The goal of this assignment is to give you practice in preparing different datasets for downstream analysis work. Your task is to:
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.4 ✓ dplyr 1.0.7
## ✓ tidyr 1.1.4 ✓ stringr 1.4.0
## ✓ readr 2.0.1 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tidyr)
library(dplyr)
library(tidyselect)
library(ggplot2)
library(tibble)
Migrant_Data_ <- c("Downloads/Data_Extract_From_Jobs/Migrant_Data-.csv")
head(Migrant_Data_)
## [1] "Downloads/Data_Extract_From_Jobs/Migrant_Data-.csv"
glimpse(Migrant_Data_)
## chr "Downloads/Data_Extract_From_Jobs/Migrant_Data-.csv"
summary(Migrant_Data_)
## Length Class Mode
## 1 character character
str(Migrant_Data_)
## chr "Downloads/Data_Extract_From_Jobs/Migrant_Data-.csv"
library(ggplot2)
Migrant_Data_ <- na.omit(Migrant_Data_)
head(Migrant_Data_)
## [1] "Downloads/Data_Extract_From_Jobs/Migrant_Data-.csv"
geom_point(mapping = aes(shape = Migrant_Data))
## mapping: shape = ~Migrant_Data
## geom_point: na.rm = FALSE
## stat_identity: na.rm = FALSE
## position_identity
library(tidyr)
names(Migrant_Data_) <- c(Migrant_Data_)
head(Migrant_Data_)
## Downloads/Data_Extract_From_Jobs/Migrant_Data-.csv
## "Downloads/Data_Extract_From_Jobs/Migrant_Data-.csv"
Rpubs => https://rpubs.com/gunduzhazal/817123
Github => https://github.com/Gunduzhazal/project2