:TCS10   cdefghi 123:TCS10
## 123:TCS11  abcdefgh 123:TCS11
## 123:TCS12      ghij 123:TCS12
## 123:TCS20     fghij 123:TCS20
## 123:TCS43  cdefghij 123:TCS43
## 123:TCS44   cdefghi 123:TCS44
## 123:TCS45     fghij 123:TCS45
## 123:TCS46         j 123:TCS46
## 123:TCS47    efghij 123:TCS47
## 123:TCS48  cdefghij 123:TCS48
## 123:TCS49   defghij 123:TCS49
#Etiquetas Tukey diámetro de la copa
#Genotipos
generate_label_df_gen_copdia <- function(gen.tuk.copdia, variable){
  Tukey.levels <- gen.tuk.copdia[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.copdia <- generate_label_df_gen_copdia(gen.tuk.copdia, "gen")
labels.gen.copdia
##       Letters treatment
## TCS01      de     TCS01
## TCS02     abc     TCS02
## TCS03     abc     TCS03
## TCS04     bcd     TCS04
## TCS05      ab     TCS05
## TCS08       g     TCS08
## TCS10     abc     TCS10
## TCS11    abcd     TCS11
## TCS12      ef     TCS12
## TCS20      de     TCS20
## TCS43       a     TCS43
## TCS44    abcd     TCS44
## TCS45     cde     TCS45
## TCS46       f     TCS46
## TCS47     cde     TCS47
## TCS48     cde     TCS48
## TCS49     cde     TCS49
# Semana
generate_label_df_semana_copdia <- function(semana.tuk.copdia, variable){
  Tukey.levels <- semana.tuk.copdia[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.semana.copdia <- generate_label_df_semana_copdia(semana.tuk.copdia, "semana")
labels.semana.copdia
##     Letters treatment
## 100       a       100
## 112       a       112
## 123       a       123
# Interacción Semana:Genotipo
generate_label_df_interac_copdia <- function(interac.tuk.copdia, variable){
  Tukey.levels <- interac.tuk.copdia[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.copdia <- generate_label_df_interac_copdia(interac.tuk.copdia, "semana:gen")
labels.interac.copdia
##                Letters treatment
## 100:TCS01   defghijklm 100:TCS01
## 100:TCS02         abcd 100:TCS02
## 100:TCS03      abcdefg 100:TCS03
## 100:TCS04   abcdefghij 100:TCS04
## 100:TCS05          abc 100:TCS05
## 100:TCS08            b 100:TCS08
## 100:TCS10     abcdefgh 100:TCS10
## 100:TCS11     abcdefgh 100:TCS11
## 100:TCS12   acdefghijk 100:TCS12
## 100:TCS20    cdefghijk 100:TCS20
## 100:TCS43        abcde 100:TCS43
## 100:TCS44      abcdefg 100:TCS44
## 100:TCS45   abcdefghij 100:TCS45
## 100:TCS46    fghijklmn 100:TCS46
## 100:TCS47      abcdefg 100:TCS47
## 100:TCS48    abcdefghi 100:TCS48
## 100:TCS49  abcdefghijk 100:TCS49
## 112:TCS01     ghijklmn 112:TCS01
## 112:TCS02  cdefghijklm 112:TCS02
## 112:TCS03   acdefghijk 112:TCS03
## 112:TCS04  cdefghijklm 112:TCS04
## 112:TCS05     abcdefgh 112:TCS05
## 112:TCS08           ab 112:TCS08
## 112:TCS10  abcdefghijk 112:TCS10
## 112:TCS11  cdefghijklm 112:TCS11
## 112:TCS12        klmno 112:TCS12
## 112:TCS20     ghijklmn 112:TCS20
## 112:TCS43       abcdef 112:TCS43
## 112:TCS44  cdefghijklm 112:TCS44
## 112:TCS45  defghijklmn 112:TCS45
## 112:TCS46          mno 112:TCS46
## 112:TCS47   efghijklmn 112:TCS47
## 112:TCS48 cdefghijklmn 112:TCS48
## 112:TCS49 cdefghijklmn 112:TCS49
## 123:TCS01      hijklmn 123:TCS01
## 123:TCS02   cdefghijkl 123:TCS02
## 123:TCS03  cdefghijklm 123:TCS03
## 123:TCS04  defghijklmn 123:TCS04
## 123:TCS05   acdefghijk 123:TCS05
## 123:TCS08        abcde 123:TCS08
## 123:TCS10   acdefghijk 123:TCS10
## 123:TCS11  cdefghijklm 123:TCS11
## 123:TCS12           no 123:TCS12
## 123:TCS20         lmno 123:TCS20
## 123:TCS43   acdefghijk 123:TCS43
## 123:TCS44  defghijklmn 123:TCS44
## 123:TCS45       jklmno 123:TCS45
## 123:TCS46            o 123:TCS46
## 123:TCS47      ijklmno 123:TCS47
## 123:TCS48      hijklmn 123:TCS48
## 123:TCS49     ghijklmn 123:TCS49
#Etiquetas Tukey área de la copa
#Genotipos
generate_label_df_gen_coparea <- function(gen.tuk.coparea, variable){
  Tukey.levels <- gen.tuk.coparea[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.coparea <- generate_label_df_gen_coparea(gen.tuk.coparea, "gen")
labels.gen.coparea
##       Letters treatment
## TCS01      cd     TCS01
## TCS02     acd     TCS02
## TCS03     abc     TCS03
## TCS04     acd     TCS04
## TCS05      ab     TCS05
## TCS08       b     TCS08
## TCS10      ac     TCS10
## TCS11     acd     TCS11
## TCS12      de     TCS12
## TCS20     cde     TCS20
## TCS43      ab     TCS43
## TCS44      ac     TCS44
## TCS45     acd     TCS45
## TCS46       e     TCS46
## TCS47     acd     TCS47
## TCS48     acd     TCS48
## TCS49     acd     TCS49
# Semana
generate_label_df_semana_coparea <- function(semana.tuk.coparea, variable){
  Tukey.levels <- semana.tuk.coparea[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.semana.coparea <- generate_label_df_semana_coparea(semana.tuk.coparea, "semana")
labels.semana.coparea
##     Letters treatment
## 100       a       100
## 112       a       112
## 123       a       123
# Interacción Semana:Genotipo
generate_label_df_interac_coparea <- function(interac.tuk.coparea, variable){
  Tukey.levels <- interac.tuk.coparea[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.coparea <- generate_label_df_interac_coparea(interac.tuk.coparea, "semana:gen")
labels.interac.coparea
##             Letters treatment
## 100:TCS01  abcdefgh 100:TCS01
## 100:TCS02       abc 100:TCS02
## 100:TCS03      abcd 100:TCS03
## 100:TCS04   abcdefg 100:TCS04
## 100:TCS05        ab 100:TCS05
## 100:TCS08         a 100:TCS08
## 100:TCS10    abcdef 100:TCS10
## 100:TCS11    abcdef 100:TCS11
## 100:TCS12   abcdefg 100:TCS12
## 100:TCS20   abcdefg 100:TCS20
## 100:TCS43      abcd 100:TCS43
## 100:TCS44     abcde 100:TCS44
## 100:TCS45    abcdef 100:TCS45
## 100:TCS46  abcdefgh 100:TCS46
## 100:TCS47    abcdef 100:TCS47
## 100:TCS48    abcdef 100:TCS48
## 100:TCS49   abcdefg 100:TCS49
## 112:TCS01  abcdefgh 112:TCS01
## 112:TCS02     efghi 112:TCS02
## 112:TCS03   abcdefg 112:TCS03
## 112:TCS04  abcdefgh 112:TCS04
## 112:TCS05    abcdef 112:TCS05
## 112:TCS08         a 112:TCS08
## 112:TCS10   abcdefg 112:TCS10
## 112:TCS11  abcdefgh 112:TCS11
## 112:TCS12    defghi 112:TCS12
## 112:TCS20  abcdefgh 112:TCS20
## 112:TCS43      abcd 112:TCS43
## 112:TCS44  abcdefgh 112:TCS44
## 112:TCS45  abcdefgh 112:TCS45
## 112:TCS46       ghi 112:TCS46
## 112:TCS47  abcdefgh 112:TCS47
## 112:TCS48  abcdefgh 112:TCS48
## 112:TCS49  abcdefgh 112:TCS49
## 123:TCS01  abcdefgh 123:TCS01
## 123:TCS02   abcdefg 123:TCS02
## 123:TCS03  abcdefgh 123:TCS03
## 123:TCS04  abcdefgh 123:TCS04
## 123:TCS05   abcdefg 123:TCS05
## 123:TCS08      abcd 123:TCS08
## 123:TCS10  abcdefgh 123:TCS10
## 123:TCS11  abcdefgh 123:TCS11
## 123:TCS12        hi 123:TCS12
## 123:TCS20      fghi 123:TCS20
## 123:TCS43   abcdefg 123:TCS43
## 123:TCS44  abcdefgh 123:TCS44
## 123:TCS45   cdefghi 123:TCS45
## 123:TCS46         i 123:TCS46
## 123:TCS47    defghi 123:TCS47
## 123:TCS48  bcdefghi 123:TCS48
## 123:TCS49 abcdefghi 123:TCS49
detach(datos5)