library(haven) # For loading the SPSS data
library(psych) # For descriptive analysis
library(eRm) # For Rasch Analysis
library(TAM) # For Rasch Analysis
library(WrightMap) # For plotting Wright Map
library(tidyr) # Transform the data format
library(dplyr) # For data manipulation
# Import the data from SPSS
Rehabilitation <- read_sav("~/Desktop/Dr. Junfei Lu Work/Rehabilitation counseling burnout_clean data (1).sav")
# Subset the dataset that we need
Rehab_data <- Rehabilitation[,3:22]
# Change the column name
colnames(Rehab_data) <- c("Item_1","Item_2","Item_3","Item_4","Item_5","Item_6","Item_7","Item_8","Item_9","Item_10","Item_11","Item_12","Item_13","Item_14","Item_15","Item_16","Item_17","Item_18","Item_19","Item_20")
# Rescale the data to zero
Rehab_data <- Rehab_data-1
# Descriptive Analysis
data_review <- describe(Rehab_data)
data_review
## vars n mean sd median trimmed mad min max range skew kurtosis
## Item_1 1 147 2.41 0.96 2 2.43 1.48 0 4 4 -0.08 -0.28
## Item_2 2 147 0.95 0.97 1 0.84 1.48 0 4 4 0.87 0.35
## Item_3 3 147 1.22 1.13 1 1.10 1.48 0 4 4 0.60 -0.43
## Item_4 4 147 0.43 0.87 0 0.22 0.00 0 4 4 2.50 6.44
## Item_5 5 147 0.98 1.14 1 0.83 1.48 0 4 4 0.83 -0.51
## Item_6 6 147 2.21 1.08 2 2.21 1.48 0 4 4 0.03 -0.57
## Item_7 7 147 1.70 1.14 2 1.65 1.48 0 4 4 0.30 -0.62
## Item_8 8 147 1.05 1.21 1 0.88 1.48 0 4 4 0.88 -0.31
## Item_9 9 147 0.41 0.68 0 0.28 0.00 0 3 3 1.60 2.05
## Item_10 10 147 1.65 1.26 2 1.56 1.48 0 4 4 0.27 -0.87
## Item_11 11 147 2.35 1.02 2 2.37 1.48 0 4 4 -0.12 -0.37
## Item_12 12 147 1.21 1.01 1 1.11 1.48 0 4 4 0.61 -0.07
## Item_13 13 147 2.41 1.19 2 2.48 1.48 0 4 4 -0.26 -0.82
## Item_14 14 147 0.50 0.82 0 0.32 0.00 0 4 4 2.03 4.47
## Item_15 15 147 1.30 1.21 1 1.18 1.48 0 4 4 0.63 -0.59
## Item_16 16 147 2.23 1.29 2 2.29 1.48 0 4 4 -0.24 -0.98
## Item_17 17 147 1.44 1.02 1 1.39 1.48 0 4 4 0.25 -0.48
## Item_18 18 147 2.20 1.23 2 2.24 1.48 0 4 4 -0.15 -0.86
## Item_19 19 147 0.22 0.51 0 0.11 0.00 0 2 2 2.19 3.93
## Item_20 20 147 1.10 1.13 1 0.95 1.48 0 4 4 0.91 0.09
## se
## Item_1 0.08
## Item_2 0.08
## Item_3 0.09
## Item_4 0.07
## Item_5 0.09
## Item_6 0.09
## Item_7 0.09
## Item_8 0.10
## Item_9 0.06
## Item_10 0.10
## Item_11 0.08
## Item_12 0.08
## Item_13 0.10
## Item_14 0.07
## Item_15 0.10
## Item_16 0.11
## Item_17 0.08
## Item_18 0.10
## Item_19 0.04
## Item_20 0.09
# Prepare the design matrix
design.matrix <- designMatrices(resp=Rehab_data,modeltype = "RSM",constraint="items")$A
# Run the Rating Scale Model
RSM.Rehab <- tam.mml(Rehab_data, irtmodel="RSM", A = design.matrix, constraint = "items", verbose = FALSE)
# Overall summary of the model
summary(RSM.Rehab)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37)
## R version 4.1.0 (2021-05-18) x86_64, darwin17.0 | nodename=Chengs-iMac | login=root
##
## Date of Analysis: 2021-10-02 16:08:27
## Time difference of 0.918438 secs
## Computation time: 0.918438
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: PCM2
## Call:
## tam.mml(resp = Rehab_data, irtmodel = "RSM", constraint = "items",
## A = design.matrix, verbose = FALSE)
##
## ------------------------------------------------------------
## Number of iterations = 1000
## Numeric integration with 21 integration points
##
## Deviance = 6866.13
## Log likelihood = -3433.06
## Number of persons = 147
## Number of persons used = 147
## Number of items = 20
## Number of estimated parameters = 24
## Item threshold parameters = 22
## Item slope parameters = 0
## Regression parameters = 1
## Variance/covariance parameters = 1
##
## AIC = 6914 | penalty=48 | AIC=-2*LL + 2*p
## AIC3 = 6938 | penalty=72 | AIC3=-2*LL + 3*p
## BIC = 6986 | penalty=119.77 | BIC=-2*LL + log(n)*p
## aBIC = 6909 | penalty=43.17 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 7010 | penalty=143.77 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 6924 | penalty=57.84 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
## GHP = 1.17587 | GHP=( -LL + p ) / (#Persons * #Items) (Gilula-Haberman log penalty)
##
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.912
## ------------------------------------------------------------
## Covariances and Variances
## [,1]
## [1,] 0.823
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## [,1]
## [1,] 0.907
## ------------------------------------------------------------
## Regression Coefficients
## [,1]
## [1,] -0.84634
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
## 1 Item_1 147 2.415 -1.334 -2.482 -4.541 -5.142 -5.334
## 2 Item_2 147 0.946 0.495 -0.654 -0.885 0.342 1.978
## 3 Item_3 147 1.218 0.109 -1.039 -1.656 -0.814 0.436
## 4 Item_4 147 0.429 1.500 0.352 1.126 3.359 6.001
## 5 Item_5 147 0.980 0.443 -0.705 -0.988 0.189 1.773
## 6 Item_6 147 2.211 -1.091 -2.239 -4.055 -4.413 -4.362
## 7 Item_7 147 1.701 -0.492 -1.641 -2.859 -2.619 -1.970
## 8 Item_8 147 1.048 0.344 -0.804 -1.187 -0.110 1.375
## 9 Item_9 147 0.415 1.142 0.374 1.171 3.427 NA
## 10 Item_10 147 1.646 -0.428 -1.576 -2.729 -2.424 -1.710
## 11 Item_11 147 2.354 -1.260 -2.408 -4.394 -4.921 -5.040
## 12 Item_12 147 1.211 0.118 -1.030 -1.638 -0.787 0.473
## 13 Item_13 147 2.415 -1.334 -2.482 -4.541 -5.142 -5.334
## 14 Item_14 147 0.497 1.328 0.180 0.782 2.843 5.313
## 15 Item_15 147 1.299 0.002 -1.146 -1.870 -1.135 0.008
## 16 Item_16 147 2.231 -1.115 -2.263 -4.103 -4.485 -4.458
## 17 Item_17 147 1.435 -0.171 -1.319 -2.215 -1.653 -0.682
## 18 Item_18 147 2.197 -1.075 -2.223 -4.023 -4.365 -4.298
## 19 Item_19 147 0.224 1.230 1.019 2.461 NA NA
## 20 Item_20 147 1.102 0.268 -0.881 -1.339 -0.338 1.071
## B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
## 1 1 2 3 4
## 2 1 2 3 4
## 3 1 2 3 4
## 4 1 2 3 4
## 5 1 2 3 4
## 6 1 2 3 4
## 7 1 2 3 4
## 8 1 2 3 4
## 9 1 2 3 0
## 10 1 2 3 4
## 11 1 2 3 4
## 12 1 2 3 4
## 13 1 2 3 4
## 14 1 2 3 4
## 15 1 2 3 4
## 16 1 2 3 4
## 17 1 2 3 4
## 18 1 2 3 4
## 19 1 2 0 0
## 20 1 2 3 4
##
## Item Parameters Xsi
## xsi se.xsi
## Item_1 -1.334 0.066
## Item_2 0.495 0.070
## Item_3 0.109 0.068
## Item_4 1.500 0.079
## Item_5 0.443 0.070
## Item_6 -1.091 0.066
## Item_7 -0.492 0.066
## Item_8 0.344 0.069
## Item_9 1.523 0.080
## Item_10 -0.428 0.066
## Item_11 -1.260 0.066
## Item_12 0.118 0.068
## Item_13 -1.334 0.066
## Item_14 1.328 0.077
## Item_15 0.002 0.068
## Item_16 -1.115 0.066
## Item_17 -0.171 0.067
## Item_18 -1.075 0.066
## Item_19 2.167 0.086
## Cat1 -1.148 0.043
## Cat2 -0.726 0.045
## Cat3 0.733 0.061
##
## Item Parameters in IRT parameterization
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 Item_1 1 -1.334 -1.148 -0.726 0.733 1.141
## 2 Item_2 1 0.495 -1.148 -0.726 0.733 1.141
## 3 Item_3 1 0.109 -1.148 -0.726 0.733 1.141
## 4 Item_4 1 1.500 -1.148 -0.726 0.733 1.141
## 5 Item_5 1 0.443 -1.148 -0.726 0.733 1.141
## 6 Item_6 1 -1.091 -1.148 -0.726 0.733 1.141
## 7 Item_7 1 -0.492 -1.148 -0.726 0.733 1.141
## 8 Item_8 1 0.344 -1.148 -0.726 0.733 1.141
## 9 Item_9 1 1.142 -0.768 -0.346 1.113 NA
## 10 Item_10 1 -0.428 -1.148 -0.726 0.733 1.141
## 11 Item_11 1 -1.260 -1.148 -0.726 0.733 1.141
## 12 Item_12 1 0.118 -1.148 -0.726 0.733 1.141
## 13 Item_13 1 -1.334 -1.148 -0.726 0.733 1.141
## 14 Item_14 1 1.328 -1.148 -0.726 0.733 1.141
## 15 Item_15 1 0.002 -1.148 -0.726 0.733 1.141
## 16 Item_16 1 -1.115 -1.148 -0.726 0.733 1.141
## 17 Item_17 1 -0.171 -1.148 -0.726 0.733 1.141
## 18 Item_18 1 -1.075 -1.148 -0.726 0.733 1.141
## 19 Item_19 1 1.230 -0.211 0.211 NA NA
## 20 Item_20 1 0.268 -1.148 -0.726 0.733 1.141
# Obtain the item parameters
items_MMLE <- RSM.Rehab$xsi[1:(ncol(data_review)),]
# View the item parameters
RSM.Rehab$item_irt
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 Item_1 1 -1.333542523 -1.1483245 -0.7259343 0.7329561 1.141303
## 2 Item_2 1 0.494589403 -1.1483245 -0.7259343 0.7329561 1.141303
## 3 Item_3 1 0.109095374 -1.1483245 -0.7259343 0.7329561 1.141303
## 4 Item_4 1 1.500212916 -1.1483245 -0.7259343 0.7329561 1.141303
## 5 Item_5 1 0.443359234 -1.1483245 -0.7259343 0.7329561 1.141303
## 6 Item_6 1 -1.090541965 -1.1483245 -0.7259343 0.7329561 1.141303
## 7 Item_7 1 -0.492455174 -1.1483245 -0.7259343 0.7329561 1.141303
## 8 Item_8 1 0.343845689 -1.1483245 -0.7259343 0.7329561 1.141303
## 9 Item_9 1 1.142257105 -0.7678903 -0.3455001 1.1133903 NA
## 10 Item_10 1 -0.427594129 -1.1483245 -0.7259343 0.7329561 1.141303
## 11 Item_11 1 -1.259946243 -1.1483245 -0.7259343 0.7329561 1.141303
## 12 Item_12 1 0.118167682 -1.1483245 -0.7259343 0.7329561 1.141303
## 13 Item_13 1 -1.333542523 -1.1483245 -0.7259343 0.7329561 1.141303
## 14 Item_14 1 1.328210981 -1.1483245 -0.7259343 0.7329561 1.141303
## 15 Item_15 1 0.001944817 -1.1483245 -0.7259343 0.7329561 1.141303
## 16 Item_16 1 -1.114584787 -1.1483245 -0.7259343 0.7329561 1.141303
## 17 Item_17 1 -0.170611219 -1.1483245 -0.7259343 0.7329561 1.141303
## 18 Item_18 1 -1.074554674 -1.1483245 -0.7259343 0.7329561 1.141303
## 19 Item_19 1 1.230325035 -0.2111951 0.2111951 NA NA
## 20 Item_20 1 0.267801410 -1.1483245 -0.7259343 0.7329561 1.141303
# Check the beta value for item difficulty
# Obtain the detailed item fit statistics
MMLE_fit <- tam.fit(RSM.Rehab)
## Item fit calculation based on 100 simulations
## |**********|
## |----------|
item.fit_MMLE <- MMLE_fit$itemfit
summary(item.fit_MMLE)
## parameter Outfit Outfit_t Outfit_p
## Length:22 Min. :0.6473 Min. :-4.9415 Min. :0.0000000
## Class :character 1st Qu.:0.8702 1st Qu.:-1.5542 1st Qu.:0.0000008
## Mode :character Median :1.0331 Median : 0.4013 Median :0.0271821
## Mean :1.1900 Mean : 5.7541 Mean :0.1200929
## 3rd Qu.:1.2679 3rd Qu.: 3.0145 3rd Qu.:0.1908104
## Max. :3.4499 Max. :75.3702 Max. :0.7242531
## Outfit_pholm Infit Infit_t Infit_p
## Min. :0.0000000 Min. :0.6973 Min. :-4.2555 Min. :0.0000000
## 1st Qu.:0.0000138 1st Qu.:0.8947 1st Qu.:-1.3668 1st Qu.:0.0000241
## Median :0.3116597 Median :1.0333 Median : 0.4373 Median :0.0229333
## Mean :0.4581847 Mean :1.2255 Mean : 6.4715 Mean :0.1874272
## 3rd Qu.:1.0000000 3rd Qu.:1.2805 3rd Qu.: 3.2530 3rd Qu.:0.2346261
## Max. :1.0000000 Max. :3.4930 Max. :76.2945 Max. :0.8700591
## Infit_pholm
## Min. :0.0000000
## 1st Qu.:0.0004034
## Median :0.2592348
## Mean :0.4592205
## 3rd Qu.:1.0000000
## Max. :1.0000000
# The Outfit and Infit statistics are the MSE versions and the Outfit_t and Infit_t statistics are the standardized versions of the statistics.
# Use the tam.wle function to calculate person location parameters:
person.locations.estimate_MMLE <- tam.wle(RSM.Rehab)
## Iteration in WLE/MLE estimation 1 | Maximal change 0.3142
## Iteration in WLE/MLE estimation 2 | Maximal change 0.0313
## Iteration in WLE/MLE estimation 3 | Maximal change 4e-04
## Iteration in WLE/MLE estimation 4 | Maximal change 0
## ----
## WLE Reliability= 0.912
# Store person parameters and their standard errors in a dataframe object:
person.locations_MMLE <- cbind.data.frame(person.locations.estimate_MMLE$theta,
person.locations.estimate_MMLE$error)
names(person.locations_MMLE) <- c("theta", "SE")
# View summary statistics for person parameters:
summary(person.locations_MMLE)
## theta SE
## Min. :-3.6949 Min. :0.2469
## 1st Qu.:-1.4260 1st Qu.:0.2506
## Median :-0.8270 Median :0.2581
## Mean :-0.8485 Mean :0.2788
## 3rd Qu.:-0.2669 3rd Qu.:0.2824
## Max. : 1.9639 Max. :0.6297
# Obtain the person fits
person.fit.results_MMLE <- tam.personfit(RSM.Rehab)
summary(person.fit.results_MMLE)
## outfitPerson outfitPerson_t infitPerson infitPerson_t
## Min. :0.2571 Min. :-3.1030 Min. :0.2655 Min. :-3.1523
## 1st Qu.:0.5908 1st Qu.:-1.1459 1st Qu.:0.5866 1st Qu.:-1.3227
## Median :0.8038 Median :-0.3713 Median :0.8170 Median :-0.4893
## Mean :0.9697 Mean :-0.1929 Mean :0.9434 Mean :-0.3211
## 3rd Qu.:1.1988 3rd Qu.: 0.6613 3rd Qu.:1.2254 3rd Qu.: 0.8105
## Max. :3.4506 Max. : 3.6696 Max. :2.8691 Max. : 3.7776
We will use popular Rasch fit statistics for practical purposes that are based on sums of squared residuals: Unweighted (outfit) and Weighted (infit) mean square error (MSE) statistics. Unstandardized (χ^2 ) & standardized versions (Z or t) are available in most Rasch software programs. In this analysis, we will focus on the Unstandardized (χ^2) versions of these statistics.
Outfit Mean Square Error (MSE), statistics are “unweighted fit” statistics. For items, outfit MSE is the sum of squared residuals for an item divided by the number of persons who responded to the item. For persons, outfit MSE is sum of squared residuals for a person divided by the number of items encountered by the person.
Because it is an unweighted mean, the outfit statistic is sensitive to extreme departures from model expectations. For example, an extreme departure from model expectations would occur when an otherwise high-achieving student provided an incorrect response to a very easy item, or when an otherwise low-achieving student provided a correct response to a very difficult item.
Infit Mean Square Error
Infit stands for “information-weighted fit”, where “information” means variance, such as larger variance for well-targeted observations, or smaller variance for extreme observations. For items, infit MSE statistics are calculated as the sum of squared standardized item residuals, weighted by variance, divided by the number of persons who responded to the item. For persons, infit MSE is the sum of squared standardized person residuals, weighted by variance, divided by the number of items the person encountered.
Infit MSE is sensitive to less-extreme unexpected responses compared to outfit MSE Examples of less-extreme unexpected responses include a student providing an incorrect response to an item that is just below their achievement level, or a student providing a correct response to an item that is just above their achievement level.
Expected Values for MSE Fit Statistics
There is considerable disagreement among measurement scholars about how to classify an infit or outfit MSE statistic as evidence of “misfit” or “fit.” Nonetheless, readers may find it useful to be aware of commonly agreed-upon principles for interpreting these statistics:
The expected value is 1.00 when data fit the model
Less than 1.00: Responses are more predictable than the model expects; responses resemble a Guttman-like (deterministic) pattern (“muted”)
Greater than 1.00: Responses are more haphazard (“noisy”) than the model expects; there is too much variation to interpret that the estimate as a good representation of the response pattern
Some variation is expected, but noisy responses are usually considered more cause for concern than muted responses.
items.to.plot <- c(1:5)
plot(RSM.Rehab, type="items", items = items.to.plot)
## Iteration in WLE/MLE estimation 1 | Maximal change 0.3142
## Iteration in WLE/MLE estimation 2 | Maximal change 0.0313
## Iteration in WLE/MLE estimation 3 | Maximal change 4e-04
## Iteration in WLE/MLE estimation 4 | Maximal change 0
## ----
## WLE Reliability= 0.912
## ....................................................
## Plots exported in png format into folder:
## /Users/chenghua/Desktop/Plots
# The x-axis is the logit scale that represents the latent variable, the y-axis is the probability for a rating in each category, and individual lines show the conditional probability for a rating in each category.
# Plot the Wright Map
IRT.WrightMap(RSM.Rehab)
# Add variable "ID" to the previous data
ID <- 1:147
Rehab_data$ID <- ID
# Transform to the long format
Rehab_data_long <- gather(Rehab_data,item_No,rating,Item_1:Item_20,factor_key=TRUE)
Rehab_data_long
## ID item_No rating
## 1 1 Item_1 2
## 2 2 Item_1 2
## 3 3 Item_1 3
## 4 4 Item_1 4
## 5 5 Item_1 2
## 6 6 Item_1 4
## 7 7 Item_1 2
## 8 8 Item_1 2
## 9 9 Item_1 2
## 10 10 Item_1 4
## 11 11 Item_1 2
## 12 12 Item_1 4
## 13 13 Item_1 2
## 14 14 Item_1 2
## 15 15 Item_1 3
## 16 16 Item_1 2
## 17 17 Item_1 2
## 18 18 Item_1 3
## 19 19 Item_1 1
## 20 20 Item_1 3
## 21 21 Item_1 4
## 22 22 Item_1 4
## 23 23 Item_1 1
## 24 24 Item_1 2
## 25 25 Item_1 1
## 26 26 Item_1 2
## 27 27 Item_1 3
## 28 28 Item_1 3
## 29 29 Item_1 4
## 30 30 Item_1 2
## 31 31 Item_1 2
## 32 32 Item_1 3
## 33 33 Item_1 3
## 34 34 Item_1 3
## 35 35 Item_1 2
## 36 36 Item_1 2
## 37 37 Item_1 2
## 38 38 Item_1 2
## 39 39 Item_1 4
## 40 40 Item_1 3
## 41 41 Item_1 2
## 42 42 Item_1 3
## 43 43 Item_1 2
## 44 44 Item_1 2
## 45 45 Item_1 1
## 46 46 Item_1 4
## 47 47 Item_1 0
## 48 48 Item_1 3
## 49 49 Item_1 4
## 50 50 Item_1 4
## 51 51 Item_1 3
## 52 52 Item_1 2
## 53 53 Item_1 3
## 54 54 Item_1 3
## 55 55 Item_1 3
## 56 56 Item_1 0
## 57 57 Item_1 3
## 58 58 Item_1 2
## 59 59 Item_1 2
## 60 60 Item_1 3
## 61 61 Item_1 3
## 62 62 Item_1 1
## 63 63 Item_1 1
## 64 64 Item_1 1
## 65 65 Item_1 4
## 66 66 Item_1 3
## 67 67 Item_1 3
## 68 68 Item_1 2
## 69 69 Item_1 3
## 70 70 Item_1 3
## 71 71 Item_1 2
## 72 72 Item_1 3
## 73 73 Item_1 2
## 74 74 Item_1 2
## 75 75 Item_1 2
## 76 76 Item_1 4
## 77 77 Item_1 2
## 78 78 Item_1 2
## 79 79 Item_1 2
## 80 80 Item_1 3
## 81 81 Item_1 2
## 82 82 Item_1 2
## 83 83 Item_1 3
## 84 84 Item_1 2
## 85 85 Item_1 3
## 86 86 Item_1 4
## 87 87 Item_1 4
## 88 88 Item_1 3
## 89 89 Item_1 2
## 90 90 Item_1 4
## 91 91 Item_1 2
## 92 92 Item_1 1
## 93 93 Item_1 3
## 94 94 Item_1 2
## 95 95 Item_1 3
## 96 96 Item_1 4
## 97 97 Item_1 4
## 98 98 Item_1 4
## 99 99 Item_1 2
## 100 100 Item_1 2
## 101 101 Item_1 2
## 102 102 Item_1 3
## 103 103 Item_1 1
## 104 104 Item_1 2
## 105 105 Item_1 4
## 106 106 Item_1 2
## 107 107 Item_1 1
## 108 108 Item_1 2
## 109 109 Item_1 1
## 110 110 Item_1 3
## 111 111 Item_1 3
## 112 112 Item_1 3
## 113 113 Item_1 2
## 114 114 Item_1 0
## 115 115 Item_1 1
## 116 116 Item_1 2
## 117 117 Item_1 2
## 118 118 Item_1 2
## 119 119 Item_1 2
## 120 120 Item_1 2
## 121 121 Item_1 3
## 122 122 Item_1 3
## 123 123 Item_1 2
## 124 124 Item_1 1
## 125 125 Item_1 2
## 126 126 Item_1 4
## 127 127 Item_1 1
## 128 128 Item_1 2
## 129 129 Item_1 3
## 130 130 Item_1 2
## 131 131 Item_1 2
## 132 132 Item_1 2
## 133 133 Item_1 1
## 134 134 Item_1 2
## 135 135 Item_1 3
## 136 136 Item_1 2
## 137 137 Item_1 2
## 138 138 Item_1 3
## 139 139 Item_1 4
## 140 140 Item_1 0
## 141 141 Item_1 1
## 142 142 Item_1 2
## 143 143 Item_1 3
## 144 144 Item_1 2
## 145 145 Item_1 3
## 146 146 Item_1 2
## 147 147 Item_1 2
## 148 1 Item_2 1
## 149 2 Item_2 2
## 150 3 Item_2 1
## 151 4 Item_2 3
## 152 5 Item_2 2
## 153 6 Item_2 3
## 154 7 Item_2 0
## 155 8 Item_2 0
## 156 9 Item_2 1
## 157 10 Item_2 0
## 158 11 Item_2 0
## 159 12 Item_2 0
## 160 13 Item_2 2
## 161 14 Item_2 2
## 162 15 Item_2 0
## 163 16 Item_2 1
## 164 17 Item_2 0
## 165 18 Item_2 0
## 166 19 Item_2 0
## 167 20 Item_2 1
## 168 21 Item_2 2
## 169 22 Item_2 0
## 170 23 Item_2 2
## 171 24 Item_2 2
## 172 25 Item_2 0
## 173 26 Item_2 1
## 174 27 Item_2 2
## 175 28 Item_2 1
## 176 29 Item_2 2
## 177 30 Item_2 0
## 178 31 Item_2 1
## 179 32 Item_2 1
## 180 33 Item_2 3
## 181 34 Item_2 3
## 182 35 Item_2 3
## 183 36 Item_2 0
## 184 37 Item_2 1
## 185 38 Item_2 0
## 186 39 Item_2 1
## 187 40 Item_2 2
## 188 41 Item_2 0
## 189 42 Item_2 0
## 190 43 Item_2 0
## 191 44 Item_2 2
## 192 45 Item_2 1
## 193 46 Item_2 2
## 194 47 Item_2 0
## 195 48 Item_2 2
## 196 49 Item_2 2
## 197 50 Item_2 4
## 198 51 Item_2 2
## 199 52 Item_2 0
## 200 53 Item_2 2
## 201 54 Item_2 2
## 202 55 Item_2 0
## 203 56 Item_2 0
## 204 57 Item_2 1
## 205 58 Item_2 2
## 206 59 Item_2 1
## 207 60 Item_2 4
## 208 61 Item_2 2
## 209 62 Item_2 0
## 210 63 Item_2 0
## 211 64 Item_2 0
## 212 65 Item_2 0
## 213 66 Item_2 0
## 214 67 Item_2 1
## 215 68 Item_2 2
## 216 69 Item_2 0
## 217 70 Item_2 2
## 218 71 Item_2 2
## 219 72 Item_2 2
## 220 73 Item_2 1
## 221 74 Item_2 1
## 222 75 Item_2 0
## 223 76 Item_2 4
## 224 77 Item_2 2
## 225 78 Item_2 1
## 226 79 Item_2 1
## 227 80 Item_2 2
## 228 81 Item_2 1
## 229 82 Item_2 1
## 230 83 Item_2 1
## 231 84 Item_2 1
## 232 85 Item_2 2
## 233 86 Item_2 0
## 234 87 Item_2 0
## 235 88 Item_2 2
## 236 89 Item_2 1
## 237 90 Item_2 0
## 238 91 Item_2 1
## 239 92 Item_2 1
## 240 93 Item_2 1
## 241 94 Item_2 0
## 242 95 Item_2 0
## 243 96 Item_2 0
## 244 97 Item_2 0
## 245 98 Item_2 2
## 246 99 Item_2 0
## 247 100 Item_2 2
## 248 101 Item_2 0
## 249 102 Item_2 0
## 250 103 Item_2 0
## 251 104 Item_2 1
## 252 105 Item_2 1
## 253 106 Item_2 0
## 254 107 Item_2 0
## 255 108 Item_2 1
## 256 109 Item_2 0
## 257 110 Item_2 1
## 258 111 Item_2 1
## 259 112 Item_2 0
## 260 113 Item_2 1
## 261 114 Item_2 0
## 262 115 Item_2 0
## 263 116 Item_2 1
## 264 117 Item_2 0
## 265 118 Item_2 1
## 266 119 Item_2 1
## 267 120 Item_2 0
## 268 121 Item_2 0
## 269 122 Item_2 0
## 270 123 Item_2 1
## 271 124 Item_2 2
## 272 125 Item_2 0
## 273 126 Item_2 0
## 274 127 Item_2 0
## 275 128 Item_2 0
## 276 129 Item_2 0
## 277 130 Item_2 2
## 278 131 Item_2 1
## 279 132 Item_2 1
## 280 133 Item_2 1
## 281 134 Item_2 0
## 282 135 Item_2 1
## 283 136 Item_2 1
## 284 137 Item_2 0
## 285 138 Item_2 1
## 286 139 Item_2 2
## 287 140 Item_2 0
## 288 141 Item_2 1
## 289 142 Item_2 1
## 290 143 Item_2 1
## 291 144 Item_2 1
## 292 145 Item_2 1
## 293 146 Item_2 0
## 294 147 Item_2 0
## 295 1 Item_3 2
## 296 2 Item_3 3
## 297 3 Item_3 1
## 298 4 Item_3 4
## 299 5 Item_3 1
## 300 6 Item_3 2
## 301 7 Item_3 0
## 302 8 Item_3 0
## 303 9 Item_3 0
## 304 10 Item_3 3
## 305 11 Item_3 0
## 306 12 Item_3 4
## 307 13 Item_3 2
## 308 14 Item_3 1
## 309 15 Item_3 2
## 310 16 Item_3 1
## 311 17 Item_3 0
## 312 18 Item_3 1
## 313 19 Item_3 0
## 314 20 Item_3 1
## 315 21 Item_3 3
## 316 22 Item_3 2
## 317 23 Item_3 0
## 318 24 Item_3 1
## 319 25 Item_3 2
## 320 26 Item_3 2
## 321 27 Item_3 3
## 322 28 Item_3 2
## 323 29 Item_3 4
## 324 30 Item_3 1
## 325 31 Item_3 0
## 326 32 Item_3 3
## 327 33 Item_3 1
## 328 34 Item_3 1
## 329 35 Item_3 0
## 330 36 Item_3 0
## 331 37 Item_3 1
## 332 38 Item_3 0
## 333 39 Item_3 0
## 334 40 Item_3 2
## 335 41 Item_3 0
## 336 42 Item_3 1
## 337 43 Item_3 0
## 338 44 Item_3 0
## 339 45 Item_3 2
## 340 46 Item_3 3
## 341 47 Item_3 1
## 342 48 Item_3 1
## 343 49 Item_3 1
## 344 50 Item_3 4
## 345 51 Item_3 0
## 346 52 Item_3 0
## 347 53 Item_3 2
## 348 54 Item_3 2
## 349 55 Item_3 2
## 350 56 Item_3 0
## 351 57 Item_3 0
## 352 58 Item_3 3
## 353 59 Item_3 1
## 354 60 Item_3 2
## 355 61 Item_3 1
## 356 62 Item_3 1
## 357 63 Item_3 1
## 358 64 Item_3 2
## 359 65 Item_3 1
## 360 66 Item_3 4
## 361 67 Item_3 2
## 362 68 Item_3 2
## 363 69 Item_3 0
## 364 70 Item_3 2
## 365 71 Item_3 0
## 366 72 Item_3 1
## 367 73 Item_3 2
## 368 74 Item_3 1
## 369 75 Item_3 0
## 370 76 Item_3 2
## 371 77 Item_3 1
## 372 78 Item_3 0
## 373 79 Item_3 1
## 374 80 Item_3 2
## 375 81 Item_3 1
## 376 82 Item_3 3
## 377 83 Item_3 2
## 378 84 Item_3 0
## 379 85 Item_3 0
## 380 86 Item_3 2
## 381 87 Item_3 0
## 382 88 Item_3 4
## 383 89 Item_3 1
## 384 90 Item_3 1
## 385 91 Item_3 1
## 386 92 Item_3 0
## 387 93 Item_3 2
## 388 94 Item_3 0
## 389 95 Item_3 2
## 390 96 Item_3 0
## 391 97 Item_3 2
## 392 98 Item_3 3
## 393 99 Item_3 2
## 394 100 Item_3 0
## 395 101 Item_3 2
## 396 102 Item_3 0
## 397 103 Item_3 0
## 398 104 Item_3 1
## 399 105 Item_3 2
## 400 106 Item_3 0
## 401 107 Item_3 0
## 402 108 Item_3 0
## 403 109 Item_3 0
## 404 110 Item_3 1
## 405 111 Item_3 0
## 406 112 Item_3 1
## 407 113 Item_3 2
## 408 114 Item_3 0
## 409 115 Item_3 3
## 410 116 Item_3 0
## 411 117 Item_3 2
## 412 118 Item_3 2
## 413 119 Item_3 2
## 414 120 Item_3 2
## 415 121 Item_3 0
## 416 122 Item_3 2
## 417 123 Item_3 1
## 418 124 Item_3 3
## 419 125 Item_3 1
## 420 126 Item_3 0
## 421 127 Item_3 1
## 422 128 Item_3 0
## 423 129 Item_3 0
## 424 130 Item_3 0
## 425 131 Item_3 0
## 426 132 Item_3 0
## 427 133 Item_3 0
## 428 134 Item_3 1
## 429 135 Item_3 1
## 430 136 Item_3 2
## 431 137 Item_3 1
## 432 138 Item_3 2
## 433 139 Item_3 2
## 434 140 Item_3 0
## 435 141 Item_3 1
## 436 142 Item_3 2
## 437 143 Item_3 1
## 438 144 Item_3 0
## 439 145 Item_3 3
## 440 146 Item_3 2
## 441 147 Item_3 0
## 442 1 Item_4 0
## 443 2 Item_4 0
## 444 3 Item_4 2
## 445 4 Item_4 0
## 446 5 Item_4 1
## 447 6 Item_4 0
## 448 7 Item_4 1
## 449 8 Item_4 0
## 450 9 Item_4 0
## 451 10 Item_4 0
## 452 11 Item_4 2
## 453 12 Item_4 0
## 454 13 Item_4 0
## 455 14 Item_4 0
## 456 15 Item_4 0
## 457 16 Item_4 0
## 458 17 Item_4 0
## 459 18 Item_4 0
## 460 19 Item_4 0
## 461 20 Item_4 3
## 462 21 Item_4 0
## 463 22 Item_4 2
## 464 23 Item_4 0
## 465 24 Item_4 0
## 466 25 Item_4 1
## 467 26 Item_4 0
## 468 27 Item_4 0
## 469 28 Item_4 1
## 470 29 Item_4 2
## 471 30 Item_4 0
## 472 31 Item_4 0
## 473 32 Item_4 1
## 474 33 Item_4 0
## 475 34 Item_4 1
## 476 35 Item_4 0
## 477 36 Item_4 0
## 478 37 Item_4 0
## 479 38 Item_4 0
## 480 39 Item_4 0
## 481 40 Item_4 1
## 482 41 Item_4 0
## 483 42 Item_4 0
## 484 43 Item_4 0
## 485 44 Item_4 0
## 486 45 Item_4 0
## 487 46 Item_4 0
## 488 47 Item_4 0
## 489 48 Item_4 0
## 490 49 Item_4 0
## 491 50 Item_4 0
## 492 51 Item_4 0
## 493 52 Item_4 4
## 494 53 Item_4 0
## 495 54 Item_4 1
## 496 55 Item_4 0
## 497 56 Item_4 0
## 498 57 Item_4 0
## 499 58 Item_4 0
## 500 59 Item_4 0
## 501 60 Item_4 0
## 502 61 Item_4 0
## 503 62 Item_4 0
## 504 63 Item_4 0
## 505 64 Item_4 0
## 506 65 Item_4 0
## 507 66 Item_4 0
## 508 67 Item_4 1
## 509 68 Item_4 0
## 510 69 Item_4 0
## 511 70 Item_4 1
## 512 71 Item_4 0
## 513 72 Item_4 1
## 514 73 Item_4 1
## 515 74 Item_4 4
## 516 75 Item_4 0
## 517 76 Item_4 1
## 518 77 Item_4 0
## 519 78 Item_4 0
## 520 79 Item_4 1
## 521 80 Item_4 1
## 522 81 Item_4 0
## 523 82 Item_4 0
## 524 83 Item_4 1
## 525 84 Item_4 1
## 526 85 Item_4 1
## 527 86 Item_4 0
## 528 87 Item_4 0
## 529 88 Item_4 2
## 530 89 Item_4 0
## 531 90 Item_4 4
## 532 91 Item_4 1
## 533 92 Item_4 0
## 534 93 Item_4 0
## 535 94 Item_4 0
## 536 95 Item_4 0
## 537 96 Item_4 0
## 538 97 Item_4 0
## 539 98 Item_4 2
## 540 99 Item_4 0
## 541 100 Item_4 0
## 542 101 Item_4 0
## 543 102 Item_4 1
## 544 103 Item_4 0
## 545 104 Item_4 1
## 546 105 Item_4 1
## 547 106 Item_4 0
## 548 107 Item_4 0
## 549 108 Item_4 1
## 550 109 Item_4 0
## 551 110 Item_4 1
## 552 111 Item_4 0
## 553 112 Item_4 1
## 554 113 Item_4 0
## 555 114 Item_4 0
## 556 115 Item_4 0
## 557 116 Item_4 0
## 558 117 Item_4 0
## 559 118 Item_4 0
## 560 119 Item_4 0
## 561 120 Item_4 0
## 562 121 Item_4 0
## 563 122 Item_4 0
## 564 123 Item_4 0
## 565 124 Item_4 0
## 566 125 Item_4 0
## 567 126 Item_4 0
## 568 127 Item_4 0
## 569 128 Item_4 0
## 570 129 Item_4 0
## 571 130 Item_4 0
## 572 131 Item_4 3
## 573 132 Item_4 1
## 574 133 Item_4 0
## 575 134 Item_4 0
## 576 135 Item_4 0
## 577 136 Item_4 2
## 578 137 Item_4 4
## 579 138 Item_4 0
## 580 139 Item_4 1
## 581 140 Item_4 0
## 582 141 Item_4 0
## 583 142 Item_4 0
## 584 143 Item_4 0
## 585 144 Item_4 0
## 586 145 Item_4 0
## 587 146 Item_4 0
## 588 147 Item_4 0
## 589 1 Item_5 0
## 590 2 Item_5 0
## 591 3 Item_5 3
## 592 4 Item_5 4
## 593 5 Item_5 1
## 594 6 Item_5 1
## 595 7 Item_5 0
## 596 8 Item_5 0
## 597 9 Item_5 1
## 598 10 Item_5 0
## 599 11 Item_5 2
## 600 12 Item_5 0
## 601 13 Item_5 0
## 602 14 Item_5 3
## 603 15 Item_5 3
## 604 16 Item_5 0
## 605 17 Item_5 0
## 606 18 Item_5 0
## 607 19 Item_5 0
## 608 20 Item_5 2
## 609 21 Item_5 2
## 610 22 Item_5 3
## 611 23 Item_5 0
## 612 24 Item_5 2
## 613 25 Item_5 1
## 614 26 Item_5 0
## 615 27 Item_5 1
## 616 28 Item_5 0
## 617 29 Item_5 3
## 618 30 Item_5 0
## 619 31 Item_5 0
## 620 32 Item_5 0
## 621 33 Item_5 0
## 622 34 Item_5 1
## 623 35 Item_5 0
## 624 36 Item_5 0
## 625 37 Item_5 0
## 626 38 Item_5 0
## 627 39 Item_5 0
## 628 40 Item_5 3
## 629 41 Item_5 2
## 630 42 Item_5 2
## 631 43 Item_5 0
## 632 44 Item_5 0
## 633 45 Item_5 2
## 634 46 Item_5 3
## 635 47 Item_5 0
## 636 48 Item_5 1
## 637 49 Item_5 2
## 638 50 Item_5 4
## 639 51 Item_5 2
## 640 52 Item_5 0
## 641 53 Item_5 1
## 642 54 Item_5 0
## 643 55 Item_5 3
## 644 56 Item_5 0
## 645 57 Item_5 1
## 646 58 Item_5 0
## 647 59 Item_5 0
## 648 60 Item_5 0
## 649 61 Item_5 1
## 650 62 Item_5 0
## 651 63 Item_5 2
## 652 64 Item_5 0
## 653 65 Item_5 0
## 654 66 Item_5 0
## 655 67 Item_5 2
## 656 68 Item_5 0
## 657 69 Item_5 0
## 658 70 Item_5 3
## 659 71 Item_5 2
## 660 72 Item_5 1
## 661 73 Item_5 0
## 662 74 Item_5 1
## 663 75 Item_5 0
## 664 76 Item_5 3
## 665 77 Item_5 0
## 666 78 Item_5 1
## 667 79 Item_5 1
## 668 80 Item_5 3
## 669 81 Item_5 1
## 670 82 Item_5 3
## 671 83 Item_5 3
## 672 84 Item_5 2
## 673 85 Item_5 1
## 674 86 Item_5 2
## 675 87 Item_5 0
## 676 88 Item_5 3
## 677 89 Item_5 1
## 678 90 Item_5 2
## 679 91 Item_5 1
## 680 92 Item_5 0
## 681 93 Item_5 0
## 682 94 Item_5 0
## 683 95 Item_5 1
## 684 96 Item_5 0
## 685 97 Item_5 4
## 686 98 Item_5 3
## 687 99 Item_5 0
## 688 100 Item_5 0
## 689 101 Item_5 2
## 690 102 Item_5 2
## 691 103 Item_5 0
## 692 104 Item_5 1
## 693 105 Item_5 3
## 694 106 Item_5 0
## 695 107 Item_5 0
## 696 108 Item_5 0
## 697 109 Item_5 1
## 698 110 Item_5 1
## 699 111 Item_5 2
## 700 112 Item_5 2
## 701 113 Item_5 0
## 702 114 Item_5 0
## 703 115 Item_5 0
## 704 116 Item_5 0
## 705 117 Item_5 0
## 706 118 Item_5 2
## 707 119 Item_5 2
## 708 120 Item_5 1
## 709 121 Item_5 1
## 710 122 Item_5 0
## 711 123 Item_5 0
## 712 124 Item_5 1
## 713 125 Item_5 0
## 714 126 Item_5 0
## 715 127 Item_5 0
## 716 128 Item_5 0
## 717 129 Item_5 0
## 718 130 Item_5 0
## 719 131 Item_5 1
## 720 132 Item_5 1
## 721 133 Item_5 0
## 722 134 Item_5 0
## 723 135 Item_5 3
## 724 136 Item_5 1
## 725 137 Item_5 0
## 726 138 Item_5 2
## 727 139 Item_5 2
## 728 140 Item_5 0
## 729 141 Item_5 1
## 730 142 Item_5 2
## 731 143 Item_5 2
## 732 144 Item_5 1
## 733 145 Item_5 1
## 734 146 Item_5 0
## 735 147 Item_5 0
## 736 1 Item_6 1
## 737 2 Item_6 0
## 738 3 Item_6 3
## 739 4 Item_6 4
## 740 5 Item_6 2
## 741 6 Item_6 4
## 742 7 Item_6 2
## 743 8 Item_6 2
## 744 9 Item_6 2
## 745 10 Item_6 2
## 746 11 Item_6 2
## 747 12 Item_6 3
## 748 13 Item_6 2
## 749 14 Item_6 4
## 750 15 Item_6 3
## 751 16 Item_6 1
## 752 17 Item_6 2
## 753 18 Item_6 1
## 754 19 Item_6 1
## 755 20 Item_6 4
## 756 21 Item_6 4
## 757 22 Item_6 3
## 758 23 Item_6 2
## 759 24 Item_6 2
## 760 25 Item_6 1
## 761 26 Item_6 2
## 762 27 Item_6 3
## 763 28 Item_6 3
## 764 29 Item_6 4
## 765 30 Item_6 1
## 766 31 Item_6 2
## 767 32 Item_6 3
## 768 33 Item_6 3
## 769 34 Item_6 3
## 770 35 Item_6 1
## 771 36 Item_6 1
## 772 37 Item_6 1
## 773 38 Item_6 2
## 774 39 Item_6 4
## 775 40 Item_6 4
## 776 41 Item_6 2
## 777 42 Item_6 4
## 778 43 Item_6 3
## 779 44 Item_6 1
## 780 45 Item_6 2
## 781 46 Item_6 4
## 782 47 Item_6 0
## 783 48 Item_6 3
## 784 49 Item_6 4
## 785 50 Item_6 4
## 786 51 Item_6 4
## 787 52 Item_6 1
## 788 53 Item_6 3
## 789 54 Item_6 2
## 790 55 Item_6 4
## 791 56 Item_6 1
## 792 57 Item_6 2
## 793 58 Item_6 1
## 794 59 Item_6 1
## 795 60 Item_6 2
## 796 61 Item_6 2
## 797 62 Item_6 1
## 798 63 Item_6 2
## 799 64 Item_6 0
## 800 65 Item_6 4
## 801 66 Item_6 3
## 802 67 Item_6 2
## 803 68 Item_6 2
## 804 69 Item_6 3
## 805 70 Item_6 3
## 806 71 Item_6 2
## 807 72 Item_6 2
## 808 73 Item_6 2
## 809 74 Item_6 2
## 810 75 Item_6 2
## 811 76 Item_6 4
## 812 77 Item_6 2
## 813 78 Item_6 2
## 814 79 Item_6 2
## 815 80 Item_6 4
## 816 81 Item_6 2
## 817 82 Item_6 2
## 818 83 Item_6 3
## 819 84 Item_6 2
## 820 85 Item_6 4
## 821 86 Item_6 3
## 822 87 Item_6 2
## 823 88 Item_6 4
## 824 89 Item_6 2
## 825 90 Item_6 3
## 826 91 Item_6 2
## 827 92 Item_6 1
## 828 93 Item_6 3
## 829 94 Item_6 0
## 830 95 Item_6 3
## 831 96 Item_6 3
## 832 97 Item_6 3
## 833 98 Item_6 4
## 834 99 Item_6 0
## 835 100 Item_6 2
## 836 101 Item_6 2
## 837 102 Item_6 3
## 838 103 Item_6 1
## 839 104 Item_6 2
## 840 105 Item_6 3
## 841 106 Item_6 2
## 842 107 Item_6 0
## 843 108 Item_6 0
## 844 109 Item_6 1
## 845 110 Item_6 3
## 846 111 Item_6 4
## 847 112 Item_6 2
## 848 113 Item_6 2
## 849 114 Item_6 0
## 850 115 Item_6 1
## 851 116 Item_6 2
## 852 117 Item_6 1
## 853 118 Item_6 3
## 854 119 Item_6 2
## 855 120 Item_6 2
## 856 121 Item_6 3
## 857 122 Item_6 2
## 858 123 Item_6 1
## 859 124 Item_6 2
## 860 125 Item_6 2
## 861 126 Item_6 2
## 862 127 Item_6 1
## 863 128 Item_6 2
## 864 129 Item_6 3
## 865 130 Item_6 2
## 866 131 Item_6 2
## 867 132 Item_6 1
## 868 133 Item_6 1
## 869 134 Item_6 2
## 870 135 Item_6 3
## 871 136 Item_6 1
## 872 137 Item_6 2
## 873 138 Item_6 3
## 874 139 Item_6 4
## 875 140 Item_6 2
## 876 141 Item_6 2
## 877 142 Item_6 2
## 878 143 Item_6 2
## 879 144 Item_6 2
## 880 145 Item_6 2
## 881 146 Item_6 1
## 882 147 Item_6 1
## 883 1 Item_7 2
## 884 2 Item_7 2
## 885 3 Item_7 2
## 886 4 Item_7 4
## 887 5 Item_7 2
## 888 6 Item_7 4
## 889 7 Item_7 2
## 890 8 Item_7 0
## 891 9 Item_7 1
## 892 10 Item_7 1
## 893 11 Item_7 1
## 894 12 Item_7 0
## 895 13 Item_7 1
## 896 14 Item_7 3
## 897 15 Item_7 0
## 898 16 Item_7 2
## 899 17 Item_7 0
## 900 18 Item_7 1
## 901 19 Item_7 0
## 902 20 Item_7 4
## 903 21 Item_7 2
## 904 22 Item_7 3
## 905 23 Item_7 1
## 906 24 Item_7 3
## 907 25 Item_7 1
## 908 26 Item_7 2
## 909 27 Item_7 1
## 910 28 Item_7 3
## 911 29 Item_7 4
## 912 30 Item_7 0
## 913 31 Item_7 0
## 914 32 Item_7 4
## 915 33 Item_7 3
## 916 34 Item_7 3
## 917 35 Item_7 4
## 918 36 Item_7 0
## 919 37 Item_7 1
## 920 38 Item_7 2
## 921 39 Item_7 1
## 922 40 Item_7 3
## 923 41 Item_7 1
## 924 42 Item_7 3
## 925 43 Item_7 3
## 926 44 Item_7 1
## 927 45 Item_7 2
## 928 46 Item_7 3
## 929 47 Item_7 1
## 930 48 Item_7 2
## 931 49 Item_7 2
## 932 50 Item_7 4
## 933 51 Item_7 4
## 934 52 Item_7 0
## 935 53 Item_7 2
## 936 54 Item_7 2
## 937 55 Item_7 2
## 938 56 Item_7 2
## 939 57 Item_7 2
## 940 58 Item_7 2
## 941 59 Item_7 0
## 942 60 Item_7 2
## 943 61 Item_7 1
## 944 62 Item_7 0
## 945 63 Item_7 2
## 946 64 Item_7 0
## 947 65 Item_7 4
## 948 66 Item_7 2
## 949 67 Item_7 1
## 950 68 Item_7 3
## 951 69 Item_7 2
## 952 70 Item_7 2
## 953 71 Item_7 2
## 954 72 Item_7 2
## 955 73 Item_7 3
## 956 74 Item_7 2
## 957 75 Item_7 2
## 958 76 Item_7 4
## 959 77 Item_7 2
## 960 78 Item_7 1
## 961 79 Item_7 2
## 962 80 Item_7 2
## 963 81 Item_7 2
## 964 82 Item_7 2
## 965 83 Item_7 3
## 966 84 Item_7 1
## 967 85 Item_7 4
## 968 86 Item_7 3
## 969 87 Item_7 0
## 970 88 Item_7 3
## 971 89 Item_7 0
## 972 90 Item_7 3
## 973 91 Item_7 1
## 974 92 Item_7 2
## 975 93 Item_7 3
## 976 94 Item_7 1
## 977 95 Item_7 1
## 978 96 Item_7 1
## 979 97 Item_7 2
## 980 98 Item_7 4
## 981 99 Item_7 0
## 982 100 Item_7 2
## 983 101 Item_7 1
## 984 102 Item_7 2
## 985 103 Item_7 1
## 986 104 Item_7 2
## 987 105 Item_7 2
## 988 106 Item_7 1
## 989 107 Item_7 0
## 990 108 Item_7 2
## 991 109 Item_7 1
## 992 110 Item_7 3
## 993 111 Item_7 0
## 994 112 Item_7 1
## 995 113 Item_7 1
## 996 114 Item_7 0
## 997 115 Item_7 0
## 998 116 Item_7 1
## 999 117 Item_7 3
## 1000 118 Item_7 2
## 1001 119 Item_7 2
## 1002 120 Item_7 2
## 1003 121 Item_7 1
## 1004 122 Item_7 1
## 1005 123 Item_7 1
## 1006 124 Item_7 1
## 1007 125 Item_7 1
## 1008 126 Item_7 3
## 1009 127 Item_7 0
## 1010 128 Item_7 1
## 1011 129 Item_7 2
## 1012 130 Item_7 0
## 1013 131 Item_7 1
## 1014 132 Item_7 1
## 1015 133 Item_7 1
## 1016 134 Item_7 1
## 1017 135 Item_7 0
## 1018 136 Item_7 2
## 1019 137 Item_7 2
## 1020 138 Item_7 1
## 1021 139 Item_7 3
## 1022 140 Item_7 0
## 1023 141 Item_7 2
## 1024 142 Item_7 2
## 1025 143 Item_7 1
## 1026 144 Item_7 2
## 1027 145 Item_7 1
## 1028 146 Item_7 1
## 1029 147 Item_7 1
## 1030 1 Item_8 1
## 1031 2 Item_8 2
## 1032 3 Item_8 0
## 1033 4 Item_8 1
## 1034 5 Item_8 1
## 1035 6 Item_8 1
## 1036 7 Item_8 0
## 1037 8 Item_8 0
## 1038 9 Item_8 0
## 1039 10 Item_8 4
## 1040 11 Item_8 0
## 1041 12 Item_8 3
## 1042 13 Item_8 2
## 1043 14 Item_8 0
## 1044 15 Item_8 2
## 1045 16 Item_8 1
## 1046 17 Item_8 0
## 1047 18 Item_8 0
## 1048 19 Item_8 0
## 1049 20 Item_8 0
## 1050 21 Item_8 3
## 1051 22 Item_8 1
## 1052 23 Item_8 0
## 1053 24 Item_8 0
## 1054 25 Item_8 0
## 1055 26 Item_8 3
## 1056 27 Item_8 4
## 1057 28 Item_8 2
## 1058 29 Item_8 2
## 1059 30 Item_8 0
## 1060 31 Item_8 2
## 1061 32 Item_8 2
## 1062 33 Item_8 2
## 1063 34 Item_8 3
## 1064 35 Item_8 0
## 1065 36 Item_8 0
## 1066 37 Item_8 1
## 1067 38 Item_8 1
## 1068 39 Item_8 3
## 1069 40 Item_8 3
## 1070 41 Item_8 0
## 1071 42 Item_8 2
## 1072 43 Item_8 2
## 1073 44 Item_8 0
## 1074 45 Item_8 1
## 1075 46 Item_8 2
## 1076 47 Item_8 0
## 1077 48 Item_8 0
## 1078 49 Item_8 0
## 1079 50 Item_8 4
## 1080 51 Item_8 2
## 1081 52 Item_8 0
## 1082 53 Item_8 2
## 1083 54 Item_8 4
## 1084 55 Item_8 2
## 1085 56 Item_8 0
## 1086 57 Item_8 0
## 1087 58 Item_8 1
## 1088 59 Item_8 0
## 1089 60 Item_8 1
## 1090 61 Item_8 1
## 1091 62 Item_8 0
## 1092 63 Item_8 0
## 1093 64 Item_8 0
## 1094 65 Item_8 3
## 1095 66 Item_8 4
## 1096 67 Item_8 3
## 1097 68 Item_8 0
## 1098 69 Item_8 0
## 1099 70 Item_8 1
## 1100 71 Item_8 2
## 1101 72 Item_8 1
## 1102 73 Item_8 2
## 1103 74 Item_8 0
## 1104 75 Item_8 0
## 1105 76 Item_8 4
## 1106 77 Item_8 1
## 1107 78 Item_8 0
## 1108 79 Item_8 1
## 1109 80 Item_8 2
## 1110 81 Item_8 0
## 1111 82 Item_8 4
## 1112 83 Item_8 0
## 1113 84 Item_8 1
## 1114 85 Item_8 0
## 1115 86 Item_8 2
## 1116 87 Item_8 0
## 1117 88 Item_8 1
## 1118 89 Item_8 0
## 1119 90 Item_8 3
## 1120 91 Item_8 0
## 1121 92 Item_8 0
## 1122 93 Item_8 0
## 1123 94 Item_8 0
## 1124 95 Item_8 3
## 1125 96 Item_8 0
## 1126 97 Item_8 0
## 1127 98 Item_8 2
## 1128 99 Item_8 2
## 1129 100 Item_8 0
## 1130 101 Item_8 0
## 1131 102 Item_8 0
## 1132 103 Item_8 1
## 1133 104 Item_8 1
## 1134 105 Item_8 1
## 1135 106 Item_8 0
## 1136 107 Item_8 0
## 1137 108 Item_8 0
## 1138 109 Item_8 1
## 1139 110 Item_8 2
## 1140 111 Item_8 0
## 1141 112 Item_8 0
## 1142 113 Item_8 2
## 1143 114 Item_8 0
## 1144 115 Item_8 0
## 1145 116 Item_8 0
## 1146 117 Item_8 3
## 1147 118 Item_8 2
## 1148 119 Item_8 0
## 1149 120 Item_8 1
## 1150 121 Item_8 0
## 1151 122 Item_8 2
## 1152 123 Item_8 1
## 1153 124 Item_8 3
## 1154 125 Item_8 2
## 1155 126 Item_8 0
## 1156 127 Item_8 1
## 1157 128 Item_8 0
## 1158 129 Item_8 0
## 1159 130 Item_8 0
## 1160 131 Item_8 0
## 1161 132 Item_8 1
## 1162 133 Item_8 0
## 1163 134 Item_8 1
## 1164 135 Item_8 0
## 1165 136 Item_8 1
## 1166 137 Item_8 0
## 1167 138 Item_8 1
## 1168 139 Item_8 1
## 1169 140 Item_8 0
## 1170 141 Item_8 1
## 1171 142 Item_8 3
## 1172 143 Item_8 1
## 1173 144 Item_8 0
## 1174 145 Item_8 3
## 1175 146 Item_8 2
## 1176 147 Item_8 0
## 1177 1 Item_9 0
## 1178 2 Item_9 0
## 1179 3 Item_9 0
## 1180 4 Item_9 1
## 1181 5 Item_9 1
## 1182 6 Item_9 0
## 1183 7 Item_9 1
## 1184 8 Item_9 0
## 1185 9 Item_9 0
## 1186 10 Item_9 0
## 1187 11 Item_9 0
## 1188 12 Item_9 2
## 1189 13 Item_9 0
## 1190 14 Item_9 0
## 1191 15 Item_9 0
## 1192 16 Item_9 1
## 1193 17 Item_9 0
## 1194 18 Item_9 0
## 1195 19 Item_9 0
## 1196 20 Item_9 2
## 1197 21 Item_9 0
## 1198 22 Item_9 0
## 1199 23 Item_9 0
## 1200 24 Item_9 1
## 1201 25 Item_9 0
## 1202 26 Item_9 1
## 1203 27 Item_9 1
## 1204 28 Item_9 0
## 1205 29 Item_9 0
## 1206 30 Item_9 0
## 1207 31 Item_9 0
## 1208 32 Item_9 0
## 1209 33 Item_9 1
## 1210 34 Item_9 1
## 1211 35 Item_9 0
## 1212 36 Item_9 0
## 1213 37 Item_9 0
## 1214 38 Item_9 0
## 1215 39 Item_9 1
## 1216 40 Item_9 1
## 1217 41 Item_9 1
## 1218 42 Item_9 2
## 1219 43 Item_9 0
## 1220 44 Item_9 0
## 1221 45 Item_9 0
## 1222 46 Item_9 0
## 1223 47 Item_9 0
## 1224 48 Item_9 1
## 1225 49 Item_9 0
## 1226 50 Item_9 1
## 1227 51 Item_9 0
## 1228 52 Item_9 0
## 1229 53 Item_9 0
## 1230 54 Item_9 0
## 1231 55 Item_9 0
## 1232 56 Item_9 0
## 1233 57 Item_9 0
## 1234 58 Item_9 0
## 1235 59 Item_9 0
## 1236 60 Item_9 0
## 1237 61 Item_9 1
## 1238 62 Item_9 0
## 1239 63 Item_9 0
## 1240 64 Item_9 0
## 1241 65 Item_9 0
## 1242 66 Item_9 0
## 1243 67 Item_9 0
## 1244 68 Item_9 0
## 1245 69 Item_9 0
## 1246 70 Item_9 1
## 1247 71 Item_9 1
## 1248 72 Item_9 1
## 1249 73 Item_9 0
## 1250 74 Item_9 0
## 1251 75 Item_9 0
## 1252 76 Item_9 2
## 1253 77 Item_9 0
## 1254 78 Item_9 0
## 1255 79 Item_9 0
## 1256 80 Item_9 2
## 1257 81 Item_9 0
## 1258 82 Item_9 1
## 1259 83 Item_9 1
## 1260 84 Item_9 2
## 1261 85 Item_9 0
## 1262 86 Item_9 1
## 1263 87 Item_9 0
## 1264 88 Item_9 2
## 1265 89 Item_9 1
## 1266 90 Item_9 0
## 1267 91 Item_9 1
## 1268 92 Item_9 0
## 1269 93 Item_9 0
## 1270 94 Item_9 0
## 1271 95 Item_9 0
## 1272 96 Item_9 0
## 1273 97 Item_9 0
## 1274 98 Item_9 3
## 1275 99 Item_9 1
## 1276 100 Item_9 0
## 1277 101 Item_9 0
## 1278 102 Item_9 2
## 1279 103 Item_9 1
## 1280 104 Item_9 1
## 1281 105 Item_9 1
## 1282 106 Item_9 1
## 1283 107 Item_9 0
## 1284 108 Item_9 0
## 1285 109 Item_9 1
## 1286 110 Item_9 2
## 1287 111 Item_9 0
## 1288 112 Item_9 0
## 1289 113 Item_9 1
## 1290 114 Item_9 0
## 1291 115 Item_9 0
## 1292 116 Item_9 0
## 1293 117 Item_9 0
## 1294 118 Item_9 0
## 1295 119 Item_9 0
## 1296 120 Item_9 0
## 1297 121 Item_9 0
## 1298 122 Item_9 0
## 1299 123 Item_9 0
## 1300 124 Item_9 0
## 1301 125 Item_9 0
## 1302 126 Item_9 0
## 1303 127 Item_9 0
## 1304 128 Item_9 1
## 1305 129 Item_9 0
## 1306 130 Item_9 0
## 1307 131 Item_9 2
## 1308 132 Item_9 1
## 1309 133 Item_9 0
## 1310 134 Item_9 0
## 1311 135 Item_9 0
## 1312 136 Item_9 1
## 1313 137 Item_9 0
## 1314 138 Item_9 0
## 1315 139 Item_9 3
## 1316 140 Item_9 0
## 1317 141 Item_9 0
## 1318 142 Item_9 1
## 1319 143 Item_9 0
## 1320 144 Item_9 0
## 1321 145 Item_9 1
## 1322 146 Item_9 0
## 1323 147 Item_9 0
## 1324 1 Item_10 2
## 1325 2 Item_10 2
## 1326 3 Item_10 2
## 1327 4 Item_10 4
## 1328 5 Item_10 2
## 1329 6 Item_10 4
## 1330 7 Item_10 1
## 1331 8 Item_10 2
## 1332 9 Item_10 0
## 1333 10 Item_10 2
## 1334 11 Item_10 2
## 1335 12 Item_10 2
## 1336 13 Item_10 1
## 1337 14 Item_10 4
## 1338 15 Item_10 3
## 1339 16 Item_10 2
## 1340 17 Item_10 2
## 1341 18 Item_10 2
## 1342 19 Item_10 0
## 1343 20 Item_10 4
## 1344 21 Item_10 2
## 1345 22 Item_10 3
## 1346 23 Item_10 0
## 1347 24 Item_10 0
## 1348 25 Item_10 1
## 1349 26 Item_10 2
## 1350 27 Item_10 3
## 1351 28 Item_10 1
## 1352 29 Item_10 4
## 1353 30 Item_10 0
## 1354 31 Item_10 0
## 1355 32 Item_10 0
## 1356 33 Item_10 2
## 1357 34 Item_10 3
## 1358 35 Item_10 1
## 1359 36 Item_10 0
## 1360 37 Item_10 0
## 1361 38 Item_10 2
## 1362 39 Item_10 2
## 1363 40 Item_10 2
## 1364 41 Item_10 2
## 1365 42 Item_10 2
## 1366 43 Item_10 0
## 1367 44 Item_10 0
## 1368 45 Item_10 2
## 1369 46 Item_10 4
## 1370 47 Item_10 0
## 1371 48 Item_10 2
## 1372 49 Item_10 2
## 1373 50 Item_10 4
## 1374 51 Item_10 2
## 1375 52 Item_10 0
## 1376 53 Item_10 0
## 1377 54 Item_10 3
## 1378 55 Item_10 4
## 1379 56 Item_10 1
## 1380 57 Item_10 1
## 1381 58 Item_10 2
## 1382 59 Item_10 1
## 1383 60 Item_10 0
## 1384 61 Item_10 2
## 1385 62 Item_10 0
## 1386 63 Item_10 3
## 1387 64 Item_10 0
## 1388 65 Item_10 3
## 1389 66 Item_10 0
## 1390 67 Item_10 2
## 1391 68 Item_10 1
## 1392 69 Item_10 0
## 1393 70 Item_10 3
## 1394 71 Item_10 2
## 1395 72 Item_10 1
## 1396 73 Item_10 3
## 1397 74 Item_10 0
## 1398 75 Item_10 1
## 1399 76 Item_10 4
## 1400 77 Item_10 2
## 1401 78 Item_10 2
## 1402 79 Item_10 2
## 1403 80 Item_10 4
## 1404 81 Item_10 1
## 1405 82 Item_10 3
## 1406 83 Item_10 3
## 1407 84 Item_10 2
## 1408 85 Item_10 2
## 1409 86 Item_10 3
## 1410 87 Item_10 0
## 1411 88 Item_10 4
## 1412 89 Item_10 2
## 1413 90 Item_10 3
## 1414 91 Item_10 2
## 1415 92 Item_10 0
## 1416 93 Item_10 1
## 1417 94 Item_10 1
## 1418 95 Item_10 2
## 1419 96 Item_10 2
## 1420 97 Item_10 3
## 1421 98 Item_10 4
## 1422 99 Item_10 1
## 1423 100 Item_10 0
## 1424 101 Item_10 2
## 1425 102 Item_10 3
## 1426 103 Item_10 0
## 1427 104 Item_10 1
## 1428 105 Item_10 4
## 1429 106 Item_10 0
## 1430 107 Item_10 1
## 1431 108 Item_10 0
## 1432 109 Item_10 2
## 1433 110 Item_10 2
## 1434 111 Item_10 0
## 1435 112 Item_10 2
## 1436 113 Item_10 1
## 1437 114 Item_10 0
## 1438 115 Item_10 0
## 1439 116 Item_10 1
## 1440 117 Item_10 0
## 1441 118 Item_10 3
## 1442 119 Item_10 2
## 1443 120 Item_10 2
## 1444 121 Item_10 3
## 1445 122 Item_10 1
## 1446 123 Item_10 1
## 1447 124 Item_10 1
## 1448 125 Item_10 1
## 1449 126 Item_10 2
## 1450 127 Item_10 2
## 1451 128 Item_10 0
## 1452 129 Item_10 0
## 1453 130 Item_10 1
## 1454 131 Item_10 2
## 1455 132 Item_10 2
## 1456 133 Item_10 1
## 1457 134 Item_10 0
## 1458 135 Item_10 4
## 1459 136 Item_10 1
## 1460 137 Item_10 1
## 1461 138 Item_10 4
## 1462 139 Item_10 1
## 1463 140 Item_10 0
## 1464 141 Item_10 1
## 1465 142 Item_10 2
## 1466 143 Item_10 3
## 1467 144 Item_10 3
## 1468 145 Item_10 1
## 1469 146 Item_10 1
## 1470 147 Item_10 0
## 1471 1 Item_11 1
## 1472 2 Item_11 1
## 1473 3 Item_11 2
## 1474 4 Item_11 4
## 1475 5 Item_11 2
## 1476 6 Item_11 4
## 1477 7 Item_11 1
## 1478 8 Item_11 2
## 1479 9 Item_11 2
## 1480 10 Item_11 3
## 1481 11 Item_11 2
## 1482 12 Item_11 3
## 1483 13 Item_11 3
## 1484 14 Item_11 4
## 1485 15 Item_11 3
## 1486 16 Item_11 2
## 1487 17 Item_11 2
## 1488 18 Item_11 2
## 1489 19 Item_11 0
## 1490 20 Item_11 3
## 1491 21 Item_11 4
## 1492 22 Item_11 4
## 1493 23 Item_11 2
## 1494 24 Item_11 2
## 1495 25 Item_11 1
## 1496 26 Item_11 3
## 1497 27 Item_11 3
## 1498 28 Item_11 3
## 1499 29 Item_11 3
## 1500 30 Item_11 2
## 1501 31 Item_11 1
## 1502 32 Item_11 3
## 1503 33 Item_11 3
## 1504 34 Item_11 3
## 1505 35 Item_11 3
## 1506 36 Item_11 1
## 1507 37 Item_11 1
## 1508 38 Item_11 2
## 1509 39 Item_11 4
## 1510 40 Item_11 4
## 1511 41 Item_11 3
## 1512 42 Item_11 3
## 1513 43 Item_11 4
## 1514 44 Item_11 1
## 1515 45 Item_11 2
## 1516 46 Item_11 4
## 1517 47 Item_11 0
## 1518 48 Item_11 3
## 1519 49 Item_11 4
## 1520 50 Item_11 4
## 1521 51 Item_11 4
## 1522 52 Item_11 2
## 1523 53 Item_11 2
## 1524 54 Item_11 2
## 1525 55 Item_11 4
## 1526 56 Item_11 1
## 1527 57 Item_11 2
## 1528 58 Item_11 0
## 1529 59 Item_11 1
## 1530 60 Item_11 2
## 1531 61 Item_11 2
## 1532 62 Item_11 1
## 1533 63 Item_11 2
## 1534 64 Item_11 0
## 1535 65 Item_11 4
## 1536 66 Item_11 3
## 1537 67 Item_11 3
## 1538 68 Item_11 3
## 1539 69 Item_11 3
## 1540 70 Item_11 3
## 1541 71 Item_11 3
## 1542 72 Item_11 2
## 1543 73 Item_11 2
## 1544 74 Item_11 2
## 1545 75 Item_11 2
## 1546 76 Item_11 4
## 1547 77 Item_11 2
## 1548 78 Item_11 3
## 1549 79 Item_11 2
## 1550 80 Item_11 3
## 1551 81 Item_11 2
## 1552 82 Item_11 3
## 1553 83 Item_11 3
## 1554 84 Item_11 2
## 1555 85 Item_11 3
## 1556 86 Item_11 4
## 1557 87 Item_11 3
## 1558 88 Item_11 4
## 1559 89 Item_11 2
## 1560 90 Item_11 4
## 1561 91 Item_11 2
## 1562 92 Item_11 0
## 1563 93 Item_11 3
## 1564 94 Item_11 2
## 1565 95 Item_11 3
## 1566 96 Item_11 2
## 1567 97 Item_11 4
## 1568 98 Item_11 4
## 1569 99 Item_11 0
## 1570 100 Item_11 2
## 1571 101 Item_11 2
## 1572 102 Item_11 3
## 1573 103 Item_11 2
## 1574 104 Item_11 2
## 1575 105 Item_11 2
## 1576 106 Item_11 2
## 1577 107 Item_11 1
## 1578 108 Item_11 2
## 1579 109 Item_11 2
## 1580 110 Item_11 3
## 1581 111 Item_11 3
## 1582 112 Item_11 3
## 1583 113 Item_11 2
## 1584 114 Item_11 1
## 1585 115 Item_11 1
## 1586 116 Item_11 1
## 1587 117 Item_11 2
## 1588 118 Item_11 2
## 1589 119 Item_11 2
## 1590 120 Item_11 2
## 1591 121 Item_11 2
## 1592 122 Item_11 2
## 1593 123 Item_11 2
## 1594 124 Item_11 2
## 1595 125 Item_11 2
## 1596 126 Item_11 4
## 1597 127 Item_11 2
## 1598 128 Item_11 1
## 1599 129 Item_11 3
## 1600 130 Item_11 2
## 1601 131 Item_11 2
## 1602 132 Item_11 2
## 1603 133 Item_11 1
## 1604 134 Item_11 2
## 1605 135 Item_11 3
## 1606 136 Item_11 2
## 1607 137 Item_11 1
## 1608 138 Item_11 3
## 1609 139 Item_11 4
## 1610 140 Item_11 2
## 1611 141 Item_11 2
## 1612 142 Item_11 2
## 1613 143 Item_11 3
## 1614 144 Item_11 2
## 1615 145 Item_11 3
## 1616 146 Item_11 1
## 1617 147 Item_11 2
## 1618 1 Item_12 2
## 1619 2 Item_12 3
## 1620 3 Item_12 3
## 1621 4 Item_12 0
## 1622 5 Item_12 2
## 1623 6 Item_12 2
## 1624 7 Item_12 0
## 1625 8 Item_12 0
## 1626 9 Item_12 2
## 1627 10 Item_12 0
## 1628 11 Item_12 0
## 1629 12 Item_12 0
## 1630 13 Item_12 3
## 1631 14 Item_12 1
## 1632 15 Item_12 0
## 1633 16 Item_12 1
## 1634 17 Item_12 0
## 1635 18 Item_12 0
## 1636 19 Item_12 0
## 1637 20 Item_12 0
## 1638 21 Item_12 1
## 1639 22 Item_12 3
## 1640 23 Item_12 2
## 1641 24 Item_12 2
## 1642 25 Item_12 0
## 1643 26 Item_12 1
## 1644 27 Item_12 1
## 1645 28 Item_12 2
## 1646 29 Item_12 2
## 1647 30 Item_12 0
## 1648 31 Item_12 0
## 1649 32 Item_12 2
## 1650 33 Item_12 2
## 1651 34 Item_12 3
## 1652 35 Item_12 3
## 1653 36 Item_12 0
## 1654 37 Item_12 1
## 1655 38 Item_12 1
## 1656 39 Item_12 1
## 1657 40 Item_12 2
## 1658 41 Item_12 1
## 1659 42 Item_12 3
## 1660 43 Item_12 0
## 1661 44 Item_12 2
## 1662 45 Item_12 0
## 1663 46 Item_12 0
## 1664 47 Item_12 1
## 1665 48 Item_12 1
## 1666 49 Item_12 2
## 1667 50 Item_12 4
## 1668 51 Item_12 2
## 1669 52 Item_12 2
## 1670 53 Item_12 1
## 1671 54 Item_12 1
## 1672 55 Item_12 2
## 1673 56 Item_12 1
## 1674 57 Item_12 1
## 1675 58 Item_12 2
## 1676 59 Item_12 1
## 1677 60 Item_12 1
## 1678 61 Item_12 2
## 1679 62 Item_12 0
## 1680 63 Item_12 1
## 1681 64 Item_12 4
## 1682 65 Item_12 0
## 1683 66 Item_12 2
## 1684 67 Item_12 1
## 1685 68 Item_12 2
## 1686 69 Item_12 2
## 1687 70 Item_12 2
## 1688 71 Item_12 2
## 1689 72 Item_12 2
## 1690 73 Item_12 2
## 1691 74 Item_12 1
## 1692 75 Item_12 1
## 1693 76 Item_12 4
## 1694 77 Item_12 2
## 1695 78 Item_12 2
## 1696 79 Item_12 3
## 1697 80 Item_12 2
## 1698 81 Item_12 1
## 1699 82 Item_12 2
## 1700 83 Item_12 2
## 1701 84 Item_12 2
## 1702 85 Item_12 2
## 1703 86 Item_12 1
## 1704 87 Item_12 0
## 1705 88 Item_12 2
## 1706 89 Item_12 1
## 1707 90 Item_12 1
## 1708 91 Item_12 1
## 1709 92 Item_12 1
## 1710 93 Item_12 1
## 1711 94 Item_12 0
## 1712 95 Item_12 0
## 1713 96 Item_12 0
## 1714 97 Item_12 0
## 1715 98 Item_12 2
## 1716 99 Item_12 0
## 1717 100 Item_12 2
## 1718 101 Item_12 1
## 1719 102 Item_12 0
## 1720 103 Item_12 1
## 1721 104 Item_12 1
## 1722 105 Item_12 1
## 1723 106 Item_12 1
## 1724 107 Item_12 1
## 1725 108 Item_12 2
## 1726 109 Item_12 1
## 1727 110 Item_12 2
## 1728 111 Item_12 1
## 1729 112 Item_12 0
## 1730 113 Item_12 1
## 1731 114 Item_12 0
## 1732 115 Item_12 3
## 1733 116 Item_12 1
## 1734 117 Item_12 1
## 1735 118 Item_12 1
## 1736 119 Item_12 2
## 1737 120 Item_12 0
## 1738 121 Item_12 3
## 1739 122 Item_12 1
## 1740 123 Item_12 0
## 1741 124 Item_12 1
## 1742 125 Item_12 1
## 1743 126 Item_12 1
## 1744 127 Item_12 0
## 1745 128 Item_12 0
## 1746 129 Item_12 0
## 1747 130 Item_12 0
## 1748 131 Item_12 1
## 1749 132 Item_12 1
## 1750 133 Item_12 1
## 1751 134 Item_12 1
## 1752 135 Item_12 0
## 1753 136 Item_12 2
## 1754 137 Item_12 1
## 1755 138 Item_12 0
## 1756 139 Item_12 1
## 1757 140 Item_12 4
## 1758 141 Item_12 1
## 1759 142 Item_12 1
## 1760 143 Item_12 0
## 1761 144 Item_12 0
## 1762 145 Item_12 1
## 1763 146 Item_12 0
## 1764 147 Item_12 1
## 1765 1 Item_13 2
## 1766 2 Item_13 3
## 1767 3 Item_13 1
## 1768 4 Item_13 4
## 1769 5 Item_13 2
## 1770 6 Item_13 4
## 1771 7 Item_13 4
## 1772 8 Item_13 2
## 1773 9 Item_13 1
## 1774 10 Item_13 2
## 1775 11 Item_13 2
## 1776 12 Item_13 4
## 1777 13 Item_13 4
## 1778 14 Item_13 4
## 1779 15 Item_13 3
## 1780 16 Item_13 1
## 1781 17 Item_13 1
## 1782 18 Item_13 2
## 1783 19 Item_13 0
## 1784 20 Item_13 4
## 1785 21 Item_13 4
## 1786 22 Item_13 4
## 1787 23 Item_13 2
## 1788 24 Item_13 3
## 1789 25 Item_13 1
## 1790 26 Item_13 4
## 1791 27 Item_13 3
## 1792 28 Item_13 4
## 1793 29 Item_13 4
## 1794 30 Item_13 0
## 1795 31 Item_13 0
## 1796 32 Item_13 4
## 1797 33 Item_13 3
## 1798 34 Item_13 3
## 1799 35 Item_13 4
## 1800 36 Item_13 0
## 1801 37 Item_13 2
## 1802 38 Item_13 2
## 1803 39 Item_13 3
## 1804 40 Item_13 4
## 1805 41 Item_13 2
## 1806 42 Item_13 2
## 1807 43 Item_13 4
## 1808 44 Item_13 0
## 1809 45 Item_13 2
## 1810 46 Item_13 4
## 1811 47 Item_13 0
## 1812 48 Item_13 2
## 1813 49 Item_13 4
## 1814 50 Item_13 4
## 1815 51 Item_13 4
## 1816 52 Item_13 1
## 1817 53 Item_13 2
## 1818 54 Item_13 2
## 1819 55 Item_13 4
## 1820 56 Item_13 1
## 1821 57 Item_13 3
## 1822 58 Item_13 2
## 1823 59 Item_13 1
## 1824 60 Item_13 2
## 1825 61 Item_13 3
## 1826 62 Item_13 0
## 1827 63 Item_13 2
## 1828 64 Item_13 1
## 1829 65 Item_13 4
## 1830 66 Item_13 2
## 1831 67 Item_13 4
## 1832 68 Item_13 3
## 1833 69 Item_13 2
## 1834 70 Item_13 3
## 1835 71 Item_13 4
## 1836 72 Item_13 3
## 1837 73 Item_13 3
## 1838 74 Item_13 2
## 1839 75 Item_13 2
## 1840 76 Item_13 4
## 1841 77 Item_13 3
## 1842 78 Item_13 2
## 1843 79 Item_13 3
## 1844 80 Item_13 4
## 1845 81 Item_13 4
## 1846 82 Item_13 4
## 1847 83 Item_13 3
## 1848 84 Item_13 2
## 1849 85 Item_13 3
## 1850 86 Item_13 4
## 1851 87 Item_13 2
## 1852 88 Item_13 4
## 1853 89 Item_13 2
## 1854 90 Item_13 4
## 1855 91 Item_13 3
## 1856 92 Item_13 0
## 1857 93 Item_13 2
## 1858 94 Item_13 2
## 1859 95 Item_13 3
## 1860 96 Item_13 2
## 1861 97 Item_13 3
## 1862 98 Item_13 4
## 1863 99 Item_13 1
## 1864 100 Item_13 3
## 1865 101 Item_13 3
## 1866 102 Item_13 3
## 1867 103 Item_13 3
## 1868 104 Item_13 2
## 1869 105 Item_13 2
## 1870 106 Item_13 2
## 1871 107 Item_13 1
## 1872 108 Item_13 0
## 1873 109 Item_13 2
## 1874 110 Item_13 2
## 1875 111 Item_13 2
## 1876 112 Item_13 2
## 1877 113 Item_13 2
## 1878 114 Item_13 1
## 1879 115 Item_13 1
## 1880 116 Item_13 0
## 1881 117 Item_13 4
## 1882 118 Item_13 3
## 1883 119 Item_13 3
## 1884 120 Item_13 3
## 1885 121 Item_13 2
## 1886 122 Item_13 1
## 1887 123 Item_13 1
## 1888 124 Item_13 3
## 1889 125 Item_13 3
## 1890 126 Item_13 2
## 1891 127 Item_13 1
## 1892 128 Item_13 3
## 1893 129 Item_13 2
## 1894 130 Item_13 1
## 1895 131 Item_13 1
## 1896 132 Item_13 3
## 1897 133 Item_13 1
## 1898 134 Item_13 2
## 1899 135 Item_13 3
## 1900 136 Item_13 3
## 1901 137 Item_13 1
## 1902 138 Item_13 1
## 1903 139 Item_13 4
## 1904 140 Item_13 2
## 1905 141 Item_13 2
## 1906 142 Item_13 2
## 1907 143 Item_13 2
## 1908 144 Item_13 2
## 1909 145 Item_13 3
## 1910 146 Item_13 3
## 1911 147 Item_13 1
## 1912 1 Item_14 0
## 1913 2 Item_14 0
## 1914 3 Item_14 1
## 1915 4 Item_14 0
## 1916 5 Item_14 1
## 1917 6 Item_14 0
## 1918 7 Item_14 1
## 1919 8 Item_14 0
## 1920 9 Item_14 0
## 1921 10 Item_14 0
## 1922 11 Item_14 0
## 1923 12 Item_14 2
## 1924 13 Item_14 1
## 1925 14 Item_14 0
## 1926 15 Item_14 0
## 1927 16 Item_14 1
## 1928 17 Item_14 0
## 1929 18 Item_14 0
## 1930 19 Item_14 0
## 1931 20 Item_14 1
## 1932 21 Item_14 0
## 1933 22 Item_14 3
## 1934 23 Item_14 0
## 1935 24 Item_14 0
## 1936 25 Item_14 0
## 1937 26 Item_14 0
## 1938 27 Item_14 0
## 1939 28 Item_14 1
## 1940 29 Item_14 1
## 1941 30 Item_14 0
## 1942 31 Item_14 0
## 1943 32 Item_14 0
## 1944 33 Item_14 1
## 1945 34 Item_14 1
## 1946 35 Item_14 0
## 1947 36 Item_14 0
## 1948 37 Item_14 0
## 1949 38 Item_14 0
## 1950 39 Item_14 0
## 1951 40 Item_14 1
## 1952 41 Item_14 1
## 1953 42 Item_14 0
## 1954 43 Item_14 0
## 1955 44 Item_14 0
## 1956 45 Item_14 1
## 1957 46 Item_14 0
## 1958 47 Item_14 0
## 1959 48 Item_14 0
## 1960 49 Item_14 0
## 1961 50 Item_14 0
## 1962 51 Item_14 0
## 1963 52 Item_14 0
## 1964 53 Item_14 0
## 1965 54 Item_14 1
## 1966 55 Item_14 1
## 1967 56 Item_14 0
## 1968 57 Item_14 0
## 1969 58 Item_14 0
## 1970 59 Item_14 0
## 1971 60 Item_14 0
## 1972 61 Item_14 1
## 1973 62 Item_14 0
## 1974 63 Item_14 0
## 1975 64 Item_14 0
## 1976 65 Item_14 0
## 1977 66 Item_14 0
## 1978 67 Item_14 0
## 1979 68 Item_14 0
## 1980 69 Item_14 0
## 1981 70 Item_14 1
## 1982 71 Item_14 0
## 1983 72 Item_14 1
## 1984 73 Item_14 1
## 1985 74 Item_14 1
## 1986 75 Item_14 0
## 1987 76 Item_14 2
## 1988 77 Item_14 0
## 1989 78 Item_14 0
## 1990 79 Item_14 1
## 1991 80 Item_14 1
## 1992 81 Item_14 1
## 1993 82 Item_14 0
## 1994 83 Item_14 1
## 1995 84 Item_14 1
## 1996 85 Item_14 0
## 1997 86 Item_14 1
## 1998 87 Item_14 0
## 1999 88 Item_14 2
## 2000 89 Item_14 0
## 2001 90 Item_14 0
## 2002 91 Item_14 1
## 2003 92 Item_14 0
## 2004 93 Item_14 0
## 2005 94 Item_14 0
## 2006 95 Item_14 0
## 2007 96 Item_14 3
## 2008 97 Item_14 0
## 2009 98 Item_14 1
## 2010 99 Item_14 0
## 2011 100 Item_14 0
## 2012 101 Item_14 0
## 2013 102 Item_14 2
## 2014 103 Item_14 1
## 2015 104 Item_14 3
## 2016 105 Item_14 1
## 2017 106 Item_14 1
## 2018 107 Item_14 0
## 2019 108 Item_14 0
## 2020 109 Item_14 0
## 2021 110 Item_14 2
## 2022 111 Item_14 0
## 2023 112 Item_14 0
## 2024 113 Item_14 1
## 2025 114 Item_14 0
## 2026 115 Item_14 4
## 2027 116 Item_14 0
## 2028 117 Item_14 2
## 2029 118 Item_14 0
## 2030 119 Item_14 1
## 2031 120 Item_14 0
## 2032 121 Item_14 0
## 2033 122 Item_14 0
## 2034 123 Item_14 4
## 2035 124 Item_14 0
## 2036 125 Item_14 0
## 2037 126 Item_14 0
## 2038 127 Item_14 0
## 2039 128 Item_14 1
## 2040 129 Item_14 0
## 2041 130 Item_14 1
## 2042 131 Item_14 0
## 2043 132 Item_14 1
## 2044 133 Item_14 0
## 2045 134 Item_14 0
## 2046 135 Item_14 0
## 2047 136 Item_14 2
## 2048 137 Item_14 1
## 2049 138 Item_14 0
## 2050 139 Item_14 3
## 2051 140 Item_14 0
## 2052 141 Item_14 1
## 2053 142 Item_14 0
## 2054 143 Item_14 0
## 2055 144 Item_14 0
## 2056 145 Item_14 1
## 2057 146 Item_14 0
## 2058 147 Item_14 0
## 2059 1 Item_15 2
## 2060 2 Item_15 1
## 2061 3 Item_15 1
## 2062 4 Item_15 4
## 2063 5 Item_15 2
## 2064 6 Item_15 2
## 2065 7 Item_15 1
## 2066 8 Item_15 2
## 2067 9 Item_15 0
## 2068 10 Item_15 2
## 2069 11 Item_15 2
## 2070 12 Item_15 0
## 2071 13 Item_15 1
## 2072 14 Item_15 3
## 2073 15 Item_15 3
## 2074 16 Item_15 3
## 2075 17 Item_15 2
## 2076 18 Item_15 0
## 2077 19 Item_15 0
## 2078 20 Item_15 4
## 2079 21 Item_15 3
## 2080 22 Item_15 3
## 2081 23 Item_15 0
## 2082 24 Item_15 1
## 2083 25 Item_15 1
## 2084 26 Item_15 1
## 2085 27 Item_15 1
## 2086 28 Item_15 1
## 2087 29 Item_15 3
## 2088 30 Item_15 0
## 2089 31 Item_15 0
## 2090 32 Item_15 0
## 2091 33 Item_15 1
## 2092 34 Item_15 3
## 2093 35 Item_15 0
## 2094 36 Item_15 0
## 2095 37 Item_15 0
## 2096 38 Item_15 0
## 2097 39 Item_15 1
## 2098 40 Item_15 2
## 2099 41 Item_15 2
## 2100 42 Item_15 2
## 2101 43 Item_15 0
## 2102 44 Item_15 0
## 2103 45 Item_15 1
## 2104 46 Item_15 4
## 2105 47 Item_15 0
## 2106 48 Item_15 1
## 2107 49 Item_15 0
## 2108 50 Item_15 4
## 2109 51 Item_15 0
## 2110 52 Item_15 2
## 2111 53 Item_15 0
## 2112 54 Item_15 2
## 2113 55 Item_15 4
## 2114 56 Item_15 0
## 2115 57 Item_15 1
## 2116 58 Item_15 1
## 2117 59 Item_15 2
## 2118 60 Item_15 1
## 2119 61 Item_15 1
## 2120 62 Item_15 0
## 2121 63 Item_15 1
## 2122 64 Item_15 0
## 2123 65 Item_15 2
## 2124 66 Item_15 0
## 2125 67 Item_15 1
## 2126 68 Item_15 0
## 2127 69 Item_15 0
## 2128 70 Item_15 3
## 2129 71 Item_15 2
## 2130 72 Item_15 1
## 2131 73 Item_15 3
## 2132 74 Item_15 0
## 2133 75 Item_15 0
## 2134 76 Item_15 4
## 2135 77 Item_15 2
## 2136 78 Item_15 2
## 2137 79 Item_15 2
## 2138 80 Item_15 3
## 2139 81 Item_15 1
## 2140 82 Item_15 2
## 2141 83 Item_15 3
## 2142 84 Item_15 2
## 2143 85 Item_15 3
## 2144 86 Item_15 2
## 2145 87 Item_15 0
## 2146 88 Item_15 4
## 2147 89 Item_15 0
## 2148 90 Item_15 0
## 2149 91 Item_15 1
## 2150 92 Item_15 0
## 2151 93 Item_15 0
## 2152 94 Item_15 0
## 2153 95 Item_15 2
## 2154 96 Item_15 1
## 2155 97 Item_15 3
## 2156 98 Item_15 3
## 2157 99 Item_15 0
## 2158 100 Item_15 0
## 2159 101 Item_15 1
## 2160 102 Item_15 2
## 2161 103 Item_15 1
## 2162 104 Item_15 1
## 2163 105 Item_15 4
## 2164 106 Item_15 0
## 2165 107 Item_15 1
## 2166 108 Item_15 0
## 2167 109 Item_15 2
## 2168 110 Item_15 1
## 2169 111 Item_15 0
## 2170 112 Item_15 1
## 2171 113 Item_15 1
## 2172 114 Item_15 0
## 2173 115 Item_15 0
## 2174 116 Item_15 1
## 2175 117 Item_15 0
## 2176 118 Item_15 4
## 2177 119 Item_15 2
## 2178 120 Item_15 2
## 2179 121 Item_15 3
## 2180 122 Item_15 0
## 2181 123 Item_15 1
## 2182 124 Item_15 1
## 2183 125 Item_15 1
## 2184 126 Item_15 3
## 2185 127 Item_15 1
## 2186 128 Item_15 0
## 2187 129 Item_15 0
## 2188 130 Item_15 1
## 2189 131 Item_15 2
## 2190 132 Item_15 2
## 2191 133 Item_15 1
## 2192 134 Item_15 0
## 2193 135 Item_15 3
## 2194 136 Item_15 1
## 2195 137 Item_15 2
## 2196 138 Item_15 1
## 2197 139 Item_15 1
## 2198 140 Item_15 0
## 2199 141 Item_15 1
## 2200 142 Item_15 2
## 2201 143 Item_15 2
## 2202 144 Item_15 0
## 2203 145 Item_15 1
## 2204 146 Item_15 0
## 2205 147 Item_15 0
## 2206 1 Item_16 2
## 2207 2 Item_16 3
## 2208 3 Item_16 3
## 2209 4 Item_16 4
## 2210 5 Item_16 3
## 2211 6 Item_16 2
## 2212 7 Item_16 4
## 2213 8 Item_16 3
## 2214 9 Item_16 3
## 2215 10 Item_16 2
## 2216 11 Item_16 2
## 2217 12 Item_16 2
## 2218 13 Item_16 0
## 2219 14 Item_16 4
## 2220 15 Item_16 4
## 2221 16 Item_16 2
## 2222 17 Item_16 1
## 2223 18 Item_16 3
## 2224 19 Item_16 0
## 2225 20 Item_16 3
## 2226 21 Item_16 4
## 2227 22 Item_16 4
## 2228 23 Item_16 0
## 2229 24 Item_16 0
## 2230 25 Item_16 1
## 2231 26 Item_16 2
## 2232 27 Item_16 3
## 2233 28 Item_16 4
## 2234 29 Item_16 4
## 2235 30 Item_16 0
## 2236 31 Item_16 1
## 2237 32 Item_16 3
## 2238 33 Item_16 3
## 2239 34 Item_16 3
## 2240 35 Item_16 1
## 2241 36 Item_16 0
## 2242 37 Item_16 1
## 2243 38 Item_16 2
## 2244 39 Item_16 3
## 2245 40 Item_16 4
## 2246 41 Item_16 4
## 2247 42 Item_16 3
## 2248 43 Item_16 4
## 2249 44 Item_16 2
## 2250 45 Item_16 2
## 2251 46 Item_16 4
## 2252 47 Item_16 1
## 2253 48 Item_16 3
## 2254 49 Item_16 4
## 2255 50 Item_16 2
## 2256 51 Item_16 4
## 2257 52 Item_16 0
## 2258 53 Item_16 3
## 2259 54 Item_16 3
## 2260 55 Item_16 4
## 2261 56 Item_16 0
## 2262 57 Item_16 3
## 2263 58 Item_16 4
## 2264 59 Item_16 2
## 2265 60 Item_16 1
## 2266 61 Item_16 2
## 2267 62 Item_16 0
## 2268 63 Item_16 3
## 2269 64 Item_16 0
## 2270 65 Item_16 4
## 2271 66 Item_16 2
## 2272 67 Item_16 3
## 2273 68 Item_16 4
## 2274 69 Item_16 0
## 2275 70 Item_16 3
## 2276 71 Item_16 3
## 2277 72 Item_16 2
## 2278 73 Item_16 3
## 2279 74 Item_16 2
## 2280 75 Item_16 2
## 2281 76 Item_16 4
## 2282 77 Item_16 3
## 2283 78 Item_16 2
## 2284 79 Item_16 2
## 2285 80 Item_16 3
## 2286 81 Item_16 2
## 2287 82 Item_16 4
## 2288 83 Item_16 3
## 2289 84 Item_16 1
## 2290 85 Item_16 4
## 2291 86 Item_16 0
## 2292 87 Item_16 2
## 2293 88 Item_16 1
## 2294 89 Item_16 2
## 2295 90 Item_16 4
## 2296 91 Item_16 1
## 2297 92 Item_16 0
## 2298 93 Item_16 0
## 2299 94 Item_16 1
## 2300 95 Item_16 2
## 2301 96 Item_16 4
## 2302 97 Item_16 3
## 2303 98 Item_16 4
## 2304 99 Item_16 0
## 2305 100 Item_16 2
## 2306 101 Item_16 3
## 2307 102 Item_16 3
## 2308 103 Item_16 1
## 2309 104 Item_16 3
## 2310 105 Item_16 4
## 2311 106 Item_16 2
## 2312 107 Item_16 1
## 2313 108 Item_16 0
## 2314 109 Item_16 3
## 2315 110 Item_16 2
## 2316 111 Item_16 2
## 2317 112 Item_16 2
## 2318 113 Item_16 2
## 2319 114 Item_16 0
## 2320 115 Item_16 1
## 2321 116 Item_16 2
## 2322 117 Item_16 2
## 2323 118 Item_16 4
## 2324 119 Item_16 2
## 2325 120 Item_16 3
## 2326 121 Item_16 1
## 2327 122 Item_16 3
## 2328 123 Item_16 1
## 2329 124 Item_16 2
## 2330 125 Item_16 3
## 2331 126 Item_16 4
## 2332 127 Item_16 1
## 2333 128 Item_16 2
## 2334 129 Item_16 2
## 2335 130 Item_16 3
## 2336 131 Item_16 1
## 2337 132 Item_16 0
## 2338 133 Item_16 1
## 2339 134 Item_16 1
## 2340 135 Item_16 4
## 2341 136 Item_16 2
## 2342 137 Item_16 2
## 2343 138 Item_16 3
## 2344 139 Item_16 4
## 2345 140 Item_16 2
## 2346 141 Item_16 2
## 2347 142 Item_16 3
## 2348 143 Item_16 2
## 2349 144 Item_16 1
## 2350 145 Item_16 2
## 2351 146 Item_16 1
## 2352 147 Item_16 0
## 2353 1 Item_17 2
## 2354 2 Item_17 4
## 2355 3 Item_17 3
## 2356 4 Item_17 0
## 2357 5 Item_17 2
## 2358 6 Item_17 2
## 2359 7 Item_17 2
## 2360 8 Item_17 1
## 2361 9 Item_17 2
## 2362 10 Item_17 0
## 2363 11 Item_17 1
## 2364 12 Item_17 0
## 2365 13 Item_17 2
## 2366 14 Item_17 2
## 2367 15 Item_17 0
## 2368 16 Item_17 1
## 2369 17 Item_17 1
## 2370 18 Item_17 0
## 2371 19 Item_17 0
## 2372 20 Item_17 3
## 2373 21 Item_17 2
## 2374 22 Item_17 3
## 2375 23 Item_17 2
## 2376 24 Item_17 1
## 2377 25 Item_17 1
## 2378 26 Item_17 2
## 2379 27 Item_17 2
## 2380 28 Item_17 2
## 2381 29 Item_17 2
## 2382 30 Item_17 0
## 2383 31 Item_17 1
## 2384 32 Item_17 3
## 2385 33 Item_17 3
## 2386 34 Item_17 2
## 2387 35 Item_17 2
## 2388 36 Item_17 0
## 2389 37 Item_17 2
## 2390 38 Item_17 1
## 2391 39 Item_17 2
## 2392 40 Item_17 3
## 2393 41 Item_17 2
## 2394 42 Item_17 2
## 2395 43 Item_17 0
## 2396 44 Item_17 1
## 2397 45 Item_17 1
## 2398 46 Item_17 1
## 2399 47 Item_17 0
## 2400 48 Item_17 1
## 2401 49 Item_17 0
## 2402 50 Item_17 3
## 2403 51 Item_17 2
## 2404 52 Item_17 0
## 2405 53 Item_17 1
## 2406 54 Item_17 2
## 2407 55 Item_17 2
## 2408 56 Item_17 1
## 2409 57 Item_17 1
## 2410 58 Item_17 4
## 2411 59 Item_17 1
## 2412 60 Item_17 2
## 2413 61 Item_17 2
## 2414 62 Item_17 0
## 2415 63 Item_17 1
## 2416 64 Item_17 0
## 2417 65 Item_17 0
## 2418 66 Item_17 0
## 2419 67 Item_17 0
## 2420 68 Item_17 2
## 2421 69 Item_17 0
## 2422 70 Item_17 3
## 2423 71 Item_17 2
## 2424 72 Item_17 2
## 2425 73 Item_17 3
## 2426 74 Item_17 2
## 2427 75 Item_17 1
## 2428 76 Item_17 4
## 2429 77 Item_17 2
## 2430 78 Item_17 2
## 2431 79 Item_17 2
## 2432 80 Item_17 3
## 2433 81 Item_17 2
## 2434 82 Item_17 2
## 2435 83 Item_17 2
## 2436 84 Item_17 1
## 2437 85 Item_17 2
## 2438 86 Item_17 2
## 2439 87 Item_17 0
## 2440 88 Item_17 2
## 2441 89 Item_17 1
## 2442 90 Item_17 4
## 2443 91 Item_17 1
## 2444 92 Item_17 1
## 2445 93 Item_17 3
## 2446 94 Item_17 2
## 2447 95 Item_17 1
## 2448 96 Item_17 2
## 2449 97 Item_17 2
## 2450 98 Item_17 2
## 2451 99 Item_17 0
## 2452 100 Item_17 1
## 2453 101 Item_17 0
## 2454 102 Item_17 2
## 2455 103 Item_17 1
## 2456 104 Item_17 2
## 2457 105 Item_17 2
## 2458 106 Item_17 1
## 2459 107 Item_17 0
## 2460 108 Item_17 3
## 2461 109 Item_17 1
## 2462 110 Item_17 3
## 2463 111 Item_17 1
## 2464 112 Item_17 0
## 2465 113 Item_17 1
## 2466 114 Item_17 0
## 2467 115 Item_17 1
## 2468 116 Item_17 0
## 2469 117 Item_17 2
## 2470 118 Item_17 1
## 2471 119 Item_17 2
## 2472 120 Item_17 2
## 2473 121 Item_17 0
## 2474 122 Item_17 1
## 2475 123 Item_17 1
## 2476 124 Item_17 2
## 2477 125 Item_17 1
## 2478 126 Item_17 1
## 2479 127 Item_17 0
## 2480 128 Item_17 1
## 2481 129 Item_17 1
## 2482 130 Item_17 1
## 2483 131 Item_17 1
## 2484 132 Item_17 2
## 2485 133 Item_17 0
## 2486 134 Item_17 1
## 2487 135 Item_17 1
## 2488 136 Item_17 3
## 2489 137 Item_17 2
## 2490 138 Item_17 0
## 2491 139 Item_17 3
## 2492 140 Item_17 0
## 2493 141 Item_17 1
## 2494 142 Item_17 1
## 2495 143 Item_17 1
## 2496 144 Item_17 2
## 2497 145 Item_17 2
## 2498 146 Item_17 2
## 2499 147 Item_17 0
## 2500 1 Item_18 4
## 2501 2 Item_18 3
## 2502 3 Item_18 2
## 2503 4 Item_18 4
## 2504 5 Item_18 3
## 2505 6 Item_18 4
## 2506 7 Item_18 4
## 2507 8 Item_18 1
## 2508 9 Item_18 0
## 2509 10 Item_18 2
## 2510 11 Item_18 2
## 2511 12 Item_18 2
## 2512 13 Item_18 4
## 2513 14 Item_18 3
## 2514 15 Item_18 3
## 2515 16 Item_18 1
## 2516 17 Item_18 1
## 2517 18 Item_18 2
## 2518 19 Item_18 0
## 2519 20 Item_18 4
## 2520 21 Item_18 3
## 2521 22 Item_18 3
## 2522 23 Item_18 1
## 2523 24 Item_18 3
## 2524 25 Item_18 1
## 2525 26 Item_18 3
## 2526 27 Item_18 3
## 2527 28 Item_18 4
## 2528 29 Item_18 4
## 2529 30 Item_18 0
## 2530 31 Item_18 1
## 2531 32 Item_18 4
## 2532 33 Item_18 2
## 2533 34 Item_18 3
## 2534 35 Item_18 2
## 2535 36 Item_18 0
## 2536 37 Item_18 2
## 2537 38 Item_18 1
## 2538 39 Item_18 3
## 2539 40 Item_18 4
## 2540 41 Item_18 2
## 2541 42 Item_18 4
## 2542 43 Item_18 4
## 2543 44 Item_18 0
## 2544 45 Item_18 2
## 2545 46 Item_18 4
## 2546 47 Item_18 0
## 2547 48 Item_18 1
## 2548 49 Item_18 3
## 2549 50 Item_18 4
## 2550 51 Item_18 2
## 2551 52 Item_18 0
## 2552 53 Item_18 2
## 2553 54 Item_18 2
## 2554 55 Item_18 4
## 2555 56 Item_18 0
## 2556 57 Item_18 2
## 2557 58 Item_18 3
## 2558 59 Item_18 0
## 2559 60 Item_18 2
## 2560 61 Item_18 2
## 2561 62 Item_18 0
## 2562 63 Item_18 2
## 2563 64 Item_18 1
## 2564 65 Item_18 4
## 2565 66 Item_18 0
## 2566 67 Item_18 3
## 2567 68 Item_18 4
## 2568 69 Item_18 0
## 2569 70 Item_18 3
## 2570 71 Item_18 2
## 2571 72 Item_18 2
## 2572 73 Item_18 3
## 2573 74 Item_18 2
## 2574 75 Item_18 2
## 2575 76 Item_18 4
## 2576 77 Item_18 3
## 2577 78 Item_18 2
## 2578 79 Item_18 2
## 2579 80 Item_18 3
## 2580 81 Item_18 4
## 2581 82 Item_18 4
## 2582 83 Item_18 3
## 2583 84 Item_18 1
## 2584 85 Item_18 3
## 2585 86 Item_18 4
## 2586 87 Item_18 2
## 2587 88 Item_18 4
## 2588 89 Item_18 1
## 2589 90 Item_18 4
## 2590 91 Item_18 3
## 2591 92 Item_18 1
## 2592 93 Item_18 3
## 2593 94 Item_18 2
## 2594 95 Item_18 3
## 2595 96 Item_18 2
## 2596 97 Item_18 2
## 2597 98 Item_18 4
## 2598 99 Item_18 1
## 2599 100 Item_18 2
## 2600 101 Item_18 2
## 2601 102 Item_18 3
## 2602 103 Item_18 3
## 2603 104 Item_18 2
## 2604 105 Item_18 1
## 2605 106 Item_18 2
## 2606 107 Item_18 1
## 2607 108 Item_18 0
## 2608 109 Item_18 2
## 2609 110 Item_18 2
## 2610 111 Item_18 2
## 2611 112 Item_18 2
## 2612 113 Item_18 2
## 2613 114 Item_18 0
## 2614 115 Item_18 0
## 2615 116 Item_18 0
## 2616 117 Item_18 4
## 2617 118 Item_18 3
## 2618 119 Item_18 2
## 2619 120 Item_18 2
## 2620 121 Item_18 1
## 2621 122 Item_18 1
## 2622 123 Item_18 1
## 2623 124 Item_18 3
## 2624 125 Item_18 3
## 2625 126 Item_18 3
## 2626 127 Item_18 2
## 2627 128 Item_18 2
## 2628 129 Item_18 3
## 2629 130 Item_18 1
## 2630 131 Item_18 1
## 2631 132 Item_18 2
## 2632 133 Item_18 1
## 2633 134 Item_18 2
## 2634 135 Item_18 3
## 2635 136 Item_18 3
## 2636 137 Item_18 2
## 2637 138 Item_18 1
## 2638 139 Item_18 4
## 2639 140 Item_18 2
## 2640 141 Item_18 1
## 2641 142 Item_18 2
## 2642 143 Item_18 2
## 2643 144 Item_18 2
## 2644 145 Item_18 3
## 2645 146 Item_18 2
## 2646 147 Item_18 1
## 2647 1 Item_19 0
## 2648 2 Item_19 0
## 2649 3 Item_19 1
## 2650 4 Item_19 0
## 2651 5 Item_19 1
## 2652 6 Item_19 0
## 2653 7 Item_19 0
## 2654 8 Item_19 0
## 2655 9 Item_19 0
## 2656 10 Item_19 0
## 2657 11 Item_19 0
## 2658 12 Item_19 0
## 2659 13 Item_19 0
## 2660 14 Item_19 0
## 2661 15 Item_19 0
## 2662 16 Item_19 1
## 2663 17 Item_19 0
## 2664 18 Item_19 0
## 2665 19 Item_19 0
## 2666 20 Item_19 0
## 2667 21 Item_19 0
## 2668 22 Item_19 2
## 2669 23 Item_19 0
## 2670 24 Item_19 0
## 2671 25 Item_19 1
## 2672 26 Item_19 0
## 2673 27 Item_19 0
## 2674 28 Item_19 0
## 2675 29 Item_19 0
## 2676 30 Item_19 0
## 2677 31 Item_19 0
## 2678 32 Item_19 0
## 2679 33 Item_19 0
## 2680 34 Item_19 1
## 2681 35 Item_19 0
## 2682 36 Item_19 0
## 2683 37 Item_19 0
## 2684 38 Item_19 0
## 2685 39 Item_19 0
## 2686 40 Item_19 1
## 2687 41 Item_19 1
## 2688 42 Item_19 0
## 2689 43 Item_19 0
## 2690 44 Item_19 0
## 2691 45 Item_19 0
## 2692 46 Item_19 0
## 2693 47 Item_19 0
## 2694 48 Item_19 0
## 2695 49 Item_19 0
## 2696 50 Item_19 0
## 2697 51 Item_19 0
## 2698 52 Item_19 0
## 2699 53 Item_19 0
## 2700 54 Item_19 1
## 2701 55 Item_19 0
## 2702 56 Item_19 0
## 2703 57 Item_19 0
## 2704 58 Item_19 0
## 2705 59 Item_19 0
## 2706 60 Item_19 0
## 2707 61 Item_19 1
## 2708 62 Item_19 0
## 2709 63 Item_19 0
## 2710 64 Item_19 0
## 2711 65 Item_19 0
## 2712 66 Item_19 0
## 2713 67 Item_19 0
## 2714 68 Item_19 0
## 2715 69 Item_19 0
## 2716 70 Item_19 1
## 2717 71 Item_19 0
## 2718 72 Item_19 1
## 2719 73 Item_19 1
## 2720 74 Item_19 0
## 2721 75 Item_19 0
## 2722 76 Item_19 1
## 2723 77 Item_19 0
## 2724 78 Item_19 0
## 2725 79 Item_19 0
## 2726 80 Item_19 2
## 2727 81 Item_19 0
## 2728 82 Item_19 0
## 2729 83 Item_19 1
## 2730 84 Item_19 1
## 2731 85 Item_19 0
## 2732 86 Item_19 0
## 2733 87 Item_19 0
## 2734 88 Item_19 2
## 2735 89 Item_19 0
## 2736 90 Item_19 0
## 2737 91 Item_19 1
## 2738 92 Item_19 0
## 2739 93 Item_19 0
## 2740 94 Item_19 0
## 2741 95 Item_19 0
## 2742 96 Item_19 0
## 2743 97 Item_19 0
## 2744 98 Item_19 2
## 2745 99 Item_19 0
## 2746 100 Item_19 0
## 2747 101 Item_19 0
## 2748 102 Item_19 2
## 2749 103 Item_19 0
## 2750 104 Item_19 1
## 2751 105 Item_19 1
## 2752 106 Item_19 0
## 2753 107 Item_19 0
## 2754 108 Item_19 0
## 2755 109 Item_19 0
## 2756 110 Item_19 1
## 2757 111 Item_19 0
## 2758 112 Item_19 0
## 2759 113 Item_19 0
## 2760 114 Item_19 0
## 2761 115 Item_19 0
## 2762 116 Item_19 0
## 2763 117 Item_19 0
## 2764 118 Item_19 0
## 2765 119 Item_19 0
## 2766 120 Item_19 0
## 2767 121 Item_19 0
## 2768 122 Item_19 0
## 2769 123 Item_19 0
## 2770 124 Item_19 0
## 2771 125 Item_19 0
## 2772 126 Item_19 0
## 2773 127 Item_19 0
## 2774 128 Item_19 0
## 2775 129 Item_19 0
## 2776 130 Item_19 0
## 2777 131 Item_19 0
## 2778 132 Item_19 0
## 2779 133 Item_19 0
## 2780 134 Item_19 0
## 2781 135 Item_19 0
## 2782 136 Item_19 1
## 2783 137 Item_19 0
## 2784 138 Item_19 0
## 2785 139 Item_19 2
## 2786 140 Item_19 0
## 2787 141 Item_19 0
## 2788 142 Item_19 0
## 2789 143 Item_19 0
## 2790 144 Item_19 0
## 2791 145 Item_19 1
## 2792 146 Item_19 0
## 2793 147 Item_19 0
## 2794 1 Item_20 1
## 2795 2 Item_20 1
## 2796 3 Item_20 1
## 2797 4 Item_20 4
## 2798 5 Item_20 1
## 2799 6 Item_20 0
## 2800 7 Item_20 0
## 2801 8 Item_20 2
## 2802 9 Item_20 1
## 2803 10 Item_20 2
## 2804 11 Item_20 1
## 2805 12 Item_20 0
## 2806 13 Item_20 0
## 2807 14 Item_20 2
## 2808 15 Item_20 4
## 2809 16 Item_20 1
## 2810 17 Item_20 0
## 2811 18 Item_20 1
## 2812 19 Item_20 0
## 2813 20 Item_20 0
## 2814 21 Item_20 2
## 2815 22 Item_20 4
## 2816 23 Item_20 0
## 2817 24 Item_20 0
## 2818 25 Item_20 0
## 2819 26 Item_20 0
## 2820 27 Item_20 1
## 2821 28 Item_20 3
## 2822 29 Item_20 2
## 2823 30 Item_20 0
## 2824 31 Item_20 0
## 2825 32 Item_20 0
## 2826 33 Item_20 3
## 2827 34 Item_20 2
## 2828 35 Item_20 0
## 2829 36 Item_20 0
## 2830 37 Item_20 0
## 2831 38 Item_20 0
## 2832 39 Item_20 2
## 2833 40 Item_20 2
## 2834 41 Item_20 1
## 2835 42 Item_20 1
## 2836 43 Item_20 0
## 2837 44 Item_20 0
## 2838 45 Item_20 2
## 2839 46 Item_20 1
## 2840 47 Item_20 0
## 2841 48 Item_20 1
## 2842 49 Item_20 0
## 2843 50 Item_20 4
## 2844 51 Item_20 1
## 2845 52 Item_20 0
## 2846 53 Item_20 2
## 2847 54 Item_20 1
## 2848 55 Item_20 4
## 2849 56 Item_20 0
## 2850 57 Item_20 0
## 2851 58 Item_20 1
## 2852 59 Item_20 1
## 2853 60 Item_20 1
## 2854 61 Item_20 1
## 2855 62 Item_20 0
## 2856 63 Item_20 2
## 2857 64 Item_20 0
## 2858 65 Item_20 1
## 2859 66 Item_20 0
## 2860 67 Item_20 1
## 2861 68 Item_20 3
## 2862 69 Item_20 0
## 2863 70 Item_20 3
## 2864 71 Item_20 1
## 2865 72 Item_20 1
## 2866 73 Item_20 1
## 2867 74 Item_20 0
## 2868 75 Item_20 0
## 2869 76 Item_20 4
## 2870 77 Item_20 2
## 2871 78 Item_20 2
## 2872 79 Item_20 1
## 2873 80 Item_20 3
## 2874 81 Item_20 0
## 2875 82 Item_20 2
## 2876 83 Item_20 3
## 2877 84 Item_20 2
## 2878 85 Item_20 0
## 2879 86 Item_20 1
## 2880 87 Item_20 0
## 2881 88 Item_20 3
## 2882 89 Item_20 2
## 2883 90 Item_20 0
## 2884 91 Item_20 1
## 2885 92 Item_20 0
## 2886 93 Item_20 0
## 2887 94 Item_20 0
## 2888 95 Item_20 1
## 2889 96 Item_20 1
## 2890 97 Item_20 2
## 2891 98 Item_20 4
## 2892 99 Item_20 0
## 2893 100 Item_20 0
## 2894 101 Item_20 3
## 2895 102 Item_20 3
## 2896 103 Item_20 3
## 2897 104 Item_20 1
## 2898 105 Item_20 3
## 2899 106 Item_20 2
## 2900 107 Item_20 0
## 2901 108 Item_20 0
## 2902 109 Item_20 1
## 2903 110 Item_20 1
## 2904 111 Item_20 0
## 2905 112 Item_20 2
## 2906 113 Item_20 1
## 2907 114 Item_20 0
## 2908 115 Item_20 0
## 2909 116 Item_20 1
## 2910 117 Item_20 0
## 2911 118 Item_20 2
## 2912 119 Item_20 2
## 2913 120 Item_20 2
## 2914 121 Item_20 1
## 2915 122 Item_20 0
## 2916 123 Item_20 1
## 2917 124 Item_20 1
## 2918 125 Item_20 1
## 2919 126 Item_20 0
## 2920 127 Item_20 2
## 2921 128 Item_20 1
## 2922 129 Item_20 0
## 2923 130 Item_20 1
## 2924 131 Item_20 1
## 2925 132 Item_20 1
## 2926 133 Item_20 0
## 2927 134 Item_20 1
## 2928 135 Item_20 2
## 2929 136 Item_20 1
## 2930 137 Item_20 0
## 2931 138 Item_20 1
## 2932 139 Item_20 1
## 2933 140 Item_20 0
## 2934 141 Item_20 1
## 2935 142 Item_20 1
## 2936 143 Item_20 2
## 2937 144 Item_20 1
## 2938 145 Item_20 2
## 2939 146 Item_20 0
## 2940 147 Item_20 0
# Sort the data by ID
sorted_data <- arrange(Rehab_data_long,ID)
# Build a variable "Facet"
Facet <- rep(rep(c(1,2,3,4,5),4),147)
sorted_data$Facet <- Facet
# Transform the Item_No.
sorted_data$item_No <- rep(1:20,147)
#
write.csv(sorted_data,"Lu_BO_data.csv", row.names = FALSE)
# Import the data
mediation_test <- read_sav("~/Desktop/Dr. Junfei Lu Work/mediation_test.sav")
# Select the target data
Medi_data <- mediation_test[,27:37]
# Describe the data
describe(Medi_data)
## vars n mean sd median trimmed mad min max range skew kurtosis
## Decenter_1 1 191 3.55 0.81 4 3.54 1.48 1 5 4 -0.10 -0.19
## Decenter_2 2 191 3.16 0.82 3 3.18 1.48 1 5 4 -0.13 -0.11
## Decenter_3 3 191 2.84 0.94 3 2.81 1.48 1 5 4 0.25 -0.40
## Decenter_4 4 191 3.68 0.84 4 3.70 1.48 1 5 4 -0.26 -0.24
## Decenter_5 5 191 3.08 0.95 3 3.09 1.48 1 5 4 -0.12 -0.23
## Decenter_6 6 191 3.62 0.82 4 3.63 1.48 1 5 4 -0.17 -0.23
## Decenter_7 7 191 3.01 0.97 3 3.01 1.48 1 5 4 -0.05 -0.27
## Decenter_8 8 191 3.07 0.97 3 3.06 1.48 1 5 4 0.00 -0.16
## Decenter_9 9 191 3.43 0.98 3 3.46 1.48 1 5 4 -0.31 -0.27
## Decenter_10 10 191 3.39 0.84 3 3.39 1.48 1 5 4 -0.07 -0.17
## Decenter_11 11 191 3.72 0.85 4 3.74 1.48 1 5 4 -0.24 -0.34
## se
## Decenter_1 0.06
## Decenter_2 0.06
## Decenter_3 0.07
## Decenter_4 0.06
## Decenter_5 0.07
## Decenter_6 0.06
## Decenter_7 0.07
## Decenter_8 0.07
## Decenter_9 0.07
## Decenter_10 0.06
## Decenter_11 0.06
Medi_data <- Medi_data-1
# Run a Rasch Rating Scale Model
Medi_RSM <- RSM(Medi_data)
plotPImap(Medi_RSM, main = "Mediation Rating Scale Model Wright Map")
# Obtain Item locations
item.locations <- Medi_RSM$etapar
item.locations
## Decenter_2 Decenter_3 Decenter_4 Decenter_5 Decenter_6 Decenter_7
## 0.3124396 0.8902153 -0.6750616 0.4555666 -0.5624306 0.5884371
## Decenter_8 Decenter_9 Decenter_10 Decenter_11 Cat 2 Cat 3
## 0.4745873 -0.2019576 -0.1134441 -0.7474657 1.3604576 4.5972779
## Cat 4
## 9.6350309
summary(item.locations)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.7475 -0.2020 0.4556 1.2318 0.8902 9.6350
n.items <- ncol(Medi_data)
# Obtain Item 1's location
i1 <- 0 - sum(item.locations[1:(n.items - 1)])
item.locations.all <- c(i1, item.locations[c(1:(n.items - 1))])
item.locations.all
## Decenter_2 Decenter_3 Decenter_4 Decenter_5 Decenter_6
## -0.4208863 0.3124396 0.8902153 -0.6750616 0.4555666 -0.5624306
## Decenter_7 Decenter_8 Decenter_9 Decenter_10 Decenter_11
## 0.5884371 0.4745873 -0.2019576 -0.1134441 -0.7474657
# Apply thresholds() function to the model object in order to obtain item locations (not centered at zero logits):
items.and.taus <- thresholds(Medi_RSM)
items.and.taus.table <- as.data.frame(items.and.taus$threshtable)
uncentered.item.locations <- items.and.taus.table$X1.Location
# Set the mean of the item locations to zero logits:
centered.item.locations <- scale(uncentered.item.locations, scale = FALSE)
summary(centered.item.locations)
## V1
## Min. :-0.7475
## 1st Qu.:-0.4917
## Median :-0.1134
## Mean : 0.0000
## 3rd Qu.: 0.4651
## Max. : 0.8902
centered.item.locations
## [,1]
## [1,] -0.4208863
## [2,] 0.3124396
## [3,] 0.8902153
## [4,] -0.6750616
## [5,] 0.4555666
## [6,] -0.5624306
## [7,] 0.5884371
## [8,] 0.4745873
## [9,] -0.2019576
## [10,] -0.1134441
## [11,] -0.7474657
## attr(,"scaled:center")
## [1] 2.408758
# items.to.plot <- c(1:11)
plotICC(Medi_RSM, ask = FALSE)
# Calculate person parameters:
person.locations.estimate <- person.parameter(Medi_RSM)
# Store person parameters and their standard errors in a dataframe object:
person.locations <- cbind.data.frame(person.locations.estimate$thetapar,
person.locations.estimate$se.theta)
names(person.locations) <- c("theta", "SE")
# View summary statistics for person parameters:
summary(person.locations)
## theta SE
## Min. :0.5826 Min. :0.3956
## 1st Qu.:2.3342 1st Qu.:0.4012
## Median :2.9897 Median :0.4086
## Mean :2.9124 Mean :0.4133
## 3rd Qu.:3.4989 3rd Qu.:0.4159
## Max. :6.2395 Max. :0.6455
# Exam Item fit
item.fit.results <- itemfit(person.locations.estimate)
item.fit <- cbind.data.frame(item.fit.results$i.infitMSQ,
item.fit.results$i.outfitMSQ,
item.fit.results$i.infitZ,
item.fit.results$i.outfitZ)
names(item.fit) <- c("infit_MSE", "outfit_MSE", "std_infit", "std_outfit")
summary(item.fit)
## infit_MSE outfit_MSE std_infit std_outfit
## Min. :0.6736 Min. :0.6737 Min. :-3.6492 Min. :-3.6569
## 1st Qu.:0.8259 1st Qu.:0.8268 1st Qu.:-1.8316 1st Qu.:-1.8285
## Median :0.9124 Median :0.9122 Median :-0.8721 Median :-0.8816
## Mean :0.9121 Mean :0.9135 Mean :-0.9497 Mean :-0.9349
## 3rd Qu.:0.9806 3rd Qu.:0.9843 3rd Qu.:-0.1639 3rd Qu.:-0.1267
## Max. :1.1647 Max. :1.1638 Max. : 1.5938 Max. : 1.5932
item.fit
## infit_MSE outfit_MSE std_infit std_outfit
## Decenter_1 0.7268730 0.7419581 -2.9938349 -2.8265134
## Decenter_2 0.6735916 0.6736770 -3.6491864 -3.6568735
## Decenter_3 0.9124301 0.9108674 -0.8720733 -0.8906467
## Decenter_4 0.9094132 0.9122409 -0.9050739 -0.8816013
## Decenter_5 0.9509940 0.9458656 -0.4625791 -0.5166380
## Decenter_6 1.0101662 1.0154013 0.1348078 0.1876684
## Decenter_7 0.9498165 0.9532564 -0.4755053 -0.4409914
## Decenter_8 0.8905554 0.8905278 -1.0986197 -1.1012185
## Decenter_9 1.1647317 1.1638264 1.5937960 1.5932181
## Decenter_10 0.7612899 0.7630038 -2.5646016 -2.5557383
## Decenter_11 1.0831533 1.0782461 0.8465551 0.8049873
# Exam person fit
person.fit.results <- personfit(person.locations.estimate)
person.fit <- cbind.data.frame(person.fit.results$p.infitMSQ,
person.fit.results$p.outfitMSQ,
person.fit.results$p.infitZ,
person.fit.results$p.outfitZ)
names(person.fit) <- c("infit_MSE", "outfit_MSE", "std_infit", "std_outfit")
person.fit
## infit_MSE outfit_MSE std_infit std_outfit
## P1 0.9067225 0.9268917 -0.100339364 -0.04943769
## P2 1.2618795 1.2876543 0.709981972 0.76161647
## P3 1.7815786 1.7575408 1.640209628 1.60347333
## P4 0.4875167 0.4829200 -1.396079690 -1.41901655
## P5 0.5874628 0.5876735 -1.110901418 -1.11264806
## P6 0.9041745 0.8914858 -0.090585311 -0.12297481
## P7 1.4918152 1.5122967 1.146915386 1.18385930
## P8 0.9314514 0.9128359 -0.054734224 -0.10778062
## P9 0.8223777 0.8178739 -0.303840020 -0.31681198
## P10 0.7074835 0.7100907 -0.675941643 -0.66650900
## P11 0.7434115 0.7540076 -0.547709897 -0.51948578
## P12 0.5753849 0.5774170 -1.062075625 -1.05830145
## P13 0.6322997 0.6391987 -0.903763455 -0.87844362
## P14 0.5310833 0.5249628 -1.211930647 -1.23223250
## P15 0.7134800 0.7178589 -0.670040512 -0.65628337
## P16 0.6670526 0.6723606 -0.751042508 -0.73423079
## P17 0.7351201 0.7293961 -0.633573021 -0.65663928
## P18 0.4914207 0.4984623 -1.380978775 -1.35881603
## P19 0.9392846 0.9310584 -0.006337431 -0.02634163
## P20 0.4910838 0.4888173 -1.382279003 -1.39602452
## P21 0.6523622 0.6466739 -0.795225731 -0.81467582
## P22 1.2626119 1.2715204 0.711454749 0.72945548
## P23 1.4692489 1.4850919 1.167037580 1.20638194
## P24 0.5835617 0.5839038 -1.015502528 -1.01556880
## P25 1.2258873 1.2633440 0.665578193 0.75270512
## P26 0.6679778 0.6818348 -0.748188077 -0.70529093
## P27 0.4188734 0.4197483 -1.716503262 -1.72206791
## P28 1.1198124 1.1258298 0.428308309 0.44378814
## P29 0.5034115 0.5011152 -1.313748227 -1.32034437
## P30 1.2958820 1.3186864 0.799831357 0.84933386
## P31 0.5390465 0.5363595 -1.202884059 -1.21709738
## P32 0.5827700 0.5915450 -1.072745957 -1.03928959
## P33 0.4365742 0.4280545 -1.619869230 -1.66325388
## P34 0.7440002 0.7541288 -0.519153602 -0.49104821
## P35 1.1544782 1.1576170 0.490372006 0.49768145
## P36 0.8609360 0.8672962 -0.227721756 -0.20967319
## P37 0.3094481 0.3070328 -2.307858730 -2.32116654
## P38 0.8101126 0.8073450 -0.349797436 -0.35935324
## P39 0.1657179 0.1651526 -3.044831298 -3.04770828
## P40 0.3953662 0.4014363 -1.863479518 -1.85126144
## P41 1.9774754 1.9629038 1.955360909 1.93130109
## P42 1.0050483 1.0095097 0.153513554 0.16378712
## P43 2.4339666 2.4233903 2.595278351 2.57850625
## P44 0.2322449 0.2371497 -2.571896816 -2.54427907
## P45 0.8730046 0.8898043 -0.182952871 -0.13783424
## P46 1.1846732 1.1782751 0.556260320 0.54206175
## P47 0.7420940 0.7490278 -0.543354830 -0.52548628
## P48 0.4318197 0.4274191 -1.590985715 -1.61290210
## P49 2.9008862 2.9369119 3.239893064 3.29395591
## P50 0.6329649 0.6342226 -0.891948122 -0.89216081
## P51 1.0287207 1.0026797 0.208601394 0.14775648
## P52 0.6637510 0.6669610 -0.764865390 -0.75690215
## P53 0.3480896 0.3511700 -2.040377970 -2.02023128
## P54 0.3405194 0.3392975 -2.024538220 -2.02605919
## P55 1.1625685 1.0982521 0.521674710 0.37307938
## P56 0.3772076 0.3723307 -1.842192523 -1.86969486
## P57 2.4928259 2.4433318 2.728282419 2.67145909
## P58 0.3372035 0.3402515 -2.166431193 -2.17271349
## P59 1.0743761 1.0790797 0.313548736 0.32460122
## P60 0.7199009 0.7101362 -0.673304534 -0.70839495
## P61 0.4125516 0.4079913 -1.662503350 -1.68481207
## P62 0.4384554 0.4358514 -1.679581190 -1.69094713
## P63 0.8263747 0.8248482 -0.291811977 -0.29642699
## P64 0.6653534 0.6598611 -0.754850796 -0.77339787
## P65 1.2009847 1.1875332 0.586461215 0.55817401
## P66 2.0393503 2.0243925 2.169993787 2.16609530
## P67 0.9229291 0.9141675 -0.068819569 -0.09599444
## P68 0.4432358 0.4422672 -1.537840245 -1.54092413
## P69 0.1456386 0.1475760 -3.451300343 -3.46757359
## P70 1.1954988 1.1917417 0.576766911 0.56848957
## P71 0.3087551 0.3086762 -2.158234173 -2.16334126
## P72 0.8490620 0.8581451 -0.253348631 -0.22757031
## P73 1.3858417 1.3745288 0.970968608 0.94736573
## P74 1.8460109 1.8412004 1.759634025 1.75555880
## P75 2.4732016 2.4628723 2.728179395 2.72587856
## P76 0.1745557 0.1777207 -2.964968066 -2.94434121
## P77 1.7013932 1.6958969 1.507547956 1.49883834
## P78 0.4366604 0.4428753 -1.639662198 -1.62223023
## P79 1.4819228 1.5047082 1.176552465 1.21847657
## P80 0.7924499 0.8138872 -0.393041406 -0.33543528
## P81 0.4047885 0.4087505 -1.719333661 -1.70691761
## P82 0.2352147 0.2335029 -2.712377287 -2.71938899
## P83 0.4769672 0.4839924 -1.437293309 -1.41482159
## P84 0.5121261 0.5063068 -1.449666094 -1.48060807
## P85 1.4542526 1.4482200 1.112107344 1.09880606
## P86 0.8693023 0.8617977 -0.223550621 -0.24673751
## P87 3.4018852 3.3694394 3.716019268 3.68853971
## P88 0.8616349 0.8507889 -0.199113784 -0.22783276
## P89 0.7038746 0.6955723 -0.657352111 -0.68552561
## P90 1.0682440 1.0699096 0.299336556 0.30331061
## P91 0.4561275 0.4593118 -1.504750709 -1.49624748
## P92 0.7887639 0.8119493 -0.423587731 -0.36060251
## P93 0.5487238 0.5536791 -1.138316004 -1.12302368
## P94 0.7122054 0.7215053 -0.614705707 -0.58694288
## P95 1.0042974 1.0072859 0.138101440 0.14549425
## P96 1.7669583 1.7724553 1.669884978 1.67604100
## P98 0.4047885 0.4087505 -1.719333661 -1.70691761
## P99 0.7579087 0.7521367 -0.485104946 -0.50307344
## P100 0.4939251 0.4832271 -1.460358850 -1.52244242
## P101 0.3951156 0.3942916 -1.800525350 -1.81202130
## P102 0.2593238 0.2592143 -2.472410993 -2.48127490
## P103 1.2667206 1.2812019 0.752335014 0.78815800
## P104 0.4185427 0.4233448 -1.637186197 -1.61984576
## P105 1.4556743 1.4714817 1.082860558 1.11292796
## P106 0.4357384 0.4343284 -1.562379510 -1.56869421
## P107 0.9533302 0.9102377 0.012674975 -0.10407891
## P108 0.3315537 0.3309127 -2.031774303 -2.03831409
## P109 1.1686492 1.2117948 0.533432858 0.63228765
## P110 0.5266141 0.5343181 -1.219089001 -1.19070302
## P111 0.8170387 0.8166551 -0.325360756 -0.32786446
## P112 1.3196602 1.3204384 0.824470156 0.82614905
## P113 1.2540379 1.2422416 0.695517542 0.67135902
## P114 0.4982467 0.5050183 -1.442893268 -1.43321290
## P115 1.2837691 1.2609186 0.760297911 0.71500043
## P116 0.6055527 0.6162396 -1.032151582 -1.00624831
## P117 0.8097160 0.8140898 -0.338821587 -0.32669667
## P118 1.3858031 1.3096467 1.005020872 0.85294723
## P119 1.4329995 1.4341083 1.050188028 1.05412444
## P120 0.4247757 0.4253111 -1.625151025 -1.62050825
## P121 0.8093631 0.8260620 -0.358194869 -0.31404879
## P122 2.0841274 2.1120544 2.099555434 2.14236824
## P123 0.5753338 0.5807793 -1.062251605 -1.04674942
## P124 0.4322153 0.4476939 -1.721688143 -1.67388224
## P125 1.5777229 1.5647177 1.355496151 1.33016166
## P126 1.2998755 1.3200065 0.818891507 0.86544429
## P127 1.3093293 1.3031362 0.833323569 0.82379721
## P128 2.6317352 2.6719444 3.023700512 3.10619469
## P129 0.4787953 0.4773767 -1.407507803 -1.41087513
## P130 0.4491035 0.4505809 -1.540437368 -1.53090492
## P131 0.4161403 0.4074894 -1.670388085 -1.71238903
## P132 0.5644981 0.5762007 -1.083456907 -1.04535467
## P133 0.5937027 0.5911464 -1.037766036 -1.05289434
## P134 0.6162995 0.6146976 -0.907436560 -0.91375507
## P135 0.8270644 0.8423571 -0.295555337 -0.25398654
## P136 0.7958670 0.8393933 -0.425189729 -0.30494744
## P137 0.3985316 0.4500191 -1.865256698 -1.65009652
## P139 0.4714177 0.4684817 -1.495330549 -1.51566468
## P140 1.2702794 1.2742186 0.729831724 0.73864301
## P141 1.3917241 1.4383474 1.017075363 1.11970947
## P142 0.2605948 0.2662445 -2.408666887 -2.38020189
## P143 0.2195901 0.2284397 -3.001123141 -2.95091363
## P144 0.3499806 0.3538241 -2.036543943 -2.02847211
## P145 0.9984113 1.0692634 0.171715408 0.31012741
## P146 0.8600185 0.8925791 -0.224764573 -0.13949464
## P147 0.2447640 0.2497757 -2.535192323 -2.51159986
## P148 1.6287074 1.5773534 1.458343583 1.37282467
## P149 0.4979852 0.4887523 -1.355766431 -1.39627677
## P150 0.7715171 0.7523613 -0.451771396 -0.50834560
## P151 0.1456386 0.1475760 -3.451300343 -3.46757359
## P152 0.4832853 0.4811863 -1.374746084 -1.38325477
## P153 0.5237857 0.5220178 -1.229327460 -1.23504306
## P154 1.2524187 1.2585284 0.704542261 0.71893981
## P155 1.5561674 1.5234363 1.260630453 1.20386265
## P156 0.8454152 0.8471843 -0.246543174 -0.24119715
## P157 0.3579751 0.3483375 -1.973437039 -2.02883462
## P158 0.8994981 0.8702890 -0.119302113 -0.19924057
## P159 0.6105633 0.6095036 -0.934771000 -0.94060365
## P160 0.4726545 0.4537087 -1.471744530 -1.55536929
## P161 1.7349981 1.7176738 1.580319574 1.55471372
## P162 3.3290035 3.3715902 3.755852790 3.79476767
## P163 0.8004144 0.8169385 -0.366388948 -0.32253453
## P164 1.0958499 1.0868719 0.364829542 0.34429479
## P165 0.4111091 0.4121787 -1.664133215 -1.66141583
## P166 0.9879469 1.0021542 0.109678707 0.14352544
## P167 0.5147590 0.4997364 -1.292333574 -1.35393704
## P168 0.5480078 0.5500684 -1.197152439 -1.18647655
## P169 1.2362008 1.2933008 0.688332337 0.81783339
## P170 0.3662549 0.3696256 -1.901406821 -1.88151478
## P171 0.9992921 0.9929290 0.140256409 0.12522522
## P172 0.4673802 0.4686849 -1.436084346 -1.43150663
## P173 0.5377619 0.5380347 -1.194513596 -1.19707711
## P174 0.5128243 0.4992801 -1.349178076 -1.41206668
## P175 0.7177602 0.7189833 -0.668915376 -0.66672751
## P176 4.4103746 4.3705313 4.659205798 4.63058496
## P177 0.7047669 0.7066869 -0.646459179 -0.64290632
## P178 0.6129356 0.6157122 -0.971702833 -0.96812129
## P179 1.3170071 1.3289965 0.843182760 0.87040488
## P180 1.1958387 1.2071772 0.574635080 0.59848286
## P181 0.2687137 0.2670147 -2.393951143 -2.41014541
## P182 0.4231978 0.4345742 -1.697624050 -1.65765678
## P183 2.6948798 2.7117347 3.016979774 3.05138418
## P184 0.6035413 0.6622033 -1.022123417 -0.82467316
## P185 0.7761558 0.7888465 -0.435436060 -0.39914892
## P186 0.5162667 0.5177047 -1.319219902 -1.32125077
## P187 1.8605529 1.8641849 1.866584864 1.87261764
## P188 0.5633041 0.5626505 -1.087573621 -1.09183668
## P189 2.4366625 2.3388804 2.845701328 2.71575864
## P190 0.7484399 0.7610158 -0.509409128 -0.47330921
## P191 0.7872073 0.7871042 -0.397927392 -0.39885002
## Person separation reliability
person.separation.reliability <- SepRel(person.locations.estimate)
person.separation.reliability
## Separation Reliability: 0.8234
## Item separation reliability:
# Get Item scores
ItemScores <- colSums(Medi_data)
# Get Item SD
ItemSD <- apply(Medi_data,2,sd)
# Calculate the se of the Item
ItemSE <- ItemSD/sqrt(length(ItemSD))
# compute the Observed Variance (also known as Total Person Variability or Squared Standard Deviation)
SSD.ItemScores <- var(ItemScores)
# compute the Mean Square Measurement error (also known as Model Error variance)
Item.MSE <- sum((ItemSE)^2) / length(ItemSE)
# compute the Item Separation Reliability
item.separation.reliability <- (SSD.ItemScores-Item.MSE) / SSD.ItemScores
item.separation.reliability
## [1] 0.9999787
RSM_summary.table.statistics <- c("Logit Scale Location Mean",
"Logit Scale Location SD",
"Standard Error Mean",
"Standard Error SD",
"Outfit MSE Mean",
"Outfit MSE SD",
"Infit MSE Mean",
"Infit MSE SD",
"Std. Outfit Mean",
"Std. Outfit SD",
"Std. Infit Mean",
"Std. Infit SD",
"Separation.reliability")
delta.se <- Medi_RSM$se.eta
RSM_item.summary.results <- rbind(mean(centered.item.locations),
sd(centered.item.locations),
mean(delta.se),
sd(delta.se),
mean(item.fit.results$i.outfitMSQ),
sd(item.fit.results$i.outfitMSQ),
mean(item.fit.results$i.infitMSQ),
sd(item.fit.results$i.infitMSQ),
mean(item.fit.results$i.outfitZ),
sd(item.fit.results$i.outfitZ),
mean(item.fit.results$i.infitZ),
sd(item.fit.results$i.infitZ),
item.separation.reliability)
RSM_person.summary.results <- rbind(mean(person.locations$theta),
sd(person.locations$theta),
mean(person.locations$SE),
sd(person.locations$SE),
mean(person.fit$outfit_MSE),
sd(person.fit$outfit_MSE),
mean(person.fit$infit_MSE),
sd(person.fit$infit_MSE),
mean(person.fit$std_outfit),
sd(person.fit$std_outfit),
mean(person.fit$std_infit),
sd(person.fit$std_infit),
as.numeric(person.separation.reliability))
# Round the values for presentation in a table:
RSM_item.summary.results_rounded <- round(RSM_item.summary.results, digits = 2)
RSM_person.summary.results_rounded <- round(RSM_person.summary.results, digits = 2)
RSM_Table1 <- cbind.data.frame(RSM_summary.table.statistics,
RSM_item.summary.results_rounded,
RSM_person.summary.results_rounded)
# Add descriptive column labels:
names(RSM_Table1) <- c("Statistic", "Items", "Persons")
# Print the table to the console:
RSM_Table1
## Statistic Items Persons NA NA
## X Logit Scale Location Mean 0.00 2.91 2.91 2.91
## X.1 Logit Scale Location SD 0.57 0.98 0.98 0.98
## X.2 Standard Error Mean 0.16 0.41 0.41 0.41
## X.3 Standard Error SD 0.14 0.02 0.02 0.02
## X.4 Outfit MSE Mean 0.91 0.91 0.91 0.91
## X.5 Outfit MSE SD 0.15 0.65 0.65 0.65
## X.6 Infit MSE Mean 0.91 0.91 0.91 0.91
## X.7 Infit MSE SD 0.15 0.65 0.65 0.65
## X.8 Std. Outfit Mean -0.93 -0.39 -0.39 -0.39
## X.9 Std. Outfit SD 1.57 1.45 1.45 1.45
## X.10 Std. Infit Mean -0.95 -0.39 -0.39 -0.39
## X.11 Std. Infit SD 1.59 1.45 1.45 1.45
## item.separation.reliability Separation.reliability 1.00 0.82 0.97 0.17
Table 1 is an overall model summary table that provides an overview of the logit scale locations, standard errors, fit statistics, and reliability statistics for items and persons. This type of table is useful for reporting the results from Rasch model analyses because it provides a quick overview of the location estimates and numeric model-data fit statistics for the items and persons in the analysis.
# Calculate the average rating for each item:
Avg_Rating <- apply(Medi_data, 2, mean)
delta.se <- delta.se[1:11]
# Combine item calibration results in a table:
RSM_Table2 <- cbind.data.frame(c(1:ncol(Medi_data)),
Avg_Rating,
centered.item.locations,
delta.se,
item.fit$outfit_MSE,
item.fit$std_outfit,
item.fit$infit_MSE,
item.fit$std_infit)
# Add meaningful column names:
names(RSM_Table2) <- c("Task ID", "Average Rating", "Item Location","Item SE","Outfit MSE","Std. Outfit", "Infit MSE","Std. Infit")
# Sort Table 2 by Item difficulty:
RSM_Table2 <- RSM_Table2[order(-RSM_Table2$`Item Location`),]
# Round the numeric values (all columns except the first one) to 2 digits:
RSM_Table2[, -1] <- round(RSM_Table2[,-1], digits = 2)
# Print the table to the console:
RSM_Table2
## Task ID Average Rating Item Location Item SE Outfit MSE Std. Outfit
## Decenter_3 3 1.84 0.89 0.10 0.91 -0.89
## Decenter_7 7 2.01 0.59 0.09 0.95 -0.44
## Decenter_8 8 2.07 0.47 0.09 0.89 -1.10
## Decenter_5 5 2.08 0.46 0.10 0.95 -0.52
## Decenter_2 2 2.16 0.31 0.10 0.67 -3.66
## Decenter_10 10 2.39 -0.11 0.10 0.76 -2.56
## Decenter_9 9 2.43 -0.20 0.09 1.16 1.59
## Decenter_1 1 2.55 -0.42 0.09 0.74 -2.83
## Decenter_6 6 2.62 -0.56 0.09 1.02 0.19
## Decenter_4 4 2.68 -0.68 0.09 0.91 -0.88
## Decenter_11 11 2.72 -0.75 0.19 1.08 0.80
## Infit MSE Std. Infit
## Decenter_3 0.91 -0.87
## Decenter_7 0.95 -0.48
## Decenter_8 0.89 -1.10
## Decenter_5 0.95 -0.46
## Decenter_2 0.67 -3.65
## Decenter_10 0.76 -2.56
## Decenter_9 1.16 1.59
## Decenter_1 0.73 -2.99
## Decenter_6 1.01 0.13
## Decenter_4 0.91 -0.91
## Decenter_11 1.08 0.85
Table 2 is a table that summarizes the overall calibrations of individual items. For data sets with manageable sample sizes such as the Liking for Science data example in this chapter, we recommend reporting details about each item in a table similar to this one.
# Calculate the average rating for persons who did not have extreme scores
Person_Avg_Rating <- apply(person.locations.estimate$X.ex,1, mean)
# Combine person calibration results in a table:
RSM_Table3 <- cbind.data.frame(rownames(person.locations),
Person_Avg_Rating,
person.locations$theta,
person.locations$SE,
person.fit$outfit_MSE,
person.fit$std_outfit,
person.fit$infit_MSE,
person.fit$std_infit)
# Add meaningful column names:
names(RSM_Table3) <- c("ID", "Average Rating", "Person Location","Person SE","Outfit MSE","Std. Outfit", "Infit MSE","Std. Infit")
# Round the numeric values (all columns except the first one) to 2 digits:
RSM_Table3[, -1] <- round(RSM_Table3[,-1], digits = 2)
# Print the first six rows of the table to the console:
head(RSM_Table3)
## ID Average Rating Person Location Person SE Outfit MSE Std. Outfit Infit MSE
## P1 P1 2.73 3.67 0.42 0.93 -0.05 0.91
## P2 P2 2.09 2.50 0.40 1.29 0.76 1.26
## P3 P3 2.27 2.82 0.41 1.76 1.60 1.78
## P4 P4 2.55 3.33 0.41 0.48 -1.42 0.49
## P5 P5 1.36 1.23 0.40 0.59 -1.11 0.59
## P6 P6 2.18 2.66 0.40 0.89 -0.12 0.90
## Std. Infit
## P1 -0.10
## P2 0.71
## P3 1.64
## P4 -1.40
## P5 -1.11
## P6 -0.09