r1 <- c(3129,3000,2865,2890)
r2 <- c(3200,3300,2975,3150)
r3 <- c(2800,2900,2985,3050)
r4 <- c(2600,2700,2600,2765)
I1=4
J1=4
clm <- c(r1,r2,r3,r4)
type <- c(rep(1,4),rep(2,4),rep(3,4),rep(4,4))
dat1 <- cbind(clm,type)
dat1 <- as.data.frame(dat1)
dat1$type <- as.factor(dat1$type)
aov.model<-aov(clm~type,data=dat1)
summary(aov.model)
## Df Sum Sq Mean Sq F value Pr(>F)
## type 3 489740 163247 12.73 0.000489 ***
## Residuals 12 153908 12826
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
alpha1 <- 0.05
MSE1 <- 12826
# IJ-I=4*4-4=12
CV1 <- qt(1-alpha1/2, I1*J1-I1)
CV1
## [1] 2.178813
LSD <- CV1*sqrt(MSE1*(1/J1+1/J1))
LSD
## [1] 174.482
abs(mean(r1)-mean(r2))
## [1] 185.25
abs(mean(r1)-mean(r3))
## [1] 37.25
abs(mean(r1)-mean(r4))
## [1] 304.75
abs(mean(r2)-mean(r3))
## [1] 222.5
abs(mean(r2)-mean(r4))
## [1] 490
abs(mean(r3)-mean(r4))
## [1] 267.5
plot(aov.model)
sdev <-c(rep(sd(r1),J1),rep(sd(r2),J1),rep(sd(r3),J1),rep(sd(r4),J1))
avg <- c(ave(r1), ave(r2), ave(r3), ave(r4))
plot(type, clm, ylim=range(c(avg-sdev, avg+sdev)), main="Scatterplot with average and error bar", xlab="Technique ", ylab="Tensile strength ", pch=19)
points(type,avg,pch = 15,col="red")
arrows(type, avg-sdev, type, avg+sdev, length=0.05, angle=90, code=3, col="red")
r1 <- c(7,7,15,11,9)
r2 <- c(12,17,12,18,18)
r3 <- c(14,19,19,18,18)
r4 <- c(19,25,22,19,23)
r5 <- c(7,10,11,15,11)
I1=5
J1=5
clm <- c(r1,r2,r3,r4,r5)
type <- c(rep(1,5),rep(2,5),rep(3,5),rep(4,5),rep(5,5))
dat1 <- cbind(clm,type)
dat1 <- as.data.frame(dat1)
dat1$type <- as.factor(dat1$type)
aov.model<-aov(clm~type,data=dat1)
summary(aov.model)
## Df Sum Sq Mean Sq F value Pr(>F)
## type 4 475.8 118.94 14.76 9.13e-06 ***
## Residuals 20 161.2 8.06
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
alpha1=0.05
MSE1 <- 8.06
# IJ-I=5*5-5=20
CV1 <- qt(1-alpha1/2, I1*J1-I1)
CV1
## [1] 2.085963
LSD1 <- CV1*sqrt(MSE1*(1/J1+1/J1))
LSD1
## [1] 3.745452
abs(mean(r1)-mean(r2))
## [1] 5.6
abs(mean(r1)-mean(r3))
## [1] 7.8
abs(mean(r1)-mean(r4))
## [1] 11.8
abs(mean(r1)-mean(r5))
## [1] 1
abs(mean(r2)-mean(r3))
## [1] 2.2
abs(mean(r2)-mean(r4))
## [1] 6.2
abs(mean(r2)-mean(r5))
## [1] 4.6
abs(mean(r3)-mean(r4))
## [1] 4
abs(mean(r3)-mean(r5))
## [1] 6.8
abs(mean(r4)-mean(r5))
## [1] 10.8
library(agricolae)
LSD.test(aov.model,"type",p.adj = "none",console=TRUE)
##
## Study: aov.model ~ "type"
##
## LSD t Test for clm
##
## Mean Square Error: 8.06
##
## type, means and individual ( 95 %) CI
##
## clm std r LCL UCL Min Max
## 1 9.8 3.346640 5 7.151566 12.44843 7 15
## 2 15.4 3.130495 5 12.751566 18.04843 12 18
## 3 17.6 2.073644 5 14.951566 20.24843 14 19
## 4 21.6 2.607681 5 18.951566 24.24843 19 25
## 5 10.8 2.863564 5 8.151566 13.44843 7 15
##
## Alpha: 0.05 ; DF Error: 20
## Critical Value of t: 2.085963
##
## least Significant Difference: 3.745452
##
## Treatments with the same letter are not significantly different.
##
## clm groups
## 4 21.6 a
## 3 17.6 b
## 2 15.4 b
## 5 10.8 c
## 1 9.8 c
plot(aov.model)
mu1=50
mu2=60
mu3=50
mu4=60
mu <- c(mu1,mu2,mu3,mu4)
avemu <- mean(mu)
dif <- (mu1-avemu)^2+(mu2-avemu)^2+(mu3-avemu)^2+(mu3-avemu)^2
dif
## [1] 100
popno. <- 4
variance <- 25
erroeprob <- 0.05
power <- 0.9
library(pwr)
pwr.anova.test(k=popno.,n=NULL,f=sqrt(dif/popno./variance),sig.level=erroeprob,power=power)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 4.658119
## f = 1
## sig.level = 0.05
## power = 0.9
##
## NOTE: n is number in each group
variance <- 36
pwr.anova.test(k=popno.,n=NULL,f=sqrt(dif/popno./variance),sig.level=erroeprob,power=power)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 6.180857
## f = 0.8333333
## sig.level = 0.05
## power = 0.9
##
## NOTE: n is number in each group
variance <- 49
pwr.anova.test(k=popno.,n=NULL,f=sqrt(dif/popno./variance),sig.level=erroeprob,power=power)
##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 7.998751
## f = 0.7142857
## sig.level = 0.05
## power = 0.9
##
## NOTE: n is number in each group