Casen 2006-2020

Tabla 004

¿Sabe leer y escribir?.

VE-CC

DataIntelligence
date:05-10-2021

1 Introducción

casen_2006 <- readRDS(file = "C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2006_c.rds")
casen_2006 <- mutate_if(casen_2006, is.factor, as.character)
casen_2009 <- readRDS(file = "C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2009_c.rds")
casen_2009 <- mutate_if(casen_2009, is.factor, as.character)
casen_2011 <- readRDS(file = "C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2011_c.rds")
casen_2011 <- mutate_if(casen_2011, is.factor, as.character)
casen_2013 <- readRDS(file = "C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2013_c.rds")
casen_2013 <- mutate_if(casen_2013, is.factor, as.character)
casen_2015 <- readRDS(file = "C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2015_c.rds")
casen_2015 <- mutate_if(casen_2015, is.factor, as.character)
casen_2017 <- readRDS(file = "C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2017_c.rds")
casen_2017 <- mutate_if(casen_2017, is.factor, as.character)
casen_2020 <- readRDS(file = "C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2020_c.rds")
casen_2020 <- mutate_if(casen_2020, is.factor, as.character)

2 Tabla 004

2.1 Homologación de alfabetismo

casen_2006$E1[casen_2006$E1 == "No sabe /Sin dato"] <- NA

casen_2011$e1[casen_2011$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2011$e1[casen_2011$e1 == "No, sólo lee"] <- "No"
casen_2011$e1[casen_2011$e1 == "No, ninguno"] <- "No"
casen_2011$e1[casen_2011$e1 == "No, sólo escribe"] <- "No"

casen_2013$e1[casen_2013$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2013$e1[casen_2013$e1 == "No, ninguno"] <- "No"
casen_2013$e1[casen_2013$e1 == "No, sólo lee"] <- "No"
casen_2013$e1[casen_2013$e1 == "No, sólo escribe"] <- "No"
casen_2013$e1[casen_2013$e1 == "NS/NR"] <- NA

casen_2015$e1[casen_2015$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2015$e1[casen_2015$e1 == "No, ninguno"] <- "No"
casen_2015$e1[casen_2015$e1 == "No, sólo lee"] <- "No"
casen_2015$e1[casen_2015$e1 == "No, sólo escribe"] <- "No"

casen_2017$e1[casen_2017$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2017$e1[casen_2017$e1 == "No, sólo lee"] <- "No"
casen_2017$e1[casen_2017$e1 == "No, ninguno"] <- "No"
casen_2017$e1[casen_2017$e1 == "No sabe/responde"] <- NA
casen_2017$e1[casen_2017$e1 == "No, sólo escribe"] <- "No"

casen_2020$e1[casen_2020$e1 == 1] <- "Sí"
casen_2020$e1[casen_2020$e1 == 0] <- "No"

2.2 Interpolación

df_tablas <- data.frame()


funcion1 <- function(n){

 xx<-switch(n,"2006","2009","2011","2013","2015","2017","2020")
 tanio <<- xx

 v1 <- switch(n,"E1","E1","e1","e1","e1","e1","e1")


if(xx==2006) {
   
eliminated <- casen_2006 
c <- eliminated[,c(v1)]
anio <- 2006
}
 
 if(xx==2009) {
   
eliminated <- casen_2009
c <- eliminated[,c(v1)]
anio <- 2009
}
 
 if(xx==2011) {
   
eliminated <- casen_2011 
c <- eliminated[,c(v1)]
anio <- 2011
}
 
 if(xx==2013) {
   
eliminated <- casen_2013 
c <- eliminated[,c(v1)]
anio <- 2013
}
 
 if(xx==2015) {
   
eliminated <- casen_2015 
c <- eliminated[,c(v1)]
anio <- 2015
}

if(xx==2017) {
    
eliminated <- casen_2017  
c <- eliminated[,c(v1)]
anio <- 2017
}
 
 if(xx==2020) {
    
eliminated <- casen_2020 
c <- eliminated[,c(v1)]
anio <- 2020
}
 
 
################ -- frecuencia
expan<-switch(n,"EXPC","EXPC","expc_full","expc","expc_todas","expc","expc")
tabla_matp <-xtabs(eliminated[,(expan)]~c, data = eliminated)
tabla_matp <- as.data.frame(tabla_matp) 
names(tabla_matp)[1] <- "categorias"
data_df1 <<- tabla_matp
################ 
} 

for (n in 1:7){
  
  funcion1(n) 
  assign(paste0("tabla_",tanio),data_df1)

}
tabla_f <- merge(tabla_2006, tabla_2009, by= "categorias",  all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2011, by= "categorias",  all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2013, by= "categorias",  all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2015, by= "categorias",  all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2017, by= "categorias",  all.x = T, all.y = T) 
tabla_f <- merge(tabla_f, tabla_2020, by= "categorias",  all.x = T, all.y = T) 
colnames(tabla_f) <- c("Variable","2006","2009","2011","2013","2015","2017","2020")
 
tabla_f <- mutate_all(tabla_f, ~replace(., is.na(.), 0))

tabla_t <- tabla_f
tabla_t$a2007 <- NA
tabla_t$a2008 <- NA
tabla_t$a2010 <- NA
tabla_t$a2012 <- NA
tabla_t$a2014 <- NA
tabla_t$a2016 <- NA
tabla_t$a2018 <- NA
tabla_t$a2019 <- NA
 
tabla_t <- tabla_t[,c("Variable","2006","a2007","a2008","2009","a2010","2011","a2012","2013","a2014","2015","a2016","2017","a2018","a2019","2020")]
receptaculo <- data.frame()
for (n in 1:nrow(tabla_t)) {
  calculado <- na.approx(c(tabla_t[n,c(2:ncol(tabla_t))])) 
  receptaculo <- rbind(receptaculo,calculado)
}
receptaculo <- cbind(tabla_t$Variable,receptaculo)
colnames(receptaculo) <- c("categorias",paste0(seq(2006,2020,1)))

################
 
datatable(receptaculo, extensions = 'Buttons', escape = FALSE, rownames = TRUE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'ruralidad'),
          list(extend='pdf',
            filename= 'ruralidad')),
          text = 'Download')), scrollX = TRUE))%>%
    formatRound(columns=c(paste0(seq(2006,2020,1))) ,mark = "", digits=0)