1 Retrieve dataset and install packages

library(readxl)
pmdata <- read_excel("C:/Users/schoi/OneDrive/pmdata.xlsx")
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

2 Recoding variables

2.1 Recode to number to non-numeric

pmdata$gender<- recode(pmdata$gender, '1'='male', '2'='female', '3'= 'other')
pmdata$race<- recode(pmdata$race, '1'='asian', '2'='black', '3'= 'hispanic', '4' = 'middle eastern', '5' = 'native american', '6' = 'white', '7' = 'other')
pmdata$edu<- recode(pmdata$edu, '1'='some high school', '2'='high school', '3'= 'associates', '4' = 'bachelors', '5' = 'masters', '6' = 'phd/higher', '7' = 'trade school')
pmdata$marital<- recode(pmdata$marital, '1'='single', '2'='partnered', '3'= 'married', '4' = 'separated', '5' = 'widowed')
pmdata$income<- recode(pmdata$income, '1'='24.9k or <', '2'='25k to 49.9k', '3'= '50k to 99.9k', '4' = '100k to 199.9k', '5' = '200k or >')
pmdata$religion<- recode(pmdata$religion, '1'='christianity', '2'='judaism', '3'= 'islam', '4' = 'hinduism', '5' = 'buddhism', '6' = 'other', '7' = 'no affil')
pmdata$rank<- recode(pmdata$rank, '1'='police tech', '2'='police officer', '3'= 'detective', '4' = 'corporal', '5' = 'sergeant', '6' = 'lieutenant', '7' = 'captain', '8' = 'deputy chief', '9' = 'chief', '10' ='other rank')
pmdata$family<- recode(pmdata$family, '1'='yes', '2'='no')
pmdata$nopoexp<- recode(pmdata$nopoexp, '1'='yes', '2'='no')
pmdata$military<- recode(pmdata$military, '1'='yes', '2'='no')

##Rename police motivation variables

pmdata <- rename(pmdata, stdysal = motiv1, benefits = motiv2, goodsal = motiv3, jobsec = motiv4, retire = motiv5, jobstat = motiv6, jobfit = motiv7, power = motiv8, faminflu = motiv9, excite = motiv10, service = motiv11, dream = motiv12, danger = motiv13)

3 Composite variables and reverse coding

3.1 sdo

social dominance orientation (Ho et al., 2015): higher scores indicate higher SDO endorsement; reverse scored con-trait dominance/antiegalitarianism (SDO 5-8 and 13-16)

pmdata$sdo5r <- recode(pmdata$sdo5, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$sdo6r <- recode(pmdata$sdo6, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$sdo7r <- recode(pmdata$sdo7, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$sdo8r <- recode(pmdata$sdo8, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$sdo13r <- recode(pmdata$sdo13, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$sdo14r <- recode(pmdata$sdo14, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$sdo15r <- recode(pmdata$sdo15, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$sdo16r <- recode(pmdata$sdo16, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)

pmdata$sdo <- (pmdata$sdo1 + pmdata$sdo2 + pmdata$sdo3 + pmdata$sdo4 + pmdata$sdo5r + pmdata$sdo6r + pmdata$sdo7r + pmdata$sdo8r + pmdata$sdo9 + pmdata$sdo10 + pmdata$sdo11 + pmdata$sdo12 + pmdata$sdo13r + pmdata$sdo14r + pmdata$sdo15r + pmdata$sdo16r)/16

3.2 rwa

right-wing authoritarianism (Zakrisson, 2005): higher scores indicate higher RWA endorsement; reverse scored sdo2,4,6,8,10,12,14 (even numbers)

pmdata$rwa2r <- recode(pmdata$rwa2, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$rwa4r <- recode(pmdata$rwa4, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$rwa6r <- recode(pmdata$rwa6, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$rwa8r <- recode(pmdata$rwa8, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$rwa10r <- recode(pmdata$rwa10, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$rwa12r <- recode(pmdata$rwa12, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)
pmdata$rwa14r <- recode(pmdata$rwa14, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)

pmdata$rwa <- (pmdata$rwa1 + pmdata$rwa2r + pmdata$rwa3 + pmdata$rwa4r + pmdata$rwa5 + pmdata$rwa6r + pmdata$rwa7 + pmdata$rwa8r + pmdata$rwa9 + pmdata$rwa10r + pmdata$rwa11 + pmdata$rwa12r + pmdata$rwa13 + pmdata$rwa14r + pmdata$rwa15)/15

3.3 legit

police perceptions of how the community views them in terms of legitimacy (Bottoms & Tankebe, 2012; Jonathan-Zamir & Harpaz; Nix, 2017); higher scores mean the police believes that the community perceives them as legitimate; no reverse scored items

pmdata$legit <- (pmdata$legit1 + pmdata$legit2 + pmdata$legit3 + pmdata$legit4 + pmdata$legit5)/5

##ferg ferguson effect - negative impact of publicity on officers (Nix & Wolfe, 2016); higher scores mean more negative impact; no reversed scored items

pmdata$ferg <- (pmdata$ferg1 + pmdata$ferg2 + pmdata$ferg3 + pmdata$ferg4 + pmdata$ferg5+ pmdata$ferg6+ pmdata$ferg7+ pmdata$ferg8+ pmdata$ferg9 + pmdata$ferg10 + pmdata$ferg11 + pmdata$ferg12 + pmdata$ferg13+ pmdata$ferg14)/14

3.4 tipend

various goal pursuits (Wilkowski et al., 2021), higher scores mean more commitment towards a certain goal

pmdata$prom <- (pmdata$tipend1 + pmdata$tipend2 + pmdata$tipend3 + pmdata$tipend4 + pmdata$tipend5+ pmdata$tipend6+ pmdata$tipend7+ pmdata$tipend8+ pmdata$tipend9 + pmdata$tipend10 + pmdata$tipend11)/11
pmdata$neg <- (pmdata$tipend12 + pmdata$tipend13 + pmdata$tipend14 + pmdata$tipend15 + pmdata$tipend16+ pmdata$tipend17+ pmdata$tipend18+ pmdata$tipend19+ pmdata$tipend20 + pmdata$tipend21)/10
pmdata$trad <- (pmdata$tipend22 + pmdata$tipend23 + pmdata$tipend24 + pmdata$tipend25 + pmdata$tipend26+ pmdata$tipend27+ pmdata$tipend28+ pmdata$tipend29+ pmdata$tipend30 + pmdata$tipend31 + pmdata$tipend32)/11
pmdata$inclus <- (pmdata$tipend33 + pmdata$tipend34 + pmdata$tipend35 + pmdata$tipend36+ pmdata$tipend37+ pmdata$tipend38+ pmdata$tipend39+ pmdata$tipend40 + pmdata$tipend41 + pmdata$tipend42 + pmdata$tipend43)/11
pmdata$elite <- (pmdata$tipend44 + pmdata$tipend45 + pmdata$tipend46+ pmdata$tipend47+ pmdata$tipend48+ pmdata$tipend49+ pmdata$tipend50 + pmdata$tipend51 + pmdata$tipend52 + pmdata$tipend53 + pmdata$tipend54 + pmdata$tipend55 + pmdata$tipend56)/13
pmdata$disrep <-  (pmdata$tipend57+ pmdata$tipend58+ pmdata$tipend59+ pmdata$tipend60 + pmdata$tipend61 + pmdata$tipend62 + pmdata$tipend63 + pmdata$tipend64 + pmdata$tipend65 + pmdata$tipend66 +  pmdata$tipend67 +  pmdata$tipend68)/12
pmdata$rebel <- (pmdata$tipend69+ pmdata$tipend70 + pmdata$tipend71 + pmdata$tipend72 + pmdata$tipend73 + pmdata$tipend74 + pmdata$tipend75 + pmdata$tipend76 +  pmdata$tipend77 +  pmdata$tipend78 + pmdata$tipend79 + pmdata$tipend80)/12

3.5 reason

endorsement of reasonable use of force (Gerber & Jackson, 2017); higher scores indicate more endorsement of reasonable use of force

pmdata$reason <- (pmdata$useforce1 + pmdata$useforce2 + pmdata$useforce3 + pmdata$useforce4 + pmdata$useforce5)/5

3.6 excess

endorsement of excessive use of force (Gerber & Jackson, 2017); higher scores indicate more endorsement of excessive use of force

pmdata$excess <- (pmdata$useforce6 + pmdata$useforce7 + pmdata$useforce8 + pmdata$useforce9 + pmdata$useforce10)/5

3.7 projust

endorsement of procedural justice when dealing with civilians (Trinkner et al., 2019); higher score indicate more endorsement of procedural justice; reversed scored items: projust 9,10,16,17

pmdata$projust9r <- recode(pmdata$projust9, '1'=5, '2'=4, '3'=3, '4'=2, '5'=1)
pmdata$projust10r <- recode(pmdata$projust10, '1'=5, '2'=4, '3'=3, '4'=2, '5'=1)
pmdata$projust16r <- recode(pmdata$projust16, '1'=5, '2'=4, '3'=3, '4'=2, '5'=1)
pmdata$projust17r <- recode(pmdata$projust17, '1'=5, '2'=4, '3'=3, '4'=2, '5'=1)

pmdata$projust <- (pmdata$projust1 + pmdata$projust2 + pmdata$projust3 + pmdata$projust4 + pmdata$projust5 + pmdata$projust6 + pmdata$projust7 + pmdata$projust8+ pmdata$projust9r + pmdata$projust10r + pmdata$projust11 + pmdata$projust12 + pmdata$projust13+ pmdata$projust14+ pmdata$projust15+ pmdata$projust16r + pmdata$projust17r +pmdata$projust18 +pmdata$projust19)/19

3.8 loyal

loyalty towards fellow officers (Boke & Nalla, 2019); higher scores indicate more loyalty; there are no reverse scored items.

pmdata$loyal <- (pmdata$loyal1 + pmdata$loyal2 + pmdata$loyal3)/3

3.9 bpaq

aggressive tendencies (???); higher scores indicate more aggressive tendencies; reverse scored bpaq4

pmdata$bpaq4r <- recode(pmdata$bpaq4, '1'=7, '2'=6, '3'=5, '4'=4, '5'=3, '6'=2, '7'=1)

pmdata$bpaq <- (pmdata$bpaq1 + pmdata$bpaq2 + pmdata$bpaq3 + pmdata$bpaq4r + pmdata$bpaq5 + pmdata$bpaq6 + pmdata$bpaq7 + pmdata$bpaq8 + pmdata$bpaq9 + pmdata$bpaq10 + pmdata$bpaq11 + pmdata$bpaq12)/12

3.10 desirab

social desirability (Greenberg & Weiss, 2012); higher scores ( 0 -> 1) indicate a more social desirability; reversed scored desirab 1, 2, 3, 4, 6, 8, 11, and 12

pmdata$desirab1r <- recode(pmdata$desirab1, '1'=2, '2'= 1)
pmdata$desirab2r <- recode(pmdata$desirab2, '1'=2, '2'= 1)
pmdata$desirab3r <- recode(pmdata$desirab3, '1'=2, '2'= 1)
pmdata$desirab4r <- recode(pmdata$desirab4, '1'=2, '2'= 1)
pmdata$desirab6r <- recode(pmdata$desirab6, '1'=2, '2'= 1)
pmdata$desirab8r <- recode(pmdata$desirab8, '1'=2, '2'= 1)
pmdata$desirab11r <- recode(pmdata$desirab11, '1'=2, '2'= 1)
pmdata$desirab12r <- recode(pmdata$desirab12, '1'=2, '2'= 1)

pmdata$desirab <- (pmdata$desirab1r + pmdata$desirab2r + pmdata$desirab3r + pmdata$desirab4r + pmdata$desirab5+ pmdata$desirab6r+ pmdata$desirab7+ pmdata$desirab8r+ pmdata$desirab9 + pmdata$desirab10 + pmdata$desirab11r + pmdata$desirab12r)/12

3.11 guardian

officers prioritize service over fighting (McLean et al., 2020); no reverse scored items

pmdata$guardian <- (pmdata$warrior1 + pmdata$warrior2 + pmdata$warrior3 + pmdata$warrior4 + pmdata$warrior5 + pmdata$warrior6)/6

3.12 warrior

officers prioritize crime fighting (McLean et al., 2020); no reverse scored items

pmdata$warrior <- (pmdata$warrior7 + pmdata$warrior8 + pmdata$warrior9)/3

4 Correlation table with all variables

IVs
sdo = social dominance orientation (e.g., we should not push for group equality)
rwa = right-wing authoritarianism (e.g., its better to accept bad literature than to censor it)
legit = police perceptions of how the community views them in terms of legitimacy (e.g., citizens in your community trust the police) ferg = the ferguson effect (negative impact of publicity on officers)
prom = commitment to prominence goals (e.g., glory, championship); TIP-END goals
neg = commitment to negativity prevention goals (e.g., abnormality, craziness); TIP-END goals
trad = commitment to tradition goals (e.g., faith, obedience); TIP-END goals
inclus = commitment to inclusiveness goals (e.g., diversity, comradery, equity); TIP-END goals
elite = commitment to elitism goals (e.g., authoritarianism, boastfulness); TIP-END goals
disrep = commitment to disrepute (e.g., addiction, corruption); TIP-END goals
rebel = commitment to rebellion (e.g., wildness; temptation); TIP-END goals
loyal = loyalty to fellow officers (e.g., If I violate a rule, I expect my fellow officer to protect me)
bpaq = Buss-Perry Aggression Questionnaire (e.g., Given enough provocation, I may hit another person)
guardian = police officers as guardians orientation (e.g., As a police officer, I see myself as a civil servant)
warrior = police officers as warriors orientation (e.g., My primary responsibility as a police officer is to fight crime)

DVs
reason = endorsement of reasonable use of force (e.g., A police officer uses guns and clubs to stop violent demonstrations)
excess = endorsement of excessive use of force (e.g., A police officer uses violence to control non-violent demonstrations)
projust = endorsement of procedural justice (e.g., When interacting with community residents, how important is it to show an interest in what they have to say?)

library(dplyr)
with(pmdata, cor(select(pmdata, sdo, rwa, legit, ferg, prom, neg, trad, inclus, elite, disrep, rebel, bpaq, guardian, warrior, reason, excess, projust, loyal,), use = "na.or.complete"))
##                  sdo          rwa       legit          ferg         prom
## sdo       1.00000000  0.251924276 -0.23666036 -0.1133284785 -0.204243145
## rwa       0.25192428  1.000000000 -0.30045178  0.1246915859 -0.002925446
## legit    -0.23666036 -0.300451779  1.00000000 -0.1774192081  0.086985550
## ferg     -0.11332848  0.124691586 -0.17741921  1.0000000000  0.059422744
## prom     -0.20424315 -0.002925446  0.08698555  0.0594227445  1.000000000
## neg       0.03689308  0.088249477 -0.04306793 -0.0374657676  0.114104267
## trad     -0.26784357  0.525742761  0.05727886 -0.0006340331  0.226085485
## inclus   -0.46034411 -0.186421922  0.44499825  0.2960087869  0.136723425
## elite     0.09368809 -0.028825685 -0.03480835 -0.0604092911  0.299753998
## disrep    0.09352376 -0.105980673 -0.10101475 -0.0204776602  0.177064623
## rebel     0.13932136 -0.244008204 -0.10484413  0.1379711381  0.256061794
## bpaq      0.12955648  0.187015586 -0.26041190  0.1333272833  0.004074977
## guardian  0.10102487 -0.015941070  0.11047741 -0.2170324585 -0.089020331
## warrior   0.09058915 -0.024217323 -0.28130714  0.1914272989 -0.011185484
## reason    0.03557328  0.047863026  0.15880726  0.2317862659  0.244885698
## excess    0.30556598 -0.009303910 -0.20012011 -0.0840488987  0.184371192
## projust  -0.30403768  0.034060122  0.31861299  0.2101054590 -0.070787686
## loyal     0.05420457 -0.085702602  0.07803678 -0.0748294634 -0.182184850
##                  neg          trad        inclus        elite      disrep
## sdo       0.03689308 -0.2678435730 -4.603441e-01  0.093688089  0.09352376
## rwa       0.08824948  0.5257427606 -1.864219e-01 -0.028825685 -0.10598067
## legit    -0.04306793  0.0572788596  4.449982e-01 -0.034808350 -0.10101475
## ferg     -0.03746577 -0.0006340331  2.960088e-01 -0.060409291 -0.02047766
## prom      0.11410427  0.2260854845  1.367234e-01  0.299753998  0.17706462
## neg       1.00000000 -0.2563160899 -2.637407e-01  0.619996839  0.75194448
## trad     -0.25631609  1.0000000000  2.954905e-01 -0.250977653 -0.37694764
## inclus   -0.26374070  0.2954905150  1.000000e+00 -0.172746760 -0.30510868
## elite     0.61999684 -0.2509776531 -1.727468e-01  1.000000000  0.73643689
## disrep    0.75194448 -0.3769476394 -3.051087e-01  0.736436894  1.00000000
## rebel     0.59337777 -0.5350736510 -1.735909e-01  0.671820623  0.71250808
## bpaq      0.26507483 -0.0890223097 -6.799656e-02  0.422958970  0.35596339
## guardian  0.21101857 -0.1461471548  6.886763e-02 -0.007377966  0.06909730
## warrior  -0.06508821 -0.2491053063 -6.879722e-05 -0.104697158 -0.03855605
## reason   -0.10281223 -0.0239199684  2.377423e-01 -0.021949709 -0.20920750
## excess    0.24061958 -0.4183457652 -3.096344e-01  0.352330273  0.32051045
## projust  -0.27638887  0.3280145503  5.353845e-01 -0.288384450 -0.45962722
## loyal    -0.30904347 -0.1147608147 -3.115924e-01 -0.008568595 -0.09809827
##                 rebel         bpaq     guardian       warrior       reason
## sdo       0.139321363  0.129556481  0.101024867  9.058915e-02  0.035573281
## rwa      -0.244008204  0.187015586 -0.015941070 -2.421732e-02  0.047863026
## legit    -0.104844126 -0.260411899  0.110477408 -2.813071e-01  0.158807262
## ferg      0.137971138  0.133327283 -0.217032459  1.914273e-01  0.231786266
## prom      0.256061794  0.004074977 -0.089020331 -1.118548e-02  0.244885698
## neg       0.593377770  0.265074834  0.211018571 -6.508821e-02 -0.102812234
## trad     -0.535073651 -0.089022310 -0.146147155 -2.491053e-01 -0.023919968
## inclus   -0.173590869 -0.067996563  0.068867628 -6.879722e-05  0.237742325
## elite     0.671820623  0.422958970 -0.007377966 -1.046972e-01 -0.021949709
## disrep    0.712508078  0.355963394  0.069097297 -3.855605e-02 -0.209207502
## rebel     1.000000000  0.234155552  0.004009085  2.039474e-01 -0.001885734
## bpaq      0.234155552  1.000000000 -0.209316738  1.024210e-01 -0.059952987
## guardian  0.004009085 -0.209316738  1.000000000  7.305920e-02 -0.020629911
## warrior   0.203947418  0.102421012  0.073059204  1.000000e+00  0.176351006
## reason   -0.001885734 -0.059952987 -0.020629911  1.763510e-01  1.000000000
## excess    0.341483381  0.229839189  0.302797659  1.450185e-01  0.025353734
## projust  -0.327078409 -0.216123744 -0.042571693 -6.452391e-03  0.040695169
## loyal    -0.051143223 -0.115600952 -0.260626917 -1.390581e-01 -0.038498867
##               excess      projust        loyal
## sdo       0.30556598 -0.304037681  0.054204574
## rwa      -0.00930391  0.034060122 -0.085702602
## legit    -0.20012011  0.318612994  0.078036778
## ferg     -0.08404890  0.210105459 -0.074829463
## prom      0.18437119 -0.070787686 -0.182184850
## neg       0.24061958 -0.276388867 -0.309043471
## trad     -0.41834577  0.328014550 -0.114760815
## inclus   -0.30963444  0.535384456 -0.311592397
## elite     0.35233027 -0.288384450 -0.008568595
## disrep    0.32051045 -0.459627224 -0.098098273
## rebel     0.34148338 -0.327078409 -0.051143223
## bpaq      0.22983919 -0.216123744 -0.115600952
## guardian  0.30279766 -0.042571693 -0.260626917
## warrior   0.14501854 -0.006452391 -0.139058133
## reason    0.02535373  0.040695169 -0.038498867
## excess    1.00000000 -0.490597069  0.033896622
## projust  -0.49059707  1.000000000 -0.180980266
## loyal     0.03389662 -0.180980266  1.000000000

5 Descriptive statistics

5.1 Police motivation means and standard deviations

stdysal = steady salary
benefits = good benefits
goodsal = good salary
jobsec = job security
retire = early retirement
jobstat = job status
jobfit = person-job fit
power = power/authority
faminlu = influence from family
excite = the excitement from job
service = service to others
dream = childhood dream
danger = dangerousness of job

library(psych)

motivedf <- with(pmdata, data.frame(stdysal, benefits, goodsal, jobsec, retire, jobstat, jobfit, power, faminflu, excite, service, dream, danger))
describeBy(motivedf)
## Warning in describeBy(motivedf): no grouping variable requested

5.2 Demographics

po = political orientation
rankexp = years of experience in current rank
totalexp = total years of police-related experience
edu = education
marital = marital status
family = having family or relative as police officers nopoexp = non-police related experience
military = military experience

library(psych)
pmdata$age[pmdata$age == 0] <- NA
contdemodf <- with(pmdata, data.frame(age, po, rankexp, totalexp))
describeBy(contdemodf)
## Warning in describeBy(contdemodf): no grouping variable requested
library(summarytools)
summarytools::freq(pmdata$gender, order = "freq")
## Frequencies  
## pmdata$gender  
## Type: Character  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ------------ ------ --------- -------------- --------- --------------
##         male     46     85.19          85.19     85.19          85.19
##       female      8     14.81         100.00     14.81         100.00
##         <NA>      0                               0.00         100.00
##        Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata$race, order = "freq")
## Frequencies  
## pmdata$race  
## Type: Character  
## 
##                  Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## -------------- ------ --------- -------------- --------- --------------
##          white     49     92.45          92.45     90.74          90.74
##       hispanic      3      5.66          98.11      5.56          96.30
##          black      1      1.89         100.00      1.85          98.15
##           <NA>      1                               1.85         100.00
##          Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata$edu, order = "freq")
## Frequencies  
## pmdata$edu  
## Type: Character  
## 
##                      Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ------------------ ------ --------- -------------- --------- --------------
##          bachelors     30     55.56          55.56     55.56          55.56
##            masters      9     16.67          72.22     16.67          72.22
##        high school      7     12.96          85.19     12.96          85.19
##         associates      6     11.11          96.30     11.11          96.30
##       trade school      2      3.70         100.00      3.70         100.00
##               <NA>      0                               0.00         100.00
##              Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata$marital, order = "freq")
## Frequencies  
## pmdata$marital  
## Type: Character  
## 
##                   Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## --------------- ------ --------- -------------- --------- --------------
##         married     41     77.36          77.36     75.93          75.93
##          single      5      9.43          86.79      9.26          85.19
##       partnered      3      5.66          92.45      5.56          90.74
##       separated      3      5.66          98.11      5.56          96.30
##         widowed      1      1.89         100.00      1.85          98.15
##            <NA>      1                               1.85         100.00
##           Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata$income, order = "freq")
## Frequencies  
## pmdata$income  
## Type: Character  
## 
##                        Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## -------------------- ------ --------- -------------- --------- --------------
##         50k to 99.9k     27     50.00          50.00     50.00          50.00
##       100k to 199.9k     23     42.59          92.59     42.59          92.59
##         25k to 49.9k      4      7.41         100.00      7.41         100.00
##                 <NA>      0                               0.00         100.00
##                Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata$religion, order = "freq")
## Frequencies  
## pmdata$religion  
## Type: Character  
## 
##                      Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ------------------ ------ --------- -------------- --------- --------------
##       christianity     39     72.22          72.22     72.22          72.22
##           no affil     11     20.37          92.59     20.37          92.59
##              other      3      5.56          98.15      5.56          98.15
##            judaism      1      1.85         100.00      1.85         100.00
##               <NA>      0                               0.00         100.00
##              Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata$rank, order = "freq")
## Frequencies  
## pmdata$rank  
## Type: Character  
## 
##                        Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## -------------------- ------ --------- -------------- --------- --------------
##             sergeant     16     30.77          30.77     29.63          29.63
##       police officer     15     28.85          59.62     27.78          57.41
##            detective      8     15.38          75.00     14.81          72.22
##                chief      4      7.69          82.69      7.41          79.63
##           other rank      4      7.69          90.38      7.41          87.04
##              captain      3      5.77          96.15      5.56          92.59
##         deputy chief      1      1.92          98.08      1.85          94.44
##           lieutenant      1      1.92         100.00      1.85          96.30
##                 <NA>      2                               3.70         100.00
##                Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata$family, order = "freq")
## Frequencies  
## pmdata$family  
## Type: Character  
## 
##               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
##          no     37     69.81          69.81     68.52          68.52
##         yes     16     30.19         100.00     29.63          98.15
##        <NA>      1                               1.85         100.00
##       Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata$nopoexp, order = "freq")
## Frequencies  
## pmdata$nopoexp  
## Type: Character  
## 
##               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
##         yes     38     70.37          70.37     70.37          70.37
##          no     16     29.63         100.00     29.63         100.00
##        <NA>      0                               0.00         100.00
##       Total     54    100.00         100.00    100.00         100.00
summarytools::freq(pmdata$military, order = "freq")
## Frequencies  
## pmdata$military  
## Type: Character  
## 
##               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
##          no     41     75.93          75.93     75.93          75.93
##         yes     13     24.07         100.00     24.07         100.00
##        <NA>      0                               0.00         100.00
##       Total     54    100.00         100.00    100.00         100.00