Counselor Burnout Inventory - Rasch Based Analysis

Preload the R package for analysis

library(haven) # For loading the SPSS data
library(psych) # For descriptive analysis
library(eRm) # For Rasch Analysis
library(TAM) # For Rasch Analysis
library(WrightMap) # For plotting Wright Map
library(tidyr) # Transform the data format
library(dplyr) # For data manipulation

Load the data set

# Import the data from SPSS
Rehabilitation <- read_sav("~/Desktop/Dr. Junfei Lu Work/Rehabilitation counseling burnout_clean data (1).sav")
# Subset the dataset that we need
Rehab_data <- Rehabilitation[,3:22]
# Change the column name
colnames(Rehab_data) <- c("Item_1","Item_2","Item_3","Item_4","Item_5","Item_6","Item_7","Item_8","Item_9","Item_10","Item_11","Item_12","Item_13","Item_14","Item_15","Item_16","Item_17","Item_18","Item_19","Item_20")
# Rescale the data to zero 
Rehab_data <- Rehab_data-1

Descriptive Analysis

# Descriptive Analysis
data_review <- describe(Rehab_data)
data_review
##         vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## Item_1     1 147 2.41 0.96      2    2.43 1.48   0   4     4 -0.08    -0.28
## Item_2     2 147 0.95 0.97      1    0.84 1.48   0   4     4  0.87     0.35
## Item_3     3 147 1.22 1.13      1    1.10 1.48   0   4     4  0.60    -0.43
## Item_4     4 147 0.43 0.87      0    0.22 0.00   0   4     4  2.50     6.44
## Item_5     5 147 0.98 1.14      1    0.83 1.48   0   4     4  0.83    -0.51
## Item_6     6 147 2.21 1.08      2    2.21 1.48   0   4     4  0.03    -0.57
## Item_7     7 147 1.70 1.14      2    1.65 1.48   0   4     4  0.30    -0.62
## Item_8     8 147 1.05 1.21      1    0.88 1.48   0   4     4  0.88    -0.31
## Item_9     9 147 0.41 0.68      0    0.28 0.00   0   3     3  1.60     2.05
## Item_10   10 147 1.65 1.26      2    1.56 1.48   0   4     4  0.27    -0.87
## Item_11   11 147 2.35 1.02      2    2.37 1.48   0   4     4 -0.12    -0.37
## Item_12   12 147 1.21 1.01      1    1.11 1.48   0   4     4  0.61    -0.07
## Item_13   13 147 2.41 1.19      2    2.48 1.48   0   4     4 -0.26    -0.82
## Item_14   14 147 0.50 0.82      0    0.32 0.00   0   4     4  2.03     4.47
## Item_15   15 147 1.30 1.21      1    1.18 1.48   0   4     4  0.63    -0.59
## Item_16   16 147 2.23 1.29      2    2.29 1.48   0   4     4 -0.24    -0.98
## Item_17   17 147 1.44 1.02      1    1.39 1.48   0   4     4  0.25    -0.48
## Item_18   18 147 2.20 1.23      2    2.24 1.48   0   4     4 -0.15    -0.86
## Item_19   19 147 0.22 0.51      0    0.11 0.00   0   2     2  2.19     3.93
## Item_20   20 147 1.10 1.13      1    0.95 1.48   0   4     4  0.91     0.09
##           se
## Item_1  0.08
## Item_2  0.08
## Item_3  0.09
## Item_4  0.07
## Item_5  0.09
## Item_6  0.09
## Item_7  0.09
## Item_8  0.10
## Item_9  0.06
## Item_10 0.10
## Item_11 0.08
## Item_12 0.08
## Item_13 0.10
## Item_14 0.07
## Item_15 0.10
## Item_16 0.11
## Item_17 0.08
## Item_18 0.10
## Item_19 0.04
## Item_20 0.09

Rasch Analysis

Rating Scale Rasch Analysis

# Prepare the design matrix  
design.matrix <- designMatrices(resp=Rehab_data,modeltype = "RSM",constraint="items")$A
# Run the Rating Scale Model
RSM.Rehab <- tam.mml(Rehab_data, irtmodel="RSM", A = design.matrix, constraint = "items", verbose = FALSE) 
# Overall summary of the model
summary(RSM.Rehab)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.1.0 (2021-05-18) x86_64, darwin17.0 | nodename=Chengs-iMac | login=root 
## 
## Date of Analysis: 2021-10-02 16:08:27 
## Time difference of 0.918438 secs
## Computation time: 0.918438 
## 
## Multidimensional Item Response Model in TAM 
## 
## IRT Model: PCM2
## Call:
## tam.mml(resp = Rehab_data, irtmodel = "RSM", constraint = "items", 
##     A = design.matrix, verbose = FALSE)
## 
## ------------------------------------------------------------
## Number of iterations = 1000 
## Numeric integration with 21 integration points
## 
## Deviance = 6866.13 
## Log likelihood = -3433.06 
## Number of persons = 147 
## Number of persons used = 147 
## Number of items = 20 
## Number of estimated parameters = 24 
##     Item threshold parameters = 22 
##     Item slope parameters = 0 
##     Regression parameters = 1 
##     Variance/covariance parameters = 1 
## 
## AIC = 6914  | penalty=48    | AIC=-2*LL + 2*p 
## AIC3 = 6938  | penalty=72    | AIC3=-2*LL + 3*p 
## BIC = 6986  | penalty=119.77    | BIC=-2*LL + log(n)*p 
## aBIC = 6909  | penalty=43.17    | aBIC=-2*LL + log((n-2)/24)*p  (adjusted BIC) 
## CAIC = 7010  | penalty=143.77    | CAIC=-2*LL + [log(n)+1]*p  (consistent AIC) 
## AICc = 6924  | penalty=57.84    | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1)  (bias corrected AIC) 
## GHP = 1.17587     | GHP=( -LL + p ) / (#Persons * #Items)  (Gilula-Haberman log penalty) 
## 
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.912
## ------------------------------------------------------------
## Covariances and Variances
##       [,1]
## [1,] 0.823
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
##       [,1]
## [1,] 0.907
## ------------------------------------------------------------
## Regression Coefficients
##          [,1]
## [1,] -0.84634
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##       item   N     M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
## 1   Item_1 147 2.415   -1.334     -2.482     -4.541     -5.142     -5.334
## 2   Item_2 147 0.946    0.495     -0.654     -0.885      0.342      1.978
## 3   Item_3 147 1.218    0.109     -1.039     -1.656     -0.814      0.436
## 4   Item_4 147 0.429    1.500      0.352      1.126      3.359      6.001
## 5   Item_5 147 0.980    0.443     -0.705     -0.988      0.189      1.773
## 6   Item_6 147 2.211   -1.091     -2.239     -4.055     -4.413     -4.362
## 7   Item_7 147 1.701   -0.492     -1.641     -2.859     -2.619     -1.970
## 8   Item_8 147 1.048    0.344     -0.804     -1.187     -0.110      1.375
## 9   Item_9 147 0.415    1.142      0.374      1.171      3.427         NA
## 10 Item_10 147 1.646   -0.428     -1.576     -2.729     -2.424     -1.710
## 11 Item_11 147 2.354   -1.260     -2.408     -4.394     -4.921     -5.040
## 12 Item_12 147 1.211    0.118     -1.030     -1.638     -0.787      0.473
## 13 Item_13 147 2.415   -1.334     -2.482     -4.541     -5.142     -5.334
## 14 Item_14 147 0.497    1.328      0.180      0.782      2.843      5.313
## 15 Item_15 147 1.299    0.002     -1.146     -1.870     -1.135      0.008
## 16 Item_16 147 2.231   -1.115     -2.263     -4.103     -4.485     -4.458
## 17 Item_17 147 1.435   -0.171     -1.319     -2.215     -1.653     -0.682
## 18 Item_18 147 2.197   -1.075     -2.223     -4.023     -4.365     -4.298
## 19 Item_19 147 0.224    1.230      1.019      2.461         NA         NA
## 20 Item_20 147 1.102    0.268     -0.881     -1.339     -0.338      1.071
##    B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
## 1            1           2           3           4
## 2            1           2           3           4
## 3            1           2           3           4
## 4            1           2           3           4
## 5            1           2           3           4
## 6            1           2           3           4
## 7            1           2           3           4
## 8            1           2           3           4
## 9            1           2           3           0
## 10           1           2           3           4
## 11           1           2           3           4
## 12           1           2           3           4
## 13           1           2           3           4
## 14           1           2           3           4
## 15           1           2           3           4
## 16           1           2           3           4
## 17           1           2           3           4
## 18           1           2           3           4
## 19           1           2           0           0
## 20           1           2           3           4
## 
## Item Parameters Xsi
##            xsi se.xsi
## Item_1  -1.334  0.066
## Item_2   0.495  0.070
## Item_3   0.109  0.068
## Item_4   1.500  0.079
## Item_5   0.443  0.070
## Item_6  -1.091  0.066
## Item_7  -0.492  0.066
## Item_8   0.344  0.069
## Item_9   1.523  0.080
## Item_10 -0.428  0.066
## Item_11 -1.260  0.066
## Item_12  0.118  0.068
## Item_13 -1.334  0.066
## Item_14  1.328  0.077
## Item_15  0.002  0.068
## Item_16 -1.115  0.066
## Item_17 -0.171  0.067
## Item_18 -1.075  0.066
## Item_19  2.167  0.086
## Cat1    -1.148  0.043
## Cat2    -0.726  0.045
## Cat3     0.733  0.061
## 
## Item Parameters in IRT parameterization
##       item alpha   beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1   Item_1     1 -1.334   -1.148   -0.726    0.733    1.141
## 2   Item_2     1  0.495   -1.148   -0.726    0.733    1.141
## 3   Item_3     1  0.109   -1.148   -0.726    0.733    1.141
## 4   Item_4     1  1.500   -1.148   -0.726    0.733    1.141
## 5   Item_5     1  0.443   -1.148   -0.726    0.733    1.141
## 6   Item_6     1 -1.091   -1.148   -0.726    0.733    1.141
## 7   Item_7     1 -0.492   -1.148   -0.726    0.733    1.141
## 8   Item_8     1  0.344   -1.148   -0.726    0.733    1.141
## 9   Item_9     1  1.142   -0.768   -0.346    1.113       NA
## 10 Item_10     1 -0.428   -1.148   -0.726    0.733    1.141
## 11 Item_11     1 -1.260   -1.148   -0.726    0.733    1.141
## 12 Item_12     1  0.118   -1.148   -0.726    0.733    1.141
## 13 Item_13     1 -1.334   -1.148   -0.726    0.733    1.141
## 14 Item_14     1  1.328   -1.148   -0.726    0.733    1.141
## 15 Item_15     1  0.002   -1.148   -0.726    0.733    1.141
## 16 Item_16     1 -1.115   -1.148   -0.726    0.733    1.141
## 17 Item_17     1 -0.171   -1.148   -0.726    0.733    1.141
## 18 Item_18     1 -1.075   -1.148   -0.726    0.733    1.141
## 19 Item_19     1  1.230   -0.211    0.211       NA       NA
## 20 Item_20     1  0.268   -1.148   -0.726    0.733    1.141

Item and person parameters

# Obtain the item parameters
items_MMLE <- RSM.Rehab$xsi[1:(ncol(data_review)),]
# View the item parameters
RSM.Rehab$item_irt
##       item alpha         beta   tau.Cat1   tau.Cat2  tau.Cat3 tau.Cat4
## 1   Item_1     1 -1.333542523 -1.1483245 -0.7259343 0.7329561 1.141303
## 2   Item_2     1  0.494589403 -1.1483245 -0.7259343 0.7329561 1.141303
## 3   Item_3     1  0.109095374 -1.1483245 -0.7259343 0.7329561 1.141303
## 4   Item_4     1  1.500212916 -1.1483245 -0.7259343 0.7329561 1.141303
## 5   Item_5     1  0.443359234 -1.1483245 -0.7259343 0.7329561 1.141303
## 6   Item_6     1 -1.090541965 -1.1483245 -0.7259343 0.7329561 1.141303
## 7   Item_7     1 -0.492455174 -1.1483245 -0.7259343 0.7329561 1.141303
## 8   Item_8     1  0.343845689 -1.1483245 -0.7259343 0.7329561 1.141303
## 9   Item_9     1  1.142257105 -0.7678903 -0.3455001 1.1133903       NA
## 10 Item_10     1 -0.427594129 -1.1483245 -0.7259343 0.7329561 1.141303
## 11 Item_11     1 -1.259946243 -1.1483245 -0.7259343 0.7329561 1.141303
## 12 Item_12     1  0.118167682 -1.1483245 -0.7259343 0.7329561 1.141303
## 13 Item_13     1 -1.333542523 -1.1483245 -0.7259343 0.7329561 1.141303
## 14 Item_14     1  1.328210981 -1.1483245 -0.7259343 0.7329561 1.141303
## 15 Item_15     1  0.001944817 -1.1483245 -0.7259343 0.7329561 1.141303
## 16 Item_16     1 -1.114584787 -1.1483245 -0.7259343 0.7329561 1.141303
## 17 Item_17     1 -0.170611219 -1.1483245 -0.7259343 0.7329561 1.141303
## 18 Item_18     1 -1.074554674 -1.1483245 -0.7259343 0.7329561 1.141303
## 19 Item_19     1  1.230325035 -0.2111951  0.2111951        NA       NA
## 20 Item_20     1  0.267801410 -1.1483245 -0.7259343 0.7329561 1.141303
# Check the beta value for item difficulty
# Obtain the detailed item fit statistics
MMLE_fit <- tam.fit(RSM.Rehab)
## Item fit calculation based on 100 simulations
## |**********|
## |----------|
item.fit_MMLE <- MMLE_fit$itemfit
summary(item.fit_MMLE)
##   parameter             Outfit          Outfit_t          Outfit_p        
##  Length:22          Min.   :0.6473   Min.   :-4.9415   Min.   :0.0000000  
##  Class :character   1st Qu.:0.8702   1st Qu.:-1.5542   1st Qu.:0.0000008  
##  Mode  :character   Median :1.0331   Median : 0.4013   Median :0.0271821  
##                     Mean   :1.1900   Mean   : 5.7541   Mean   :0.1200929  
##                     3rd Qu.:1.2679   3rd Qu.: 3.0145   3rd Qu.:0.1908104  
##                     Max.   :3.4499   Max.   :75.3702   Max.   :0.7242531  
##   Outfit_pholm           Infit           Infit_t           Infit_p         
##  Min.   :0.0000000   Min.   :0.6973   Min.   :-4.2555   Min.   :0.0000000  
##  1st Qu.:0.0000138   1st Qu.:0.8947   1st Qu.:-1.3668   1st Qu.:0.0000241  
##  Median :0.3116597   Median :1.0333   Median : 0.4373   Median :0.0229333  
##  Mean   :0.4581847   Mean   :1.2255   Mean   : 6.4715   Mean   :0.1874272  
##  3rd Qu.:1.0000000   3rd Qu.:1.2805   3rd Qu.: 3.2530   3rd Qu.:0.2346261  
##  Max.   :1.0000000   Max.   :3.4930   Max.   :76.2945   Max.   :0.8700591  
##   Infit_pholm       
##  Min.   :0.0000000  
##  1st Qu.:0.0004034  
##  Median :0.2592348  
##  Mean   :0.4592205  
##  3rd Qu.:1.0000000  
##  Max.   :1.0000000
# The Outfit and Infit statistics are the MSE versions and the Outfit_t and Infit_t statistics are the standardized versions of the statistics.
# Use the tam.wle function to calculate person location parameters:
person.locations.estimate_MMLE <- tam.wle(RSM.Rehab)
## Iteration in WLE/MLE estimation  1   | Maximal change  0.3142 
## Iteration in WLE/MLE estimation  2   | Maximal change  0.0313 
## Iteration in WLE/MLE estimation  3   | Maximal change  4e-04 
## Iteration in WLE/MLE estimation  4   | Maximal change  0 
## ----
##  WLE Reliability= 0.912
# Store person parameters and their standard errors in a dataframe object:
person.locations_MMLE <- cbind.data.frame(person.locations.estimate_MMLE$theta,
                                     person.locations.estimate_MMLE$error)
names(person.locations_MMLE) <- c("theta", "SE")
# View summary statistics for person parameters:
summary(person.locations_MMLE)
##      theta               SE        
##  Min.   :-3.6949   Min.   :0.2469  
##  1st Qu.:-1.4260   1st Qu.:0.2506  
##  Median :-0.8270   Median :0.2581  
##  Mean   :-0.8485   Mean   :0.2788  
##  3rd Qu.:-0.2669   3rd Qu.:0.2824  
##  Max.   : 1.9639   Max.   :0.6297
# Obtain the person fits
person.fit.results_MMLE <- tam.personfit(RSM.Rehab)
summary(person.fit.results_MMLE)
##   outfitPerson    outfitPerson_t     infitPerson     infitPerson_t    
##  Min.   :0.2571   Min.   :-3.1030   Min.   :0.2655   Min.   :-3.1523  
##  1st Qu.:0.5908   1st Qu.:-1.1459   1st Qu.:0.5866   1st Qu.:-1.3227  
##  Median :0.8038   Median :-0.3713   Median :0.8170   Median :-0.4893  
##  Mean   :0.9697   Mean   :-0.1929   Mean   :0.9434   Mean   :-0.3211  
##  3rd Qu.:1.1988   3rd Qu.: 0.6613   3rd Qu.:1.2254   3rd Qu.: 0.8105  
##  Max.   :3.4506   Max.   : 3.6696   Max.   :2.8691   Max.   : 3.7776

We will use popular Rasch fit statistics for practical purposes that are based on sums of squared residuals: Unweighted (outfit) and Weighted (infit) mean square error (MSE) statistics. Unstandardized (χ^2 ) & standardized versions (Z or t) are available in most Rasch software programs. In this analysis, we will focus on the Unstandardized (χ^2) versions of these statistics.

Outfit Mean Square Error (MSE), statistics are “unweighted fit” statistics. For items, outfit MSE is the sum of squared residuals for an item divided by the number of persons who responded to the item. For persons, outfit MSE is sum of squared residuals for a person divided by the number of items encountered by the person.

Because it is an unweighted mean, the outfit statistic is sensitive to extreme departures from model expectations. For example, an extreme departure from model expectations would occur when an otherwise high-achieving student provided an incorrect response to a very easy item, or when an otherwise low-achieving student provided a correct response to a very difficult item.

Infit Mean Square Error

Infit stands for “information-weighted fit”, where “information” means variance, such as larger variance for well-targeted observations, or smaller variance for extreme observations. For items, infit MSE statistics are calculated as the sum of squared standardized item residuals, weighted by variance, divided by the number of persons who responded to the item. For persons, infit MSE is the sum of squared standardized person residuals, weighted by variance, divided by the number of items the person encountered.

Infit MSE is sensitive to less-extreme unexpected responses compared to outfit MSE Examples of less-extreme unexpected responses include a student providing an incorrect response to an item that is just below their achievement level, or a student providing a correct response to an item that is just above their achievement level.

Expected Values for MSE Fit Statistics

There is considerable disagreement among measurement scholars about how to classify an infit or outfit MSE statistic as evidence of “misfit” or “fit.” Nonetheless, readers may find it useful to be aware of commonly agreed-upon principles for interpreting these statistics:

  • The expected value is 1.00 when data fit the model

  • Less than 1.00: Responses are more predictable than the model expects; responses resemble a Guttman-like (deterministic) pattern (“muted”)

  • Greater than 1.00: Responses are more haphazard (“noisy”) than the model expects; there is too much variation to interpret that the estimate as a good representation of the response pattern

Some variation is expected, but noisy responses are usually considered more cause for concern than muted responses.

Plots from the Rasch Analysis

Rating scale category probability plots

items.to.plot <- c(1:5)
plot(RSM.Rehab, type="items", items = items.to.plot)
## Iteration in WLE/MLE estimation  1   | Maximal change  0.3142 
## Iteration in WLE/MLE estimation  2   | Maximal change  0.0313 
## Iteration in WLE/MLE estimation  3   | Maximal change  4e-04 
## Iteration in WLE/MLE estimation  4   | Maximal change  0 
## ----
##  WLE Reliability= 0.912

## ....................................................
##  Plots exported in png format into folder:
##  /Users/chenghua/Desktop/Plots
# The x-axis is the logit scale that represents the latent variable, the y-axis is the probability for a rating in each category, and individual lines show the conditional probability for a rating in each category.

Wright Map

# Plot the Wright Map
IRT.WrightMap(RSM.Rehab) 

Many-facet Rasch Model [In Facet]

# Add variable "ID" to the previous data
ID <- 1:147
Rehab_data$ID <- ID
# Transform to the long format
Rehab_data_long <- gather(Rehab_data,item_No,rating,Item_1:Item_20,factor_key=TRUE)
Rehab_data_long
##       ID item_No rating
## 1      1  Item_1      2
## 2      2  Item_1      2
## 3      3  Item_1      3
## 4      4  Item_1      4
## 5      5  Item_1      2
## 6      6  Item_1      4
## 7      7  Item_1      2
## 8      8  Item_1      2
## 9      9  Item_1      2
## 10    10  Item_1      4
## 11    11  Item_1      2
## 12    12  Item_1      4
## 13    13  Item_1      2
## 14    14  Item_1      2
## 15    15  Item_1      3
## 16    16  Item_1      2
## 17    17  Item_1      2
## 18    18  Item_1      3
## 19    19  Item_1      1
## 20    20  Item_1      3
## 21    21  Item_1      4
## 22    22  Item_1      4
## 23    23  Item_1      1
## 24    24  Item_1      2
## 25    25  Item_1      1
## 26    26  Item_1      2
## 27    27  Item_1      3
## 28    28  Item_1      3
## 29    29  Item_1      4
## 30    30  Item_1      2
## 31    31  Item_1      2
## 32    32  Item_1      3
## 33    33  Item_1      3
## 34    34  Item_1      3
## 35    35  Item_1      2
## 36    36  Item_1      2
## 37    37  Item_1      2
## 38    38  Item_1      2
## 39    39  Item_1      4
## 40    40  Item_1      3
## 41    41  Item_1      2
## 42    42  Item_1      3
## 43    43  Item_1      2
## 44    44  Item_1      2
## 45    45  Item_1      1
## 46    46  Item_1      4
## 47    47  Item_1      0
## 48    48  Item_1      3
## 49    49  Item_1      4
## 50    50  Item_1      4
## 51    51  Item_1      3
## 52    52  Item_1      2
## 53    53  Item_1      3
## 54    54  Item_1      3
## 55    55  Item_1      3
## 56    56  Item_1      0
## 57    57  Item_1      3
## 58    58  Item_1      2
## 59    59  Item_1      2
## 60    60  Item_1      3
## 61    61  Item_1      3
## 62    62  Item_1      1
## 63    63  Item_1      1
## 64    64  Item_1      1
## 65    65  Item_1      4
## 66    66  Item_1      3
## 67    67  Item_1      3
## 68    68  Item_1      2
## 69    69  Item_1      3
## 70    70  Item_1      3
## 71    71  Item_1      2
## 72    72  Item_1      3
## 73    73  Item_1      2
## 74    74  Item_1      2
## 75    75  Item_1      2
## 76    76  Item_1      4
## 77    77  Item_1      2
## 78    78  Item_1      2
## 79    79  Item_1      2
## 80    80  Item_1      3
## 81    81  Item_1      2
## 82    82  Item_1      2
## 83    83  Item_1      3
## 84    84  Item_1      2
## 85    85  Item_1      3
## 86    86  Item_1      4
## 87    87  Item_1      4
## 88    88  Item_1      3
## 89    89  Item_1      2
## 90    90  Item_1      4
## 91    91  Item_1      2
## 92    92  Item_1      1
## 93    93  Item_1      3
## 94    94  Item_1      2
## 95    95  Item_1      3
## 96    96  Item_1      4
## 97    97  Item_1      4
## 98    98  Item_1      4
## 99    99  Item_1      2
## 100  100  Item_1      2
## 101  101  Item_1      2
## 102  102  Item_1      3
## 103  103  Item_1      1
## 104  104  Item_1      2
## 105  105  Item_1      4
## 106  106  Item_1      2
## 107  107  Item_1      1
## 108  108  Item_1      2
## 109  109  Item_1      1
## 110  110  Item_1      3
## 111  111  Item_1      3
## 112  112  Item_1      3
## 113  113  Item_1      2
## 114  114  Item_1      0
## 115  115  Item_1      1
## 116  116  Item_1      2
## 117  117  Item_1      2
## 118  118  Item_1      2
## 119  119  Item_1      2
## 120  120  Item_1      2
## 121  121  Item_1      3
## 122  122  Item_1      3
## 123  123  Item_1      2
## 124  124  Item_1      1
## 125  125  Item_1      2
## 126  126  Item_1      4
## 127  127  Item_1      1
## 128  128  Item_1      2
## 129  129  Item_1      3
## 130  130  Item_1      2
## 131  131  Item_1      2
## 132  132  Item_1      2
## 133  133  Item_1      1
## 134  134  Item_1      2
## 135  135  Item_1      3
## 136  136  Item_1      2
## 137  137  Item_1      2
## 138  138  Item_1      3
## 139  139  Item_1      4
## 140  140  Item_1      0
## 141  141  Item_1      1
## 142  142  Item_1      2
## 143  143  Item_1      3
## 144  144  Item_1      2
## 145  145  Item_1      3
## 146  146  Item_1      2
## 147  147  Item_1      2
## 148    1  Item_2      1
## 149    2  Item_2      2
## 150    3  Item_2      1
## 151    4  Item_2      3
## 152    5  Item_2      2
## 153    6  Item_2      3
## 154    7  Item_2      0
## 155    8  Item_2      0
## 156    9  Item_2      1
## 157   10  Item_2      0
## 158   11  Item_2      0
## 159   12  Item_2      0
## 160   13  Item_2      2
## 161   14  Item_2      2
## 162   15  Item_2      0
## 163   16  Item_2      1
## 164   17  Item_2      0
## 165   18  Item_2      0
## 166   19  Item_2      0
## 167   20  Item_2      1
## 168   21  Item_2      2
## 169   22  Item_2      0
## 170   23  Item_2      2
## 171   24  Item_2      2
## 172   25  Item_2      0
## 173   26  Item_2      1
## 174   27  Item_2      2
## 175   28  Item_2      1
## 176   29  Item_2      2
## 177   30  Item_2      0
## 178   31  Item_2      1
## 179   32  Item_2      1
## 180   33  Item_2      3
## 181   34  Item_2      3
## 182   35  Item_2      3
## 183   36  Item_2      0
## 184   37  Item_2      1
## 185   38  Item_2      0
## 186   39  Item_2      1
## 187   40  Item_2      2
## 188   41  Item_2      0
## 189   42  Item_2      0
## 190   43  Item_2      0
## 191   44  Item_2      2
## 192   45  Item_2      1
## 193   46  Item_2      2
## 194   47  Item_2      0
## 195   48  Item_2      2
## 196   49  Item_2      2
## 197   50  Item_2      4
## 198   51  Item_2      2
## 199   52  Item_2      0
## 200   53  Item_2      2
## 201   54  Item_2      2
## 202   55  Item_2      0
## 203   56  Item_2      0
## 204   57  Item_2      1
## 205   58  Item_2      2
## 206   59  Item_2      1
## 207   60  Item_2      4
## 208   61  Item_2      2
## 209   62  Item_2      0
## 210   63  Item_2      0
## 211   64  Item_2      0
## 212   65  Item_2      0
## 213   66  Item_2      0
## 214   67  Item_2      1
## 215   68  Item_2      2
## 216   69  Item_2      0
## 217   70  Item_2      2
## 218   71  Item_2      2
## 219   72  Item_2      2
## 220   73  Item_2      1
## 221   74  Item_2      1
## 222   75  Item_2      0
## 223   76  Item_2      4
## 224   77  Item_2      2
## 225   78  Item_2      1
## 226   79  Item_2      1
## 227   80  Item_2      2
## 228   81  Item_2      1
## 229   82  Item_2      1
## 230   83  Item_2      1
## 231   84  Item_2      1
## 232   85  Item_2      2
## 233   86  Item_2      0
## 234   87  Item_2      0
## 235   88  Item_2      2
## 236   89  Item_2      1
## 237   90  Item_2      0
## 238   91  Item_2      1
## 239   92  Item_2      1
## 240   93  Item_2      1
## 241   94  Item_2      0
## 242   95  Item_2      0
## 243   96  Item_2      0
## 244   97  Item_2      0
## 245   98  Item_2      2
## 246   99  Item_2      0
## 247  100  Item_2      2
## 248  101  Item_2      0
## 249  102  Item_2      0
## 250  103  Item_2      0
## 251  104  Item_2      1
## 252  105  Item_2      1
## 253  106  Item_2      0
## 254  107  Item_2      0
## 255  108  Item_2      1
## 256  109  Item_2      0
## 257  110  Item_2      1
## 258  111  Item_2      1
## 259  112  Item_2      0
## 260  113  Item_2      1
## 261  114  Item_2      0
## 262  115  Item_2      0
## 263  116  Item_2      1
## 264  117  Item_2      0
## 265  118  Item_2      1
## 266  119  Item_2      1
## 267  120  Item_2      0
## 268  121  Item_2      0
## 269  122  Item_2      0
## 270  123  Item_2      1
## 271  124  Item_2      2
## 272  125  Item_2      0
## 273  126  Item_2      0
## 274  127  Item_2      0
## 275  128  Item_2      0
## 276  129  Item_2      0
## 277  130  Item_2      2
## 278  131  Item_2      1
## 279  132  Item_2      1
## 280  133  Item_2      1
## 281  134  Item_2      0
## 282  135  Item_2      1
## 283  136  Item_2      1
## 284  137  Item_2      0
## 285  138  Item_2      1
## 286  139  Item_2      2
## 287  140  Item_2      0
## 288  141  Item_2      1
## 289  142  Item_2      1
## 290  143  Item_2      1
## 291  144  Item_2      1
## 292  145  Item_2      1
## 293  146  Item_2      0
## 294  147  Item_2      0
## 295    1  Item_3      2
## 296    2  Item_3      3
## 297    3  Item_3      1
## 298    4  Item_3      4
## 299    5  Item_3      1
## 300    6  Item_3      2
## 301    7  Item_3      0
## 302    8  Item_3      0
## 303    9  Item_3      0
## 304   10  Item_3      3
## 305   11  Item_3      0
## 306   12  Item_3      4
## 307   13  Item_3      2
## 308   14  Item_3      1
## 309   15  Item_3      2
## 310   16  Item_3      1
## 311   17  Item_3      0
## 312   18  Item_3      1
## 313   19  Item_3      0
## 314   20  Item_3      1
## 315   21  Item_3      3
## 316   22  Item_3      2
## 317   23  Item_3      0
## 318   24  Item_3      1
## 319   25  Item_3      2
## 320   26  Item_3      2
## 321   27  Item_3      3
## 322   28  Item_3      2
## 323   29  Item_3      4
## 324   30  Item_3      1
## 325   31  Item_3      0
## 326   32  Item_3      3
## 327   33  Item_3      1
## 328   34  Item_3      1
## 329   35  Item_3      0
## 330   36  Item_3      0
## 331   37  Item_3      1
## 332   38  Item_3      0
## 333   39  Item_3      0
## 334   40  Item_3      2
## 335   41  Item_3      0
## 336   42  Item_3      1
## 337   43  Item_3      0
## 338   44  Item_3      0
## 339   45  Item_3      2
## 340   46  Item_3      3
## 341   47  Item_3      1
## 342   48  Item_3      1
## 343   49  Item_3      1
## 344   50  Item_3      4
## 345   51  Item_3      0
## 346   52  Item_3      0
## 347   53  Item_3      2
## 348   54  Item_3      2
## 349   55  Item_3      2
## 350   56  Item_3      0
## 351   57  Item_3      0
## 352   58  Item_3      3
## 353   59  Item_3      1
## 354   60  Item_3      2
## 355   61  Item_3      1
## 356   62  Item_3      1
## 357   63  Item_3      1
## 358   64  Item_3      2
## 359   65  Item_3      1
## 360   66  Item_3      4
## 361   67  Item_3      2
## 362   68  Item_3      2
## 363   69  Item_3      0
## 364   70  Item_3      2
## 365   71  Item_3      0
## 366   72  Item_3      1
## 367   73  Item_3      2
## 368   74  Item_3      1
## 369   75  Item_3      0
## 370   76  Item_3      2
## 371   77  Item_3      1
## 372   78  Item_3      0
## 373   79  Item_3      1
## 374   80  Item_3      2
## 375   81  Item_3      1
## 376   82  Item_3      3
## 377   83  Item_3      2
## 378   84  Item_3      0
## 379   85  Item_3      0
## 380   86  Item_3      2
## 381   87  Item_3      0
## 382   88  Item_3      4
## 383   89  Item_3      1
## 384   90  Item_3      1
## 385   91  Item_3      1
## 386   92  Item_3      0
## 387   93  Item_3      2
## 388   94  Item_3      0
## 389   95  Item_3      2
## 390   96  Item_3      0
## 391   97  Item_3      2
## 392   98  Item_3      3
## 393   99  Item_3      2
## 394  100  Item_3      0
## 395  101  Item_3      2
## 396  102  Item_3      0
## 397  103  Item_3      0
## 398  104  Item_3      1
## 399  105  Item_3      2
## 400  106  Item_3      0
## 401  107  Item_3      0
## 402  108  Item_3      0
## 403  109  Item_3      0
## 404  110  Item_3      1
## 405  111  Item_3      0
## 406  112  Item_3      1
## 407  113  Item_3      2
## 408  114  Item_3      0
## 409  115  Item_3      3
## 410  116  Item_3      0
## 411  117  Item_3      2
## 412  118  Item_3      2
## 413  119  Item_3      2
## 414  120  Item_3      2
## 415  121  Item_3      0
## 416  122  Item_3      2
## 417  123  Item_3      1
## 418  124  Item_3      3
## 419  125  Item_3      1
## 420  126  Item_3      0
## 421  127  Item_3      1
## 422  128  Item_3      0
## 423  129  Item_3      0
## 424  130  Item_3      0
## 425  131  Item_3      0
## 426  132  Item_3      0
## 427  133  Item_3      0
## 428  134  Item_3      1
## 429  135  Item_3      1
## 430  136  Item_3      2
## 431  137  Item_3      1
## 432  138  Item_3      2
## 433  139  Item_3      2
## 434  140  Item_3      0
## 435  141  Item_3      1
## 436  142  Item_3      2
## 437  143  Item_3      1
## 438  144  Item_3      0
## 439  145  Item_3      3
## 440  146  Item_3      2
## 441  147  Item_3      0
## 442    1  Item_4      0
## 443    2  Item_4      0
## 444    3  Item_4      2
## 445    4  Item_4      0
## 446    5  Item_4      1
## 447    6  Item_4      0
## 448    7  Item_4      1
## 449    8  Item_4      0
## 450    9  Item_4      0
## 451   10  Item_4      0
## 452   11  Item_4      2
## 453   12  Item_4      0
## 454   13  Item_4      0
## 455   14  Item_4      0
## 456   15  Item_4      0
## 457   16  Item_4      0
## 458   17  Item_4      0
## 459   18  Item_4      0
## 460   19  Item_4      0
## 461   20  Item_4      3
## 462   21  Item_4      0
## 463   22  Item_4      2
## 464   23  Item_4      0
## 465   24  Item_4      0
## 466   25  Item_4      1
## 467   26  Item_4      0
## 468   27  Item_4      0
## 469   28  Item_4      1
## 470   29  Item_4      2
## 471   30  Item_4      0
## 472   31  Item_4      0
## 473   32  Item_4      1
## 474   33  Item_4      0
## 475   34  Item_4      1
## 476   35  Item_4      0
## 477   36  Item_4      0
## 478   37  Item_4      0
## 479   38  Item_4      0
## 480   39  Item_4      0
## 481   40  Item_4      1
## 482   41  Item_4      0
## 483   42  Item_4      0
## 484   43  Item_4      0
## 485   44  Item_4      0
## 486   45  Item_4      0
## 487   46  Item_4      0
## 488   47  Item_4      0
## 489   48  Item_4      0
## 490   49  Item_4      0
## 491   50  Item_4      0
## 492   51  Item_4      0
## 493   52  Item_4      4
## 494   53  Item_4      0
## 495   54  Item_4      1
## 496   55  Item_4      0
## 497   56  Item_4      0
## 498   57  Item_4      0
## 499   58  Item_4      0
## 500   59  Item_4      0
## 501   60  Item_4      0
## 502   61  Item_4      0
## 503   62  Item_4      0
## 504   63  Item_4      0
## 505   64  Item_4      0
## 506   65  Item_4      0
## 507   66  Item_4      0
## 508   67  Item_4      1
## 509   68  Item_4      0
## 510   69  Item_4      0
## 511   70  Item_4      1
## 512   71  Item_4      0
## 513   72  Item_4      1
## 514   73  Item_4      1
## 515   74  Item_4      4
## 516   75  Item_4      0
## 517   76  Item_4      1
## 518   77  Item_4      0
## 519   78  Item_4      0
## 520   79  Item_4      1
## 521   80  Item_4      1
## 522   81  Item_4      0
## 523   82  Item_4      0
## 524   83  Item_4      1
## 525   84  Item_4      1
## 526   85  Item_4      1
## 527   86  Item_4      0
## 528   87  Item_4      0
## 529   88  Item_4      2
## 530   89  Item_4      0
## 531   90  Item_4      4
## 532   91  Item_4      1
## 533   92  Item_4      0
## 534   93  Item_4      0
## 535   94  Item_4      0
## 536   95  Item_4      0
## 537   96  Item_4      0
## 538   97  Item_4      0
## 539   98  Item_4      2
## 540   99  Item_4      0
## 541  100  Item_4      0
## 542  101  Item_4      0
## 543  102  Item_4      1
## 544  103  Item_4      0
## 545  104  Item_4      1
## 546  105  Item_4      1
## 547  106  Item_4      0
## 548  107  Item_4      0
## 549  108  Item_4      1
## 550  109  Item_4      0
## 551  110  Item_4      1
## 552  111  Item_4      0
## 553  112  Item_4      1
## 554  113  Item_4      0
## 555  114  Item_4      0
## 556  115  Item_4      0
## 557  116  Item_4      0
## 558  117  Item_4      0
## 559  118  Item_4      0
## 560  119  Item_4      0
## 561  120  Item_4      0
## 562  121  Item_4      0
## 563  122  Item_4      0
## 564  123  Item_4      0
## 565  124  Item_4      0
## 566  125  Item_4      0
## 567  126  Item_4      0
## 568  127  Item_4      0
## 569  128  Item_4      0
## 570  129  Item_4      0
## 571  130  Item_4      0
## 572  131  Item_4      3
## 573  132  Item_4      1
## 574  133  Item_4      0
## 575  134  Item_4      0
## 576  135  Item_4      0
## 577  136  Item_4      2
## 578  137  Item_4      4
## 579  138  Item_4      0
## 580  139  Item_4      1
## 581  140  Item_4      0
## 582  141  Item_4      0
## 583  142  Item_4      0
## 584  143  Item_4      0
## 585  144  Item_4      0
## 586  145  Item_4      0
## 587  146  Item_4      0
## 588  147  Item_4      0
## 589    1  Item_5      0
## 590    2  Item_5      0
## 591    3  Item_5      3
## 592    4  Item_5      4
## 593    5  Item_5      1
## 594    6  Item_5      1
## 595    7  Item_5      0
## 596    8  Item_5      0
## 597    9  Item_5      1
## 598   10  Item_5      0
## 599   11  Item_5      2
## 600   12  Item_5      0
## 601   13  Item_5      0
## 602   14  Item_5      3
## 603   15  Item_5      3
## 604   16  Item_5      0
## 605   17  Item_5      0
## 606   18  Item_5      0
## 607   19  Item_5      0
## 608   20  Item_5      2
## 609   21  Item_5      2
## 610   22  Item_5      3
## 611   23  Item_5      0
## 612   24  Item_5      2
## 613   25  Item_5      1
## 614   26  Item_5      0
## 615   27  Item_5      1
## 616   28  Item_5      0
## 617   29  Item_5      3
## 618   30  Item_5      0
## 619   31  Item_5      0
## 620   32  Item_5      0
## 621   33  Item_5      0
## 622   34  Item_5      1
## 623   35  Item_5      0
## 624   36  Item_5      0
## 625   37  Item_5      0
## 626   38  Item_5      0
## 627   39  Item_5      0
## 628   40  Item_5      3
## 629   41  Item_5      2
## 630   42  Item_5      2
## 631   43  Item_5      0
## 632   44  Item_5      0
## 633   45  Item_5      2
## 634   46  Item_5      3
## 635   47  Item_5      0
## 636   48  Item_5      1
## 637   49  Item_5      2
## 638   50  Item_5      4
## 639   51  Item_5      2
## 640   52  Item_5      0
## 641   53  Item_5      1
## 642   54  Item_5      0
## 643   55  Item_5      3
## 644   56  Item_5      0
## 645   57  Item_5      1
## 646   58  Item_5      0
## 647   59  Item_5      0
## 648   60  Item_5      0
## 649   61  Item_5      1
## 650   62  Item_5      0
## 651   63  Item_5      2
## 652   64  Item_5      0
## 653   65  Item_5      0
## 654   66  Item_5      0
## 655   67  Item_5      2
## 656   68  Item_5      0
## 657   69  Item_5      0
## 658   70  Item_5      3
## 659   71  Item_5      2
## 660   72  Item_5      1
## 661   73  Item_5      0
## 662   74  Item_5      1
## 663   75  Item_5      0
## 664   76  Item_5      3
## 665   77  Item_5      0
## 666   78  Item_5      1
## 667   79  Item_5      1
## 668   80  Item_5      3
## 669   81  Item_5      1
## 670   82  Item_5      3
## 671   83  Item_5      3
## 672   84  Item_5      2
## 673   85  Item_5      1
## 674   86  Item_5      2
## 675   87  Item_5      0
## 676   88  Item_5      3
## 677   89  Item_5      1
## 678   90  Item_5      2
## 679   91  Item_5      1
## 680   92  Item_5      0
## 681   93  Item_5      0
## 682   94  Item_5      0
## 683   95  Item_5      1
## 684   96  Item_5      0
## 685   97  Item_5      4
## 686   98  Item_5      3
## 687   99  Item_5      0
## 688  100  Item_5      0
## 689  101  Item_5      2
## 690  102  Item_5      2
## 691  103  Item_5      0
## 692  104  Item_5      1
## 693  105  Item_5      3
## 694  106  Item_5      0
## 695  107  Item_5      0
## 696  108  Item_5      0
## 697  109  Item_5      1
## 698  110  Item_5      1
## 699  111  Item_5      2
## 700  112  Item_5      2
## 701  113  Item_5      0
## 702  114  Item_5      0
## 703  115  Item_5      0
## 704  116  Item_5      0
## 705  117  Item_5      0
## 706  118  Item_5      2
## 707  119  Item_5      2
## 708  120  Item_5      1
## 709  121  Item_5      1
## 710  122  Item_5      0
## 711  123  Item_5      0
## 712  124  Item_5      1
## 713  125  Item_5      0
## 714  126  Item_5      0
## 715  127  Item_5      0
## 716  128  Item_5      0
## 717  129  Item_5      0
## 718  130  Item_5      0
## 719  131  Item_5      1
## 720  132  Item_5      1
## 721  133  Item_5      0
## 722  134  Item_5      0
## 723  135  Item_5      3
## 724  136  Item_5      1
## 725  137  Item_5      0
## 726  138  Item_5      2
## 727  139  Item_5      2
## 728  140  Item_5      0
## 729  141  Item_5      1
## 730  142  Item_5      2
## 731  143  Item_5      2
## 732  144  Item_5      1
## 733  145  Item_5      1
## 734  146  Item_5      0
## 735  147  Item_5      0
## 736    1  Item_6      1
## 737    2  Item_6      0
## 738    3  Item_6      3
## 739    4  Item_6      4
## 740    5  Item_6      2
## 741    6  Item_6      4
## 742    7  Item_6      2
## 743    8  Item_6      2
## 744    9  Item_6      2
## 745   10  Item_6      2
## 746   11  Item_6      2
## 747   12  Item_6      3
## 748   13  Item_6      2
## 749   14  Item_6      4
## 750   15  Item_6      3
## 751   16  Item_6      1
## 752   17  Item_6      2
## 753   18  Item_6      1
## 754   19  Item_6      1
## 755   20  Item_6      4
## 756   21  Item_6      4
## 757   22  Item_6      3
## 758   23  Item_6      2
## 759   24  Item_6      2
## 760   25  Item_6      1
## 761   26  Item_6      2
## 762   27  Item_6      3
## 763   28  Item_6      3
## 764   29  Item_6      4
## 765   30  Item_6      1
## 766   31  Item_6      2
## 767   32  Item_6      3
## 768   33  Item_6      3
## 769   34  Item_6      3
## 770   35  Item_6      1
## 771   36  Item_6      1
## 772   37  Item_6      1
## 773   38  Item_6      2
## 774   39  Item_6      4
## 775   40  Item_6      4
## 776   41  Item_6      2
## 777   42  Item_6      4
## 778   43  Item_6      3
## 779   44  Item_6      1
## 780   45  Item_6      2
## 781   46  Item_6      4
## 782   47  Item_6      0
## 783   48  Item_6      3
## 784   49  Item_6      4
## 785   50  Item_6      4
## 786   51  Item_6      4
## 787   52  Item_6      1
## 788   53  Item_6      3
## 789   54  Item_6      2
## 790   55  Item_6      4
## 791   56  Item_6      1
## 792   57  Item_6      2
## 793   58  Item_6      1
## 794   59  Item_6      1
## 795   60  Item_6      2
## 796   61  Item_6      2
## 797   62  Item_6      1
## 798   63  Item_6      2
## 799   64  Item_6      0
## 800   65  Item_6      4
## 801   66  Item_6      3
## 802   67  Item_6      2
## 803   68  Item_6      2
## 804   69  Item_6      3
## 805   70  Item_6      3
## 806   71  Item_6      2
## 807   72  Item_6      2
## 808   73  Item_6      2
## 809   74  Item_6      2
## 810   75  Item_6      2
## 811   76  Item_6      4
## 812   77  Item_6      2
## 813   78  Item_6      2
## 814   79  Item_6      2
## 815   80  Item_6      4
## 816   81  Item_6      2
## 817   82  Item_6      2
## 818   83  Item_6      3
## 819   84  Item_6      2
## 820   85  Item_6      4
## 821   86  Item_6      3
## 822   87  Item_6      2
## 823   88  Item_6      4
## 824   89  Item_6      2
## 825   90  Item_6      3
## 826   91  Item_6      2
## 827   92  Item_6      1
## 828   93  Item_6      3
## 829   94  Item_6      0
## 830   95  Item_6      3
## 831   96  Item_6      3
## 832   97  Item_6      3
## 833   98  Item_6      4
## 834   99  Item_6      0
## 835  100  Item_6      2
## 836  101  Item_6      2
## 837  102  Item_6      3
## 838  103  Item_6      1
## 839  104  Item_6      2
## 840  105  Item_6      3
## 841  106  Item_6      2
## 842  107  Item_6      0
## 843  108  Item_6      0
## 844  109  Item_6      1
## 845  110  Item_6      3
## 846  111  Item_6      4
## 847  112  Item_6      2
## 848  113  Item_6      2
## 849  114  Item_6      0
## 850  115  Item_6      1
## 851  116  Item_6      2
## 852  117  Item_6      1
## 853  118  Item_6      3
## 854  119  Item_6      2
## 855  120  Item_6      2
## 856  121  Item_6      3
## 857  122  Item_6      2
## 858  123  Item_6      1
## 859  124  Item_6      2
## 860  125  Item_6      2
## 861  126  Item_6      2
## 862  127  Item_6      1
## 863  128  Item_6      2
## 864  129  Item_6      3
## 865  130  Item_6      2
## 866  131  Item_6      2
## 867  132  Item_6      1
## 868  133  Item_6      1
## 869  134  Item_6      2
## 870  135  Item_6      3
## 871  136  Item_6      1
## 872  137  Item_6      2
## 873  138  Item_6      3
## 874  139  Item_6      4
## 875  140  Item_6      2
## 876  141  Item_6      2
## 877  142  Item_6      2
## 878  143  Item_6      2
## 879  144  Item_6      2
## 880  145  Item_6      2
## 881  146  Item_6      1
## 882  147  Item_6      1
## 883    1  Item_7      2
## 884    2  Item_7      2
## 885    3  Item_7      2
## 886    4  Item_7      4
## 887    5  Item_7      2
## 888    6  Item_7      4
## 889    7  Item_7      2
## 890    8  Item_7      0
## 891    9  Item_7      1
## 892   10  Item_7      1
## 893   11  Item_7      1
## 894   12  Item_7      0
## 895   13  Item_7      1
## 896   14  Item_7      3
## 897   15  Item_7      0
## 898   16  Item_7      2
## 899   17  Item_7      0
## 900   18  Item_7      1
## 901   19  Item_7      0
## 902   20  Item_7      4
## 903   21  Item_7      2
## 904   22  Item_7      3
## 905   23  Item_7      1
## 906   24  Item_7      3
## 907   25  Item_7      1
## 908   26  Item_7      2
## 909   27  Item_7      1
## 910   28  Item_7      3
## 911   29  Item_7      4
## 912   30  Item_7      0
## 913   31  Item_7      0
## 914   32  Item_7      4
## 915   33  Item_7      3
## 916   34  Item_7      3
## 917   35  Item_7      4
## 918   36  Item_7      0
## 919   37  Item_7      1
## 920   38  Item_7      2
## 921   39  Item_7      1
## 922   40  Item_7      3
## 923   41  Item_7      1
## 924   42  Item_7      3
## 925   43  Item_7      3
## 926   44  Item_7      1
## 927   45  Item_7      2
## 928   46  Item_7      3
## 929   47  Item_7      1
## 930   48  Item_7      2
## 931   49  Item_7      2
## 932   50  Item_7      4
## 933   51  Item_7      4
## 934   52  Item_7      0
## 935   53  Item_7      2
## 936   54  Item_7      2
## 937   55  Item_7      2
## 938   56  Item_7      2
## 939   57  Item_7      2
## 940   58  Item_7      2
## 941   59  Item_7      0
## 942   60  Item_7      2
## 943   61  Item_7      1
## 944   62  Item_7      0
## 945   63  Item_7      2
## 946   64  Item_7      0
## 947   65  Item_7      4
## 948   66  Item_7      2
## 949   67  Item_7      1
## 950   68  Item_7      3
## 951   69  Item_7      2
## 952   70  Item_7      2
## 953   71  Item_7      2
## 954   72  Item_7      2
## 955   73  Item_7      3
## 956   74  Item_7      2
## 957   75  Item_7      2
## 958   76  Item_7      4
## 959   77  Item_7      2
## 960   78  Item_7      1
## 961   79  Item_7      2
## 962   80  Item_7      2
## 963   81  Item_7      2
## 964   82  Item_7      2
## 965   83  Item_7      3
## 966   84  Item_7      1
## 967   85  Item_7      4
## 968   86  Item_7      3
## 969   87  Item_7      0
## 970   88  Item_7      3
## 971   89  Item_7      0
## 972   90  Item_7      3
## 973   91  Item_7      1
## 974   92  Item_7      2
## 975   93  Item_7      3
## 976   94  Item_7      1
## 977   95  Item_7      1
## 978   96  Item_7      1
## 979   97  Item_7      2
## 980   98  Item_7      4
## 981   99  Item_7      0
## 982  100  Item_7      2
## 983  101  Item_7      1
## 984  102  Item_7      2
## 985  103  Item_7      1
## 986  104  Item_7      2
## 987  105  Item_7      2
## 988  106  Item_7      1
## 989  107  Item_7      0
## 990  108  Item_7      2
## 991  109  Item_7      1
## 992  110  Item_7      3
## 993  111  Item_7      0
## 994  112  Item_7      1
## 995  113  Item_7      1
## 996  114  Item_7      0
## 997  115  Item_7      0
## 998  116  Item_7      1
## 999  117  Item_7      3
## 1000 118  Item_7      2
## 1001 119  Item_7      2
## 1002 120  Item_7      2
## 1003 121  Item_7      1
## 1004 122  Item_7      1
## 1005 123  Item_7      1
## 1006 124  Item_7      1
## 1007 125  Item_7      1
## 1008 126  Item_7      3
## 1009 127  Item_7      0
## 1010 128  Item_7      1
## 1011 129  Item_7      2
## 1012 130  Item_7      0
## 1013 131  Item_7      1
## 1014 132  Item_7      1
## 1015 133  Item_7      1
## 1016 134  Item_7      1
## 1017 135  Item_7      0
## 1018 136  Item_7      2
## 1019 137  Item_7      2
## 1020 138  Item_7      1
## 1021 139  Item_7      3
## 1022 140  Item_7      0
## 1023 141  Item_7      2
## 1024 142  Item_7      2
## 1025 143  Item_7      1
## 1026 144  Item_7      2
## 1027 145  Item_7      1
## 1028 146  Item_7      1
## 1029 147  Item_7      1
## 1030   1  Item_8      1
## 1031   2  Item_8      2
## 1032   3  Item_8      0
## 1033   4  Item_8      1
## 1034   5  Item_8      1
## 1035   6  Item_8      1
## 1036   7  Item_8      0
## 1037   8  Item_8      0
## 1038   9  Item_8      0
## 1039  10  Item_8      4
## 1040  11  Item_8      0
## 1041  12  Item_8      3
## 1042  13  Item_8      2
## 1043  14  Item_8      0
## 1044  15  Item_8      2
## 1045  16  Item_8      1
## 1046  17  Item_8      0
## 1047  18  Item_8      0
## 1048  19  Item_8      0
## 1049  20  Item_8      0
## 1050  21  Item_8      3
## 1051  22  Item_8      1
## 1052  23  Item_8      0
## 1053  24  Item_8      0
## 1054  25  Item_8      0
## 1055  26  Item_8      3
## 1056  27  Item_8      4
## 1057  28  Item_8      2
## 1058  29  Item_8      2
## 1059  30  Item_8      0
## 1060  31  Item_8      2
## 1061  32  Item_8      2
## 1062  33  Item_8      2
## 1063  34  Item_8      3
## 1064  35  Item_8      0
## 1065  36  Item_8      0
## 1066  37  Item_8      1
## 1067  38  Item_8      1
## 1068  39  Item_8      3
## 1069  40  Item_8      3
## 1070  41  Item_8      0
## 1071  42  Item_8      2
## 1072  43  Item_8      2
## 1073  44  Item_8      0
## 1074  45  Item_8      1
## 1075  46  Item_8      2
## 1076  47  Item_8      0
## 1077  48  Item_8      0
## 1078  49  Item_8      0
## 1079  50  Item_8      4
## 1080  51  Item_8      2
## 1081  52  Item_8      0
## 1082  53  Item_8      2
## 1083  54  Item_8      4
## 1084  55  Item_8      2
## 1085  56  Item_8      0
## 1086  57  Item_8      0
## 1087  58  Item_8      1
## 1088  59  Item_8      0
## 1089  60  Item_8      1
## 1090  61  Item_8      1
## 1091  62  Item_8      0
## 1092  63  Item_8      0
## 1093  64  Item_8      0
## 1094  65  Item_8      3
## 1095  66  Item_8      4
## 1096  67  Item_8      3
## 1097  68  Item_8      0
## 1098  69  Item_8      0
## 1099  70  Item_8      1
## 1100  71  Item_8      2
## 1101  72  Item_8      1
## 1102  73  Item_8      2
## 1103  74  Item_8      0
## 1104  75  Item_8      0
## 1105  76  Item_8      4
## 1106  77  Item_8      1
## 1107  78  Item_8      0
## 1108  79  Item_8      1
## 1109  80  Item_8      2
## 1110  81  Item_8      0
## 1111  82  Item_8      4
## 1112  83  Item_8      0
## 1113  84  Item_8      1
## 1114  85  Item_8      0
## 1115  86  Item_8      2
## 1116  87  Item_8      0
## 1117  88  Item_8      1
## 1118  89  Item_8      0
## 1119  90  Item_8      3
## 1120  91  Item_8      0
## 1121  92  Item_8      0
## 1122  93  Item_8      0
## 1123  94  Item_8      0
## 1124  95  Item_8      3
## 1125  96  Item_8      0
## 1126  97  Item_8      0
## 1127  98  Item_8      2
## 1128  99  Item_8      2
## 1129 100  Item_8      0
## 1130 101  Item_8      0
## 1131 102  Item_8      0
## 1132 103  Item_8      1
## 1133 104  Item_8      1
## 1134 105  Item_8      1
## 1135 106  Item_8      0
## 1136 107  Item_8      0
## 1137 108  Item_8      0
## 1138 109  Item_8      1
## 1139 110  Item_8      2
## 1140 111  Item_8      0
## 1141 112  Item_8      0
## 1142 113  Item_8      2
## 1143 114  Item_8      0
## 1144 115  Item_8      0
## 1145 116  Item_8      0
## 1146 117  Item_8      3
## 1147 118  Item_8      2
## 1148 119  Item_8      0
## 1149 120  Item_8      1
## 1150 121  Item_8      0
## 1151 122  Item_8      2
## 1152 123  Item_8      1
## 1153 124  Item_8      3
## 1154 125  Item_8      2
## 1155 126  Item_8      0
## 1156 127  Item_8      1
## 1157 128  Item_8      0
## 1158 129  Item_8      0
## 1159 130  Item_8      0
## 1160 131  Item_8      0
## 1161 132  Item_8      1
## 1162 133  Item_8      0
## 1163 134  Item_8      1
## 1164 135  Item_8      0
## 1165 136  Item_8      1
## 1166 137  Item_8      0
## 1167 138  Item_8      1
## 1168 139  Item_8      1
## 1169 140  Item_8      0
## 1170 141  Item_8      1
## 1171 142  Item_8      3
## 1172 143  Item_8      1
## 1173 144  Item_8      0
## 1174 145  Item_8      3
## 1175 146  Item_8      2
## 1176 147  Item_8      0
## 1177   1  Item_9      0
## 1178   2  Item_9      0
## 1179   3  Item_9      0
## 1180   4  Item_9      1
## 1181   5  Item_9      1
## 1182   6  Item_9      0
## 1183   7  Item_9      1
## 1184   8  Item_9      0
## 1185   9  Item_9      0
## 1186  10  Item_9      0
## 1187  11  Item_9      0
## 1188  12  Item_9      2
## 1189  13  Item_9      0
## 1190  14  Item_9      0
## 1191  15  Item_9      0
## 1192  16  Item_9      1
## 1193  17  Item_9      0
## 1194  18  Item_9      0
## 1195  19  Item_9      0
## 1196  20  Item_9      2
## 1197  21  Item_9      0
## 1198  22  Item_9      0
## 1199  23  Item_9      0
## 1200  24  Item_9      1
## 1201  25  Item_9      0
## 1202  26  Item_9      1
## 1203  27  Item_9      1
## 1204  28  Item_9      0
## 1205  29  Item_9      0
## 1206  30  Item_9      0
## 1207  31  Item_9      0
## 1208  32  Item_9      0
## 1209  33  Item_9      1
## 1210  34  Item_9      1
## 1211  35  Item_9      0
## 1212  36  Item_9      0
## 1213  37  Item_9      0
## 1214  38  Item_9      0
## 1215  39  Item_9      1
## 1216  40  Item_9      1
## 1217  41  Item_9      1
## 1218  42  Item_9      2
## 1219  43  Item_9      0
## 1220  44  Item_9      0
## 1221  45  Item_9      0
## 1222  46  Item_9      0
## 1223  47  Item_9      0
## 1224  48  Item_9      1
## 1225  49  Item_9      0
## 1226  50  Item_9      1
## 1227  51  Item_9      0
## 1228  52  Item_9      0
## 1229  53  Item_9      0
## 1230  54  Item_9      0
## 1231  55  Item_9      0
## 1232  56  Item_9      0
## 1233  57  Item_9      0
## 1234  58  Item_9      0
## 1235  59  Item_9      0
## 1236  60  Item_9      0
## 1237  61  Item_9      1
## 1238  62  Item_9      0
## 1239  63  Item_9      0
## 1240  64  Item_9      0
## 1241  65  Item_9      0
## 1242  66  Item_9      0
## 1243  67  Item_9      0
## 1244  68  Item_9      0
## 1245  69  Item_9      0
## 1246  70  Item_9      1
## 1247  71  Item_9      1
## 1248  72  Item_9      1
## 1249  73  Item_9      0
## 1250  74  Item_9      0
## 1251  75  Item_9      0
## 1252  76  Item_9      2
## 1253  77  Item_9      0
## 1254  78  Item_9      0
## 1255  79  Item_9      0
## 1256  80  Item_9      2
## 1257  81  Item_9      0
## 1258  82  Item_9      1
## 1259  83  Item_9      1
## 1260  84  Item_9      2
## 1261  85  Item_9      0
## 1262  86  Item_9      1
## 1263  87  Item_9      0
## 1264  88  Item_9      2
## 1265  89  Item_9      1
## 1266  90  Item_9      0
## 1267  91  Item_9      1
## 1268  92  Item_9      0
## 1269  93  Item_9      0
## 1270  94  Item_9      0
## 1271  95  Item_9      0
## 1272  96  Item_9      0
## 1273  97  Item_9      0
## 1274  98  Item_9      3
## 1275  99  Item_9      1
## 1276 100  Item_9      0
## 1277 101  Item_9      0
## 1278 102  Item_9      2
## 1279 103  Item_9      1
## 1280 104  Item_9      1
## 1281 105  Item_9      1
## 1282 106  Item_9      1
## 1283 107  Item_9      0
## 1284 108  Item_9      0
## 1285 109  Item_9      1
## 1286 110  Item_9      2
## 1287 111  Item_9      0
## 1288 112  Item_9      0
## 1289 113  Item_9      1
## 1290 114  Item_9      0
## 1291 115  Item_9      0
## 1292 116  Item_9      0
## 1293 117  Item_9      0
## 1294 118  Item_9      0
## 1295 119  Item_9      0
## 1296 120  Item_9      0
## 1297 121  Item_9      0
## 1298 122  Item_9      0
## 1299 123  Item_9      0
## 1300 124  Item_9      0
## 1301 125  Item_9      0
## 1302 126  Item_9      0
## 1303 127  Item_9      0
## 1304 128  Item_9      1
## 1305 129  Item_9      0
## 1306 130  Item_9      0
## 1307 131  Item_9      2
## 1308 132  Item_9      1
## 1309 133  Item_9      0
## 1310 134  Item_9      0
## 1311 135  Item_9      0
## 1312 136  Item_9      1
## 1313 137  Item_9      0
## 1314 138  Item_9      0
## 1315 139  Item_9      3
## 1316 140  Item_9      0
## 1317 141  Item_9      0
## 1318 142  Item_9      1
## 1319 143  Item_9      0
## 1320 144  Item_9      0
## 1321 145  Item_9      1
## 1322 146  Item_9      0
## 1323 147  Item_9      0
## 1324   1 Item_10      2
## 1325   2 Item_10      2
## 1326   3 Item_10      2
## 1327   4 Item_10      4
## 1328   5 Item_10      2
## 1329   6 Item_10      4
## 1330   7 Item_10      1
## 1331   8 Item_10      2
## 1332   9 Item_10      0
## 1333  10 Item_10      2
## 1334  11 Item_10      2
## 1335  12 Item_10      2
## 1336  13 Item_10      1
## 1337  14 Item_10      4
## 1338  15 Item_10      3
## 1339  16 Item_10      2
## 1340  17 Item_10      2
## 1341  18 Item_10      2
## 1342  19 Item_10      0
## 1343  20 Item_10      4
## 1344  21 Item_10      2
## 1345  22 Item_10      3
## 1346  23 Item_10      0
## 1347  24 Item_10      0
## 1348  25 Item_10      1
## 1349  26 Item_10      2
## 1350  27 Item_10      3
## 1351  28 Item_10      1
## 1352  29 Item_10      4
## 1353  30 Item_10      0
## 1354  31 Item_10      0
## 1355  32 Item_10      0
## 1356  33 Item_10      2
## 1357  34 Item_10      3
## 1358  35 Item_10      1
## 1359  36 Item_10      0
## 1360  37 Item_10      0
## 1361  38 Item_10      2
## 1362  39 Item_10      2
## 1363  40 Item_10      2
## 1364  41 Item_10      2
## 1365  42 Item_10      2
## 1366  43 Item_10      0
## 1367  44 Item_10      0
## 1368  45 Item_10      2
## 1369  46 Item_10      4
## 1370  47 Item_10      0
## 1371  48 Item_10      2
## 1372  49 Item_10      2
## 1373  50 Item_10      4
## 1374  51 Item_10      2
## 1375  52 Item_10      0
## 1376  53 Item_10      0
## 1377  54 Item_10      3
## 1378  55 Item_10      4
## 1379  56 Item_10      1
## 1380  57 Item_10      1
## 1381  58 Item_10      2
## 1382  59 Item_10      1
## 1383  60 Item_10      0
## 1384  61 Item_10      2
## 1385  62 Item_10      0
## 1386  63 Item_10      3
## 1387  64 Item_10      0
## 1388  65 Item_10      3
## 1389  66 Item_10      0
## 1390  67 Item_10      2
## 1391  68 Item_10      1
## 1392  69 Item_10      0
## 1393  70 Item_10      3
## 1394  71 Item_10      2
## 1395  72 Item_10      1
## 1396  73 Item_10      3
## 1397  74 Item_10      0
## 1398  75 Item_10      1
## 1399  76 Item_10      4
## 1400  77 Item_10      2
## 1401  78 Item_10      2
## 1402  79 Item_10      2
## 1403  80 Item_10      4
## 1404  81 Item_10      1
## 1405  82 Item_10      3
## 1406  83 Item_10      3
## 1407  84 Item_10      2
## 1408  85 Item_10      2
## 1409  86 Item_10      3
## 1410  87 Item_10      0
## 1411  88 Item_10      4
## 1412  89 Item_10      2
## 1413  90 Item_10      3
## 1414  91 Item_10      2
## 1415  92 Item_10      0
## 1416  93 Item_10      1
## 1417  94 Item_10      1
## 1418  95 Item_10      2
## 1419  96 Item_10      2
## 1420  97 Item_10      3
## 1421  98 Item_10      4
## 1422  99 Item_10      1
## 1423 100 Item_10      0
## 1424 101 Item_10      2
## 1425 102 Item_10      3
## 1426 103 Item_10      0
## 1427 104 Item_10      1
## 1428 105 Item_10      4
## 1429 106 Item_10      0
## 1430 107 Item_10      1
## 1431 108 Item_10      0
## 1432 109 Item_10      2
## 1433 110 Item_10      2
## 1434 111 Item_10      0
## 1435 112 Item_10      2
## 1436 113 Item_10      1
## 1437 114 Item_10      0
## 1438 115 Item_10      0
## 1439 116 Item_10      1
## 1440 117 Item_10      0
## 1441 118 Item_10      3
## 1442 119 Item_10      2
## 1443 120 Item_10      2
## 1444 121 Item_10      3
## 1445 122 Item_10      1
## 1446 123 Item_10      1
## 1447 124 Item_10      1
## 1448 125 Item_10      1
## 1449 126 Item_10      2
## 1450 127 Item_10      2
## 1451 128 Item_10      0
## 1452 129 Item_10      0
## 1453 130 Item_10      1
## 1454 131 Item_10      2
## 1455 132 Item_10      2
## 1456 133 Item_10      1
## 1457 134 Item_10      0
## 1458 135 Item_10      4
## 1459 136 Item_10      1
## 1460 137 Item_10      1
## 1461 138 Item_10      4
## 1462 139 Item_10      1
## 1463 140 Item_10      0
## 1464 141 Item_10      1
## 1465 142 Item_10      2
## 1466 143 Item_10      3
## 1467 144 Item_10      3
## 1468 145 Item_10      1
## 1469 146 Item_10      1
## 1470 147 Item_10      0
## 1471   1 Item_11      1
## 1472   2 Item_11      1
## 1473   3 Item_11      2
## 1474   4 Item_11      4
## 1475   5 Item_11      2
## 1476   6 Item_11      4
## 1477   7 Item_11      1
## 1478   8 Item_11      2
## 1479   9 Item_11      2
## 1480  10 Item_11      3
## 1481  11 Item_11      2
## 1482  12 Item_11      3
## 1483  13 Item_11      3
## 1484  14 Item_11      4
## 1485  15 Item_11      3
## 1486  16 Item_11      2
## 1487  17 Item_11      2
## 1488  18 Item_11      2
## 1489  19 Item_11      0
## 1490  20 Item_11      3
## 1491  21 Item_11      4
## 1492  22 Item_11      4
## 1493  23 Item_11      2
## 1494  24 Item_11      2
## 1495  25 Item_11      1
## 1496  26 Item_11      3
## 1497  27 Item_11      3
## 1498  28 Item_11      3
## 1499  29 Item_11      3
## 1500  30 Item_11      2
## 1501  31 Item_11      1
## 1502  32 Item_11      3
## 1503  33 Item_11      3
## 1504  34 Item_11      3
## 1505  35 Item_11      3
## 1506  36 Item_11      1
## 1507  37 Item_11      1
## 1508  38 Item_11      2
## 1509  39 Item_11      4
## 1510  40 Item_11      4
## 1511  41 Item_11      3
## 1512  42 Item_11      3
## 1513  43 Item_11      4
## 1514  44 Item_11      1
## 1515  45 Item_11      2
## 1516  46 Item_11      4
## 1517  47 Item_11      0
## 1518  48 Item_11      3
## 1519  49 Item_11      4
## 1520  50 Item_11      4
## 1521  51 Item_11      4
## 1522  52 Item_11      2
## 1523  53 Item_11      2
## 1524  54 Item_11      2
## 1525  55 Item_11      4
## 1526  56 Item_11      1
## 1527  57 Item_11      2
## 1528  58 Item_11      0
## 1529  59 Item_11      1
## 1530  60 Item_11      2
## 1531  61 Item_11      2
## 1532  62 Item_11      1
## 1533  63 Item_11      2
## 1534  64 Item_11      0
## 1535  65 Item_11      4
## 1536  66 Item_11      3
## 1537  67 Item_11      3
## 1538  68 Item_11      3
## 1539  69 Item_11      3
## 1540  70 Item_11      3
## 1541  71 Item_11      3
## 1542  72 Item_11      2
## 1543  73 Item_11      2
## 1544  74 Item_11      2
## 1545  75 Item_11      2
## 1546  76 Item_11      4
## 1547  77 Item_11      2
## 1548  78 Item_11      3
## 1549  79 Item_11      2
## 1550  80 Item_11      3
## 1551  81 Item_11      2
## 1552  82 Item_11      3
## 1553  83 Item_11      3
## 1554  84 Item_11      2
## 1555  85 Item_11      3
## 1556  86 Item_11      4
## 1557  87 Item_11      3
## 1558  88 Item_11      4
## 1559  89 Item_11      2
## 1560  90 Item_11      4
## 1561  91 Item_11      2
## 1562  92 Item_11      0
## 1563  93 Item_11      3
## 1564  94 Item_11      2
## 1565  95 Item_11      3
## 1566  96 Item_11      2
## 1567  97 Item_11      4
## 1568  98 Item_11      4
## 1569  99 Item_11      0
## 1570 100 Item_11      2
## 1571 101 Item_11      2
## 1572 102 Item_11      3
## 1573 103 Item_11      2
## 1574 104 Item_11      2
## 1575 105 Item_11      2
## 1576 106 Item_11      2
## 1577 107 Item_11      1
## 1578 108 Item_11      2
## 1579 109 Item_11      2
## 1580 110 Item_11      3
## 1581 111 Item_11      3
## 1582 112 Item_11      3
## 1583 113 Item_11      2
## 1584 114 Item_11      1
## 1585 115 Item_11      1
## 1586 116 Item_11      1
## 1587 117 Item_11      2
## 1588 118 Item_11      2
## 1589 119 Item_11      2
## 1590 120 Item_11      2
## 1591 121 Item_11      2
## 1592 122 Item_11      2
## 1593 123 Item_11      2
## 1594 124 Item_11      2
## 1595 125 Item_11      2
## 1596 126 Item_11      4
## 1597 127 Item_11      2
## 1598 128 Item_11      1
## 1599 129 Item_11      3
## 1600 130 Item_11      2
## 1601 131 Item_11      2
## 1602 132 Item_11      2
## 1603 133 Item_11      1
## 1604 134 Item_11      2
## 1605 135 Item_11      3
## 1606 136 Item_11      2
## 1607 137 Item_11      1
## 1608 138 Item_11      3
## 1609 139 Item_11      4
## 1610 140 Item_11      2
## 1611 141 Item_11      2
## 1612 142 Item_11      2
## 1613 143 Item_11      3
## 1614 144 Item_11      2
## 1615 145 Item_11      3
## 1616 146 Item_11      1
## 1617 147 Item_11      2
## 1618   1 Item_12      2
## 1619   2 Item_12      3
## 1620   3 Item_12      3
## 1621   4 Item_12      0
## 1622   5 Item_12      2
## 1623   6 Item_12      2
## 1624   7 Item_12      0
## 1625   8 Item_12      0
## 1626   9 Item_12      2
## 1627  10 Item_12      0
## 1628  11 Item_12      0
## 1629  12 Item_12      0
## 1630  13 Item_12      3
## 1631  14 Item_12      1
## 1632  15 Item_12      0
## 1633  16 Item_12      1
## 1634  17 Item_12      0
## 1635  18 Item_12      0
## 1636  19 Item_12      0
## 1637  20 Item_12      0
## 1638  21 Item_12      1
## 1639  22 Item_12      3
## 1640  23 Item_12      2
## 1641  24 Item_12      2
## 1642  25 Item_12      0
## 1643  26 Item_12      1
## 1644  27 Item_12      1
## 1645  28 Item_12      2
## 1646  29 Item_12      2
## 1647  30 Item_12      0
## 1648  31 Item_12      0
## 1649  32 Item_12      2
## 1650  33 Item_12      2
## 1651  34 Item_12      3
## 1652  35 Item_12      3
## 1653  36 Item_12      0
## 1654  37 Item_12      1
## 1655  38 Item_12      1
## 1656  39 Item_12      1
## 1657  40 Item_12      2
## 1658  41 Item_12      1
## 1659  42 Item_12      3
## 1660  43 Item_12      0
## 1661  44 Item_12      2
## 1662  45 Item_12      0
## 1663  46 Item_12      0
## 1664  47 Item_12      1
## 1665  48 Item_12      1
## 1666  49 Item_12      2
## 1667  50 Item_12      4
## 1668  51 Item_12      2
## 1669  52 Item_12      2
## 1670  53 Item_12      1
## 1671  54 Item_12      1
## 1672  55 Item_12      2
## 1673  56 Item_12      1
## 1674  57 Item_12      1
## 1675  58 Item_12      2
## 1676  59 Item_12      1
## 1677  60 Item_12      1
## 1678  61 Item_12      2
## 1679  62 Item_12      0
## 1680  63 Item_12      1
## 1681  64 Item_12      4
## 1682  65 Item_12      0
## 1683  66 Item_12      2
## 1684  67 Item_12      1
## 1685  68 Item_12      2
## 1686  69 Item_12      2
## 1687  70 Item_12      2
## 1688  71 Item_12      2
## 1689  72 Item_12      2
## 1690  73 Item_12      2
## 1691  74 Item_12      1
## 1692  75 Item_12      1
## 1693  76 Item_12      4
## 1694  77 Item_12      2
## 1695  78 Item_12      2
## 1696  79 Item_12      3
## 1697  80 Item_12      2
## 1698  81 Item_12      1
## 1699  82 Item_12      2
## 1700  83 Item_12      2
## 1701  84 Item_12      2
## 1702  85 Item_12      2
## 1703  86 Item_12      1
## 1704  87 Item_12      0
## 1705  88 Item_12      2
## 1706  89 Item_12      1
## 1707  90 Item_12      1
## 1708  91 Item_12      1
## 1709  92 Item_12      1
## 1710  93 Item_12      1
## 1711  94 Item_12      0
## 1712  95 Item_12      0
## 1713  96 Item_12      0
## 1714  97 Item_12      0
## 1715  98 Item_12      2
## 1716  99 Item_12      0
## 1717 100 Item_12      2
## 1718 101 Item_12      1
## 1719 102 Item_12      0
## 1720 103 Item_12      1
## 1721 104 Item_12      1
## 1722 105 Item_12      1
## 1723 106 Item_12      1
## 1724 107 Item_12      1
## 1725 108 Item_12      2
## 1726 109 Item_12      1
## 1727 110 Item_12      2
## 1728 111 Item_12      1
## 1729 112 Item_12      0
## 1730 113 Item_12      1
## 1731 114 Item_12      0
## 1732 115 Item_12      3
## 1733 116 Item_12      1
## 1734 117 Item_12      1
## 1735 118 Item_12      1
## 1736 119 Item_12      2
## 1737 120 Item_12      0
## 1738 121 Item_12      3
## 1739 122 Item_12      1
## 1740 123 Item_12      0
## 1741 124 Item_12      1
## 1742 125 Item_12      1
## 1743 126 Item_12      1
## 1744 127 Item_12      0
## 1745 128 Item_12      0
## 1746 129 Item_12      0
## 1747 130 Item_12      0
## 1748 131 Item_12      1
## 1749 132 Item_12      1
## 1750 133 Item_12      1
## 1751 134 Item_12      1
## 1752 135 Item_12      0
## 1753 136 Item_12      2
## 1754 137 Item_12      1
## 1755 138 Item_12      0
## 1756 139 Item_12      1
## 1757 140 Item_12      4
## 1758 141 Item_12      1
## 1759 142 Item_12      1
## 1760 143 Item_12      0
## 1761 144 Item_12      0
## 1762 145 Item_12      1
## 1763 146 Item_12      0
## 1764 147 Item_12      1
## 1765   1 Item_13      2
## 1766   2 Item_13      3
## 1767   3 Item_13      1
## 1768   4 Item_13      4
## 1769   5 Item_13      2
## 1770   6 Item_13      4
## 1771   7 Item_13      4
## 1772   8 Item_13      2
## 1773   9 Item_13      1
## 1774  10 Item_13      2
## 1775  11 Item_13      2
## 1776  12 Item_13      4
## 1777  13 Item_13      4
## 1778  14 Item_13      4
## 1779  15 Item_13      3
## 1780  16 Item_13      1
## 1781  17 Item_13      1
## 1782  18 Item_13      2
## 1783  19 Item_13      0
## 1784  20 Item_13      4
## 1785  21 Item_13      4
## 1786  22 Item_13      4
## 1787  23 Item_13      2
## 1788  24 Item_13      3
## 1789  25 Item_13      1
## 1790  26 Item_13      4
## 1791  27 Item_13      3
## 1792  28 Item_13      4
## 1793  29 Item_13      4
## 1794  30 Item_13      0
## 1795  31 Item_13      0
## 1796  32 Item_13      4
## 1797  33 Item_13      3
## 1798  34 Item_13      3
## 1799  35 Item_13      4
## 1800  36 Item_13      0
## 1801  37 Item_13      2
## 1802  38 Item_13      2
## 1803  39 Item_13      3
## 1804  40 Item_13      4
## 1805  41 Item_13      2
## 1806  42 Item_13      2
## 1807  43 Item_13      4
## 1808  44 Item_13      0
## 1809  45 Item_13      2
## 1810  46 Item_13      4
## 1811  47 Item_13      0
## 1812  48 Item_13      2
## 1813  49 Item_13      4
## 1814  50 Item_13      4
## 1815  51 Item_13      4
## 1816  52 Item_13      1
## 1817  53 Item_13      2
## 1818  54 Item_13      2
## 1819  55 Item_13      4
## 1820  56 Item_13      1
## 1821  57 Item_13      3
## 1822  58 Item_13      2
## 1823  59 Item_13      1
## 1824  60 Item_13      2
## 1825  61 Item_13      3
## 1826  62 Item_13      0
## 1827  63 Item_13      2
## 1828  64 Item_13      1
## 1829  65 Item_13      4
## 1830  66 Item_13      2
## 1831  67 Item_13      4
## 1832  68 Item_13      3
## 1833  69 Item_13      2
## 1834  70 Item_13      3
## 1835  71 Item_13      4
## 1836  72 Item_13      3
## 1837  73 Item_13      3
## 1838  74 Item_13      2
## 1839  75 Item_13      2
## 1840  76 Item_13      4
## 1841  77 Item_13      3
## 1842  78 Item_13      2
## 1843  79 Item_13      3
## 1844  80 Item_13      4
## 1845  81 Item_13      4
## 1846  82 Item_13      4
## 1847  83 Item_13      3
## 1848  84 Item_13      2
## 1849  85 Item_13      3
## 1850  86 Item_13      4
## 1851  87 Item_13      2
## 1852  88 Item_13      4
## 1853  89 Item_13      2
## 1854  90 Item_13      4
## 1855  91 Item_13      3
## 1856  92 Item_13      0
## 1857  93 Item_13      2
## 1858  94 Item_13      2
## 1859  95 Item_13      3
## 1860  96 Item_13      2
## 1861  97 Item_13      3
## 1862  98 Item_13      4
## 1863  99 Item_13      1
## 1864 100 Item_13      3
## 1865 101 Item_13      3
## 1866 102 Item_13      3
## 1867 103 Item_13      3
## 1868 104 Item_13      2
## 1869 105 Item_13      2
## 1870 106 Item_13      2
## 1871 107 Item_13      1
## 1872 108 Item_13      0
## 1873 109 Item_13      2
## 1874 110 Item_13      2
## 1875 111 Item_13      2
## 1876 112 Item_13      2
## 1877 113 Item_13      2
## 1878 114 Item_13      1
## 1879 115 Item_13      1
## 1880 116 Item_13      0
## 1881 117 Item_13      4
## 1882 118 Item_13      3
## 1883 119 Item_13      3
## 1884 120 Item_13      3
## 1885 121 Item_13      2
## 1886 122 Item_13      1
## 1887 123 Item_13      1
## 1888 124 Item_13      3
## 1889 125 Item_13      3
## 1890 126 Item_13      2
## 1891 127 Item_13      1
## 1892 128 Item_13      3
## 1893 129 Item_13      2
## 1894 130 Item_13      1
## 1895 131 Item_13      1
## 1896 132 Item_13      3
## 1897 133 Item_13      1
## 1898 134 Item_13      2
## 1899 135 Item_13      3
## 1900 136 Item_13      3
## 1901 137 Item_13      1
## 1902 138 Item_13      1
## 1903 139 Item_13      4
## 1904 140 Item_13      2
## 1905 141 Item_13      2
## 1906 142 Item_13      2
## 1907 143 Item_13      2
## 1908 144 Item_13      2
## 1909 145 Item_13      3
## 1910 146 Item_13      3
## 1911 147 Item_13      1
## 1912   1 Item_14      0
## 1913   2 Item_14      0
## 1914   3 Item_14      1
## 1915   4 Item_14      0
## 1916   5 Item_14      1
## 1917   6 Item_14      0
## 1918   7 Item_14      1
## 1919   8 Item_14      0
## 1920   9 Item_14      0
## 1921  10 Item_14      0
## 1922  11 Item_14      0
## 1923  12 Item_14      2
## 1924  13 Item_14      1
## 1925  14 Item_14      0
## 1926  15 Item_14      0
## 1927  16 Item_14      1
## 1928  17 Item_14      0
## 1929  18 Item_14      0
## 1930  19 Item_14      0
## 1931  20 Item_14      1
## 1932  21 Item_14      0
## 1933  22 Item_14      3
## 1934  23 Item_14      0
## 1935  24 Item_14      0
## 1936  25 Item_14      0
## 1937  26 Item_14      0
## 1938  27 Item_14      0
## 1939  28 Item_14      1
## 1940  29 Item_14      1
## 1941  30 Item_14      0
## 1942  31 Item_14      0
## 1943  32 Item_14      0
## 1944  33 Item_14      1
## 1945  34 Item_14      1
## 1946  35 Item_14      0
## 1947  36 Item_14      0
## 1948  37 Item_14      0
## 1949  38 Item_14      0
## 1950  39 Item_14      0
## 1951  40 Item_14      1
## 1952  41 Item_14      1
## 1953  42 Item_14      0
## 1954  43 Item_14      0
## 1955  44 Item_14      0
## 1956  45 Item_14      1
## 1957  46 Item_14      0
## 1958  47 Item_14      0
## 1959  48 Item_14      0
## 1960  49 Item_14      0
## 1961  50 Item_14      0
## 1962  51 Item_14      0
## 1963  52 Item_14      0
## 1964  53 Item_14      0
## 1965  54 Item_14      1
## 1966  55 Item_14      1
## 1967  56 Item_14      0
## 1968  57 Item_14      0
## 1969  58 Item_14      0
## 1970  59 Item_14      0
## 1971  60 Item_14      0
## 1972  61 Item_14      1
## 1973  62 Item_14      0
## 1974  63 Item_14      0
## 1975  64 Item_14      0
## 1976  65 Item_14      0
## 1977  66 Item_14      0
## 1978  67 Item_14      0
## 1979  68 Item_14      0
## 1980  69 Item_14      0
## 1981  70 Item_14      1
## 1982  71 Item_14      0
## 1983  72 Item_14      1
## 1984  73 Item_14      1
## 1985  74 Item_14      1
## 1986  75 Item_14      0
## 1987  76 Item_14      2
## 1988  77 Item_14      0
## 1989  78 Item_14      0
## 1990  79 Item_14      1
## 1991  80 Item_14      1
## 1992  81 Item_14      1
## 1993  82 Item_14      0
## 1994  83 Item_14      1
## 1995  84 Item_14      1
## 1996  85 Item_14      0
## 1997  86 Item_14      1
## 1998  87 Item_14      0
## 1999  88 Item_14      2
## 2000  89 Item_14      0
## 2001  90 Item_14      0
## 2002  91 Item_14      1
## 2003  92 Item_14      0
## 2004  93 Item_14      0
## 2005  94 Item_14      0
## 2006  95 Item_14      0
## 2007  96 Item_14      3
## 2008  97 Item_14      0
## 2009  98 Item_14      1
## 2010  99 Item_14      0
## 2011 100 Item_14      0
## 2012 101 Item_14      0
## 2013 102 Item_14      2
## 2014 103 Item_14      1
## 2015 104 Item_14      3
## 2016 105 Item_14      1
## 2017 106 Item_14      1
## 2018 107 Item_14      0
## 2019 108 Item_14      0
## 2020 109 Item_14      0
## 2021 110 Item_14      2
## 2022 111 Item_14      0
## 2023 112 Item_14      0
## 2024 113 Item_14      1
## 2025 114 Item_14      0
## 2026 115 Item_14      4
## 2027 116 Item_14      0
## 2028 117 Item_14      2
## 2029 118 Item_14      0
## 2030 119 Item_14      1
## 2031 120 Item_14      0
## 2032 121 Item_14      0
## 2033 122 Item_14      0
## 2034 123 Item_14      4
## 2035 124 Item_14      0
## 2036 125 Item_14      0
## 2037 126 Item_14      0
## 2038 127 Item_14      0
## 2039 128 Item_14      1
## 2040 129 Item_14      0
## 2041 130 Item_14      1
## 2042 131 Item_14      0
## 2043 132 Item_14      1
## 2044 133 Item_14      0
## 2045 134 Item_14      0
## 2046 135 Item_14      0
## 2047 136 Item_14      2
## 2048 137 Item_14      1
## 2049 138 Item_14      0
## 2050 139 Item_14      3
## 2051 140 Item_14      0
## 2052 141 Item_14      1
## 2053 142 Item_14      0
## 2054 143 Item_14      0
## 2055 144 Item_14      0
## 2056 145 Item_14      1
## 2057 146 Item_14      0
## 2058 147 Item_14      0
## 2059   1 Item_15      2
## 2060   2 Item_15      1
## 2061   3 Item_15      1
## 2062   4 Item_15      4
## 2063   5 Item_15      2
## 2064   6 Item_15      2
## 2065   7 Item_15      1
## 2066   8 Item_15      2
## 2067   9 Item_15      0
## 2068  10 Item_15      2
## 2069  11 Item_15      2
## 2070  12 Item_15      0
## 2071  13 Item_15      1
## 2072  14 Item_15      3
## 2073  15 Item_15      3
## 2074  16 Item_15      3
## 2075  17 Item_15      2
## 2076  18 Item_15      0
## 2077  19 Item_15      0
## 2078  20 Item_15      4
## 2079  21 Item_15      3
## 2080  22 Item_15      3
## 2081  23 Item_15      0
## 2082  24 Item_15      1
## 2083  25 Item_15      1
## 2084  26 Item_15      1
## 2085  27 Item_15      1
## 2086  28 Item_15      1
## 2087  29 Item_15      3
## 2088  30 Item_15      0
## 2089  31 Item_15      0
## 2090  32 Item_15      0
## 2091  33 Item_15      1
## 2092  34 Item_15      3
## 2093  35 Item_15      0
## 2094  36 Item_15      0
## 2095  37 Item_15      0
## 2096  38 Item_15      0
## 2097  39 Item_15      1
## 2098  40 Item_15      2
## 2099  41 Item_15      2
## 2100  42 Item_15      2
## 2101  43 Item_15      0
## 2102  44 Item_15      0
## 2103  45 Item_15      1
## 2104  46 Item_15      4
## 2105  47 Item_15      0
## 2106  48 Item_15      1
## 2107  49 Item_15      0
## 2108  50 Item_15      4
## 2109  51 Item_15      0
## 2110  52 Item_15      2
## 2111  53 Item_15      0
## 2112  54 Item_15      2
## 2113  55 Item_15      4
## 2114  56 Item_15      0
## 2115  57 Item_15      1
## 2116  58 Item_15      1
## 2117  59 Item_15      2
## 2118  60 Item_15      1
## 2119  61 Item_15      1
## 2120  62 Item_15      0
## 2121  63 Item_15      1
## 2122  64 Item_15      0
## 2123  65 Item_15      2
## 2124  66 Item_15      0
## 2125  67 Item_15      1
## 2126  68 Item_15      0
## 2127  69 Item_15      0
## 2128  70 Item_15      3
## 2129  71 Item_15      2
## 2130  72 Item_15      1
## 2131  73 Item_15      3
## 2132  74 Item_15      0
## 2133  75 Item_15      0
## 2134  76 Item_15      4
## 2135  77 Item_15      2
## 2136  78 Item_15      2
## 2137  79 Item_15      2
## 2138  80 Item_15      3
## 2139  81 Item_15      1
## 2140  82 Item_15      2
## 2141  83 Item_15      3
## 2142  84 Item_15      2
## 2143  85 Item_15      3
## 2144  86 Item_15      2
## 2145  87 Item_15      0
## 2146  88 Item_15      4
## 2147  89 Item_15      0
## 2148  90 Item_15      0
## 2149  91 Item_15      1
## 2150  92 Item_15      0
## 2151  93 Item_15      0
## 2152  94 Item_15      0
## 2153  95 Item_15      2
## 2154  96 Item_15      1
## 2155  97 Item_15      3
## 2156  98 Item_15      3
## 2157  99 Item_15      0
## 2158 100 Item_15      0
## 2159 101 Item_15      1
## 2160 102 Item_15      2
## 2161 103 Item_15      1
## 2162 104 Item_15      1
## 2163 105 Item_15      4
## 2164 106 Item_15      0
## 2165 107 Item_15      1
## 2166 108 Item_15      0
## 2167 109 Item_15      2
## 2168 110 Item_15      1
## 2169 111 Item_15      0
## 2170 112 Item_15      1
## 2171 113 Item_15      1
## 2172 114 Item_15      0
## 2173 115 Item_15      0
## 2174 116 Item_15      1
## 2175 117 Item_15      0
## 2176 118 Item_15      4
## 2177 119 Item_15      2
## 2178 120 Item_15      2
## 2179 121 Item_15      3
## 2180 122 Item_15      0
## 2181 123 Item_15      1
## 2182 124 Item_15      1
## 2183 125 Item_15      1
## 2184 126 Item_15      3
## 2185 127 Item_15      1
## 2186 128 Item_15      0
## 2187 129 Item_15      0
## 2188 130 Item_15      1
## 2189 131 Item_15      2
## 2190 132 Item_15      2
## 2191 133 Item_15      1
## 2192 134 Item_15      0
## 2193 135 Item_15      3
## 2194 136 Item_15      1
## 2195 137 Item_15      2
## 2196 138 Item_15      1
## 2197 139 Item_15      1
## 2198 140 Item_15      0
## 2199 141 Item_15      1
## 2200 142 Item_15      2
## 2201 143 Item_15      2
## 2202 144 Item_15      0
## 2203 145 Item_15      1
## 2204 146 Item_15      0
## 2205 147 Item_15      0
## 2206   1 Item_16      2
## 2207   2 Item_16      3
## 2208   3 Item_16      3
## 2209   4 Item_16      4
## 2210   5 Item_16      3
## 2211   6 Item_16      2
## 2212   7 Item_16      4
## 2213   8 Item_16      3
## 2214   9 Item_16      3
## 2215  10 Item_16      2
## 2216  11 Item_16      2
## 2217  12 Item_16      2
## 2218  13 Item_16      0
## 2219  14 Item_16      4
## 2220  15 Item_16      4
## 2221  16 Item_16      2
## 2222  17 Item_16      1
## 2223  18 Item_16      3
## 2224  19 Item_16      0
## 2225  20 Item_16      3
## 2226  21 Item_16      4
## 2227  22 Item_16      4
## 2228  23 Item_16      0
## 2229  24 Item_16      0
## 2230  25 Item_16      1
## 2231  26 Item_16      2
## 2232  27 Item_16      3
## 2233  28 Item_16      4
## 2234  29 Item_16      4
## 2235  30 Item_16      0
## 2236  31 Item_16      1
## 2237  32 Item_16      3
## 2238  33 Item_16      3
## 2239  34 Item_16      3
## 2240  35 Item_16      1
## 2241  36 Item_16      0
## 2242  37 Item_16      1
## 2243  38 Item_16      2
## 2244  39 Item_16      3
## 2245  40 Item_16      4
## 2246  41 Item_16      4
## 2247  42 Item_16      3
## 2248  43 Item_16      4
## 2249  44 Item_16      2
## 2250  45 Item_16      2
## 2251  46 Item_16      4
## 2252  47 Item_16      1
## 2253  48 Item_16      3
## 2254  49 Item_16      4
## 2255  50 Item_16      2
## 2256  51 Item_16      4
## 2257  52 Item_16      0
## 2258  53 Item_16      3
## 2259  54 Item_16      3
## 2260  55 Item_16      4
## 2261  56 Item_16      0
## 2262  57 Item_16      3
## 2263  58 Item_16      4
## 2264  59 Item_16      2
## 2265  60 Item_16      1
## 2266  61 Item_16      2
## 2267  62 Item_16      0
## 2268  63 Item_16      3
## 2269  64 Item_16      0
## 2270  65 Item_16      4
## 2271  66 Item_16      2
## 2272  67 Item_16      3
## 2273  68 Item_16      4
## 2274  69 Item_16      0
## 2275  70 Item_16      3
## 2276  71 Item_16      3
## 2277  72 Item_16      2
## 2278  73 Item_16      3
## 2279  74 Item_16      2
## 2280  75 Item_16      2
## 2281  76 Item_16      4
## 2282  77 Item_16      3
## 2283  78 Item_16      2
## 2284  79 Item_16      2
## 2285  80 Item_16      3
## 2286  81 Item_16      2
## 2287  82 Item_16      4
## 2288  83 Item_16      3
## 2289  84 Item_16      1
## 2290  85 Item_16      4
## 2291  86 Item_16      0
## 2292  87 Item_16      2
## 2293  88 Item_16      1
## 2294  89 Item_16      2
## 2295  90 Item_16      4
## 2296  91 Item_16      1
## 2297  92 Item_16      0
## 2298  93 Item_16      0
## 2299  94 Item_16      1
## 2300  95 Item_16      2
## 2301  96 Item_16      4
## 2302  97 Item_16      3
## 2303  98 Item_16      4
## 2304  99 Item_16      0
## 2305 100 Item_16      2
## 2306 101 Item_16      3
## 2307 102 Item_16      3
## 2308 103 Item_16      1
## 2309 104 Item_16      3
## 2310 105 Item_16      4
## 2311 106 Item_16      2
## 2312 107 Item_16      1
## 2313 108 Item_16      0
## 2314 109 Item_16      3
## 2315 110 Item_16      2
## 2316 111 Item_16      2
## 2317 112 Item_16      2
## 2318 113 Item_16      2
## 2319 114 Item_16      0
## 2320 115 Item_16      1
## 2321 116 Item_16      2
## 2322 117 Item_16      2
## 2323 118 Item_16      4
## 2324 119 Item_16      2
## 2325 120 Item_16      3
## 2326 121 Item_16      1
## 2327 122 Item_16      3
## 2328 123 Item_16      1
## 2329 124 Item_16      2
## 2330 125 Item_16      3
## 2331 126 Item_16      4
## 2332 127 Item_16      1
## 2333 128 Item_16      2
## 2334 129 Item_16      2
## 2335 130 Item_16      3
## 2336 131 Item_16      1
## 2337 132 Item_16      0
## 2338 133 Item_16      1
## 2339 134 Item_16      1
## 2340 135 Item_16      4
## 2341 136 Item_16      2
## 2342 137 Item_16      2
## 2343 138 Item_16      3
## 2344 139 Item_16      4
## 2345 140 Item_16      2
## 2346 141 Item_16      2
## 2347 142 Item_16      3
## 2348 143 Item_16      2
## 2349 144 Item_16      1
## 2350 145 Item_16      2
## 2351 146 Item_16      1
## 2352 147 Item_16      0
## 2353   1 Item_17      2
## 2354   2 Item_17      4
## 2355   3 Item_17      3
## 2356   4 Item_17      0
## 2357   5 Item_17      2
## 2358   6 Item_17      2
## 2359   7 Item_17      2
## 2360   8 Item_17      1
## 2361   9 Item_17      2
## 2362  10 Item_17      0
## 2363  11 Item_17      1
## 2364  12 Item_17      0
## 2365  13 Item_17      2
## 2366  14 Item_17      2
## 2367  15 Item_17      0
## 2368  16 Item_17      1
## 2369  17 Item_17      1
## 2370  18 Item_17      0
## 2371  19 Item_17      0
## 2372  20 Item_17      3
## 2373  21 Item_17      2
## 2374  22 Item_17      3
## 2375  23 Item_17      2
## 2376  24 Item_17      1
## 2377  25 Item_17      1
## 2378  26 Item_17      2
## 2379  27 Item_17      2
## 2380  28 Item_17      2
## 2381  29 Item_17      2
## 2382  30 Item_17      0
## 2383  31 Item_17      1
## 2384  32 Item_17      3
## 2385  33 Item_17      3
## 2386  34 Item_17      2
## 2387  35 Item_17      2
## 2388  36 Item_17      0
## 2389  37 Item_17      2
## 2390  38 Item_17      1
## 2391  39 Item_17      2
## 2392  40 Item_17      3
## 2393  41 Item_17      2
## 2394  42 Item_17      2
## 2395  43 Item_17      0
## 2396  44 Item_17      1
## 2397  45 Item_17      1
## 2398  46 Item_17      1
## 2399  47 Item_17      0
## 2400  48 Item_17      1
## 2401  49 Item_17      0
## 2402  50 Item_17      3
## 2403  51 Item_17      2
## 2404  52 Item_17      0
## 2405  53 Item_17      1
## 2406  54 Item_17      2
## 2407  55 Item_17      2
## 2408  56 Item_17      1
## 2409  57 Item_17      1
## 2410  58 Item_17      4
## 2411  59 Item_17      1
## 2412  60 Item_17      2
## 2413  61 Item_17      2
## 2414  62 Item_17      0
## 2415  63 Item_17      1
## 2416  64 Item_17      0
## 2417  65 Item_17      0
## 2418  66 Item_17      0
## 2419  67 Item_17      0
## 2420  68 Item_17      2
## 2421  69 Item_17      0
## 2422  70 Item_17      3
## 2423  71 Item_17      2
## 2424  72 Item_17      2
## 2425  73 Item_17      3
## 2426  74 Item_17      2
## 2427  75 Item_17      1
## 2428  76 Item_17      4
## 2429  77 Item_17      2
## 2430  78 Item_17      2
## 2431  79 Item_17      2
## 2432  80 Item_17      3
## 2433  81 Item_17      2
## 2434  82 Item_17      2
## 2435  83 Item_17      2
## 2436  84 Item_17      1
## 2437  85 Item_17      2
## 2438  86 Item_17      2
## 2439  87 Item_17      0
## 2440  88 Item_17      2
## 2441  89 Item_17      1
## 2442  90 Item_17      4
## 2443  91 Item_17      1
## 2444  92 Item_17      1
## 2445  93 Item_17      3
## 2446  94 Item_17      2
## 2447  95 Item_17      1
## 2448  96 Item_17      2
## 2449  97 Item_17      2
## 2450  98 Item_17      2
## 2451  99 Item_17      0
## 2452 100 Item_17      1
## 2453 101 Item_17      0
## 2454 102 Item_17      2
## 2455 103 Item_17      1
## 2456 104 Item_17      2
## 2457 105 Item_17      2
## 2458 106 Item_17      1
## 2459 107 Item_17      0
## 2460 108 Item_17      3
## 2461 109 Item_17      1
## 2462 110 Item_17      3
## 2463 111 Item_17      1
## 2464 112 Item_17      0
## 2465 113 Item_17      1
## 2466 114 Item_17      0
## 2467 115 Item_17      1
## 2468 116 Item_17      0
## 2469 117 Item_17      2
## 2470 118 Item_17      1
## 2471 119 Item_17      2
## 2472 120 Item_17      2
## 2473 121 Item_17      0
## 2474 122 Item_17      1
## 2475 123 Item_17      1
## 2476 124 Item_17      2
## 2477 125 Item_17      1
## 2478 126 Item_17      1
## 2479 127 Item_17      0
## 2480 128 Item_17      1
## 2481 129 Item_17      1
## 2482 130 Item_17      1
## 2483 131 Item_17      1
## 2484 132 Item_17      2
## 2485 133 Item_17      0
## 2486 134 Item_17      1
## 2487 135 Item_17      1
## 2488 136 Item_17      3
## 2489 137 Item_17      2
## 2490 138 Item_17      0
## 2491 139 Item_17      3
## 2492 140 Item_17      0
## 2493 141 Item_17      1
## 2494 142 Item_17      1
## 2495 143 Item_17      1
## 2496 144 Item_17      2
## 2497 145 Item_17      2
## 2498 146 Item_17      2
## 2499 147 Item_17      0
## 2500   1 Item_18      4
## 2501   2 Item_18      3
## 2502   3 Item_18      2
## 2503   4 Item_18      4
## 2504   5 Item_18      3
## 2505   6 Item_18      4
## 2506   7 Item_18      4
## 2507   8 Item_18      1
## 2508   9 Item_18      0
## 2509  10 Item_18      2
## 2510  11 Item_18      2
## 2511  12 Item_18      2
## 2512  13 Item_18      4
## 2513  14 Item_18      3
## 2514  15 Item_18      3
## 2515  16 Item_18      1
## 2516  17 Item_18      1
## 2517  18 Item_18      2
## 2518  19 Item_18      0
## 2519  20 Item_18      4
## 2520  21 Item_18      3
## 2521  22 Item_18      3
## 2522  23 Item_18      1
## 2523  24 Item_18      3
## 2524  25 Item_18      1
## 2525  26 Item_18      3
## 2526  27 Item_18      3
## 2527  28 Item_18      4
## 2528  29 Item_18      4
## 2529  30 Item_18      0
## 2530  31 Item_18      1
## 2531  32 Item_18      4
## 2532  33 Item_18      2
## 2533  34 Item_18      3
## 2534  35 Item_18      2
## 2535  36 Item_18      0
## 2536  37 Item_18      2
## 2537  38 Item_18      1
## 2538  39 Item_18      3
## 2539  40 Item_18      4
## 2540  41 Item_18      2
## 2541  42 Item_18      4
## 2542  43 Item_18      4
## 2543  44 Item_18      0
## 2544  45 Item_18      2
## 2545  46 Item_18      4
## 2546  47 Item_18      0
## 2547  48 Item_18      1
## 2548  49 Item_18      3
## 2549  50 Item_18      4
## 2550  51 Item_18      2
## 2551  52 Item_18      0
## 2552  53 Item_18      2
## 2553  54 Item_18      2
## 2554  55 Item_18      4
## 2555  56 Item_18      0
## 2556  57 Item_18      2
## 2557  58 Item_18      3
## 2558  59 Item_18      0
## 2559  60 Item_18      2
## 2560  61 Item_18      2
## 2561  62 Item_18      0
## 2562  63 Item_18      2
## 2563  64 Item_18      1
## 2564  65 Item_18      4
## 2565  66 Item_18      0
## 2566  67 Item_18      3
## 2567  68 Item_18      4
## 2568  69 Item_18      0
## 2569  70 Item_18      3
## 2570  71 Item_18      2
## 2571  72 Item_18      2
## 2572  73 Item_18      3
## 2573  74 Item_18      2
## 2574  75 Item_18      2
## 2575  76 Item_18      4
## 2576  77 Item_18      3
## 2577  78 Item_18      2
## 2578  79 Item_18      2
## 2579  80 Item_18      3
## 2580  81 Item_18      4
## 2581  82 Item_18      4
## 2582  83 Item_18      3
## 2583  84 Item_18      1
## 2584  85 Item_18      3
## 2585  86 Item_18      4
## 2586  87 Item_18      2
## 2587  88 Item_18      4
## 2588  89 Item_18      1
## 2589  90 Item_18      4
## 2590  91 Item_18      3
## 2591  92 Item_18      1
## 2592  93 Item_18      3
## 2593  94 Item_18      2
## 2594  95 Item_18      3
## 2595  96 Item_18      2
## 2596  97 Item_18      2
## 2597  98 Item_18      4
## 2598  99 Item_18      1
## 2599 100 Item_18      2
## 2600 101 Item_18      2
## 2601 102 Item_18      3
## 2602 103 Item_18      3
## 2603 104 Item_18      2
## 2604 105 Item_18      1
## 2605 106 Item_18      2
## 2606 107 Item_18      1
## 2607 108 Item_18      0
## 2608 109 Item_18      2
## 2609 110 Item_18      2
## 2610 111 Item_18      2
## 2611 112 Item_18      2
## 2612 113 Item_18      2
## 2613 114 Item_18      0
## 2614 115 Item_18      0
## 2615 116 Item_18      0
## 2616 117 Item_18      4
## 2617 118 Item_18      3
## 2618 119 Item_18      2
## 2619 120 Item_18      2
## 2620 121 Item_18      1
## 2621 122 Item_18      1
## 2622 123 Item_18      1
## 2623 124 Item_18      3
## 2624 125 Item_18      3
## 2625 126 Item_18      3
## 2626 127 Item_18      2
## 2627 128 Item_18      2
## 2628 129 Item_18      3
## 2629 130 Item_18      1
## 2630 131 Item_18      1
## 2631 132 Item_18      2
## 2632 133 Item_18      1
## 2633 134 Item_18      2
## 2634 135 Item_18      3
## 2635 136 Item_18      3
## 2636 137 Item_18      2
## 2637 138 Item_18      1
## 2638 139 Item_18      4
## 2639 140 Item_18      2
## 2640 141 Item_18      1
## 2641 142 Item_18      2
## 2642 143 Item_18      2
## 2643 144 Item_18      2
## 2644 145 Item_18      3
## 2645 146 Item_18      2
## 2646 147 Item_18      1
## 2647   1 Item_19      0
## 2648   2 Item_19      0
## 2649   3 Item_19      1
## 2650   4 Item_19      0
## 2651   5 Item_19      1
## 2652   6 Item_19      0
## 2653   7 Item_19      0
## 2654   8 Item_19      0
## 2655   9 Item_19      0
## 2656  10 Item_19      0
## 2657  11 Item_19      0
## 2658  12 Item_19      0
## 2659  13 Item_19      0
## 2660  14 Item_19      0
## 2661  15 Item_19      0
## 2662  16 Item_19      1
## 2663  17 Item_19      0
## 2664  18 Item_19      0
## 2665  19 Item_19      0
## 2666  20 Item_19      0
## 2667  21 Item_19      0
## 2668  22 Item_19      2
## 2669  23 Item_19      0
## 2670  24 Item_19      0
## 2671  25 Item_19      1
## 2672  26 Item_19      0
## 2673  27 Item_19      0
## 2674  28 Item_19      0
## 2675  29 Item_19      0
## 2676  30 Item_19      0
## 2677  31 Item_19      0
## 2678  32 Item_19      0
## 2679  33 Item_19      0
## 2680  34 Item_19      1
## 2681  35 Item_19      0
## 2682  36 Item_19      0
## 2683  37 Item_19      0
## 2684  38 Item_19      0
## 2685  39 Item_19      0
## 2686  40 Item_19      1
## 2687  41 Item_19      1
## 2688  42 Item_19      0
## 2689  43 Item_19      0
## 2690  44 Item_19      0
## 2691  45 Item_19      0
## 2692  46 Item_19      0
## 2693  47 Item_19      0
## 2694  48 Item_19      0
## 2695  49 Item_19      0
## 2696  50 Item_19      0
## 2697  51 Item_19      0
## 2698  52 Item_19      0
## 2699  53 Item_19      0
## 2700  54 Item_19      1
## 2701  55 Item_19      0
## 2702  56 Item_19      0
## 2703  57 Item_19      0
## 2704  58 Item_19      0
## 2705  59 Item_19      0
## 2706  60 Item_19      0
## 2707  61 Item_19      1
## 2708  62 Item_19      0
## 2709  63 Item_19      0
## 2710  64 Item_19      0
## 2711  65 Item_19      0
## 2712  66 Item_19      0
## 2713  67 Item_19      0
## 2714  68 Item_19      0
## 2715  69 Item_19      0
## 2716  70 Item_19      1
## 2717  71 Item_19      0
## 2718  72 Item_19      1
## 2719  73 Item_19      1
## 2720  74 Item_19      0
## 2721  75 Item_19      0
## 2722  76 Item_19      1
## 2723  77 Item_19      0
## 2724  78 Item_19      0
## 2725  79 Item_19      0
## 2726  80 Item_19      2
## 2727  81 Item_19      0
## 2728  82 Item_19      0
## 2729  83 Item_19      1
## 2730  84 Item_19      1
## 2731  85 Item_19      0
## 2732  86 Item_19      0
## 2733  87 Item_19      0
## 2734  88 Item_19      2
## 2735  89 Item_19      0
## 2736  90 Item_19      0
## 2737  91 Item_19      1
## 2738  92 Item_19      0
## 2739  93 Item_19      0
## 2740  94 Item_19      0
## 2741  95 Item_19      0
## 2742  96 Item_19      0
## 2743  97 Item_19      0
## 2744  98 Item_19      2
## 2745  99 Item_19      0
## 2746 100 Item_19      0
## 2747 101 Item_19      0
## 2748 102 Item_19      2
## 2749 103 Item_19      0
## 2750 104 Item_19      1
## 2751 105 Item_19      1
## 2752 106 Item_19      0
## 2753 107 Item_19      0
## 2754 108 Item_19      0
## 2755 109 Item_19      0
## 2756 110 Item_19      1
## 2757 111 Item_19      0
## 2758 112 Item_19      0
## 2759 113 Item_19      0
## 2760 114 Item_19      0
## 2761 115 Item_19      0
## 2762 116 Item_19      0
## 2763 117 Item_19      0
## 2764 118 Item_19      0
## 2765 119 Item_19      0
## 2766 120 Item_19      0
## 2767 121 Item_19      0
## 2768 122 Item_19      0
## 2769 123 Item_19      0
## 2770 124 Item_19      0
## 2771 125 Item_19      0
## 2772 126 Item_19      0
## 2773 127 Item_19      0
## 2774 128 Item_19      0
## 2775 129 Item_19      0
## 2776 130 Item_19      0
## 2777 131 Item_19      0
## 2778 132 Item_19      0
## 2779 133 Item_19      0
## 2780 134 Item_19      0
## 2781 135 Item_19      0
## 2782 136 Item_19      1
## 2783 137 Item_19      0
## 2784 138 Item_19      0
## 2785 139 Item_19      2
## 2786 140 Item_19      0
## 2787 141 Item_19      0
## 2788 142 Item_19      0
## 2789 143 Item_19      0
## 2790 144 Item_19      0
## 2791 145 Item_19      1
## 2792 146 Item_19      0
## 2793 147 Item_19      0
## 2794   1 Item_20      1
## 2795   2 Item_20      1
## 2796   3 Item_20      1
## 2797   4 Item_20      4
## 2798   5 Item_20      1
## 2799   6 Item_20      0
## 2800   7 Item_20      0
## 2801   8 Item_20      2
## 2802   9 Item_20      1
## 2803  10 Item_20      2
## 2804  11 Item_20      1
## 2805  12 Item_20      0
## 2806  13 Item_20      0
## 2807  14 Item_20      2
## 2808  15 Item_20      4
## 2809  16 Item_20      1
## 2810  17 Item_20      0
## 2811  18 Item_20      1
## 2812  19 Item_20      0
## 2813  20 Item_20      0
## 2814  21 Item_20      2
## 2815  22 Item_20      4
## 2816  23 Item_20      0
## 2817  24 Item_20      0
## 2818  25 Item_20      0
## 2819  26 Item_20      0
## 2820  27 Item_20      1
## 2821  28 Item_20      3
## 2822  29 Item_20      2
## 2823  30 Item_20      0
## 2824  31 Item_20      0
## 2825  32 Item_20      0
## 2826  33 Item_20      3
## 2827  34 Item_20      2
## 2828  35 Item_20      0
## 2829  36 Item_20      0
## 2830  37 Item_20      0
## 2831  38 Item_20      0
## 2832  39 Item_20      2
## 2833  40 Item_20      2
## 2834  41 Item_20      1
## 2835  42 Item_20      1
## 2836  43 Item_20      0
## 2837  44 Item_20      0
## 2838  45 Item_20      2
## 2839  46 Item_20      1
## 2840  47 Item_20      0
## 2841  48 Item_20      1
## 2842  49 Item_20      0
## 2843  50 Item_20      4
## 2844  51 Item_20      1
## 2845  52 Item_20      0
## 2846  53 Item_20      2
## 2847  54 Item_20      1
## 2848  55 Item_20      4
## 2849  56 Item_20      0
## 2850  57 Item_20      0
## 2851  58 Item_20      1
## 2852  59 Item_20      1
## 2853  60 Item_20      1
## 2854  61 Item_20      1
## 2855  62 Item_20      0
## 2856  63 Item_20      2
## 2857  64 Item_20      0
## 2858  65 Item_20      1
## 2859  66 Item_20      0
## 2860  67 Item_20      1
## 2861  68 Item_20      3
## 2862  69 Item_20      0
## 2863  70 Item_20      3
## 2864  71 Item_20      1
## 2865  72 Item_20      1
## 2866  73 Item_20      1
## 2867  74 Item_20      0
## 2868  75 Item_20      0
## 2869  76 Item_20      4
## 2870  77 Item_20      2
## 2871  78 Item_20      2
## 2872  79 Item_20      1
## 2873  80 Item_20      3
## 2874  81 Item_20      0
## 2875  82 Item_20      2
## 2876  83 Item_20      3
## 2877  84 Item_20      2
## 2878  85 Item_20      0
## 2879  86 Item_20      1
## 2880  87 Item_20      0
## 2881  88 Item_20      3
## 2882  89 Item_20      2
## 2883  90 Item_20      0
## 2884  91 Item_20      1
## 2885  92 Item_20      0
## 2886  93 Item_20      0
## 2887  94 Item_20      0
## 2888  95 Item_20      1
## 2889  96 Item_20      1
## 2890  97 Item_20      2
## 2891  98 Item_20      4
## 2892  99 Item_20      0
## 2893 100 Item_20      0
## 2894 101 Item_20      3
## 2895 102 Item_20      3
## 2896 103 Item_20      3
## 2897 104 Item_20      1
## 2898 105 Item_20      3
## 2899 106 Item_20      2
## 2900 107 Item_20      0
## 2901 108 Item_20      0
## 2902 109 Item_20      1
## 2903 110 Item_20      1
## 2904 111 Item_20      0
## 2905 112 Item_20      2
## 2906 113 Item_20      1
## 2907 114 Item_20      0
## 2908 115 Item_20      0
## 2909 116 Item_20      1
## 2910 117 Item_20      0
## 2911 118 Item_20      2
## 2912 119 Item_20      2
## 2913 120 Item_20      2
## 2914 121 Item_20      1
## 2915 122 Item_20      0
## 2916 123 Item_20      1
## 2917 124 Item_20      1
## 2918 125 Item_20      1
## 2919 126 Item_20      0
## 2920 127 Item_20      2
## 2921 128 Item_20      1
## 2922 129 Item_20      0
## 2923 130 Item_20      1
## 2924 131 Item_20      1
## 2925 132 Item_20      1
## 2926 133 Item_20      0
## 2927 134 Item_20      1
## 2928 135 Item_20      2
## 2929 136 Item_20      1
## 2930 137 Item_20      0
## 2931 138 Item_20      1
## 2932 139 Item_20      1
## 2933 140 Item_20      0
## 2934 141 Item_20      1
## 2935 142 Item_20      1
## 2936 143 Item_20      2
## 2937 144 Item_20      1
## 2938 145 Item_20      2
## 2939 146 Item_20      0
## 2940 147 Item_20      0
# Sort the data by ID
sorted_data <- arrange(Rehab_data_long,ID)
# Build a variable "Facet"
Facet <- rep(rep(c(1,2,3,4,5),4),147)
sorted_data$Facet <- Facet
# Transform the Item_No.
sorted_data$item_No <- rep(1:20,147)
# 
write.csv(sorted_data,"Lu_BO_data.csv", row.names = FALSE)

Mediation Test Rasch Analysis

Load the data

# Import the data
mediation_test <- read_sav("~/Desktop/Dr. Junfei Lu Work/mediation_test.sav")

Descriptive Analysis

# Select the target data
Medi_data <- mediation_test[,27:37]
# Describe the data
describe(Medi_data)
##             vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## Decenter_1     1 191 3.55 0.81      4    3.54 1.48   1   5     4 -0.10    -0.19
## Decenter_2     2 191 3.16 0.82      3    3.18 1.48   1   5     4 -0.13    -0.11
## Decenter_3     3 191 2.84 0.94      3    2.81 1.48   1   5     4  0.25    -0.40
## Decenter_4     4 191 3.68 0.84      4    3.70 1.48   1   5     4 -0.26    -0.24
## Decenter_5     5 191 3.08 0.95      3    3.09 1.48   1   5     4 -0.12    -0.23
## Decenter_6     6 191 3.62 0.82      4    3.63 1.48   1   5     4 -0.17    -0.23
## Decenter_7     7 191 3.01 0.97      3    3.01 1.48   1   5     4 -0.05    -0.27
## Decenter_8     8 191 3.07 0.97      3    3.06 1.48   1   5     4  0.00    -0.16
## Decenter_9     9 191 3.43 0.98      3    3.46 1.48   1   5     4 -0.31    -0.27
## Decenter_10   10 191 3.39 0.84      3    3.39 1.48   1   5     4 -0.07    -0.17
## Decenter_11   11 191 3.72 0.85      4    3.74 1.48   1   5     4 -0.24    -0.34
##               se
## Decenter_1  0.06
## Decenter_2  0.06
## Decenter_3  0.07
## Decenter_4  0.06
## Decenter_5  0.07
## Decenter_6  0.06
## Decenter_7  0.07
## Decenter_8  0.07
## Decenter_9  0.07
## Decenter_10 0.06
## Decenter_11 0.06
Medi_data <- Medi_data-1

Rasch Rating Scale Analysis

# Run a Rasch Rating Scale Model
Medi_RSM <- RSM(Medi_data)

Plot the wright map

plotPImap(Medi_RSM, main = "Mediation Rating Scale Model Wright Map")

Item Parameters

# Obtain Item locations
item.locations <- Medi_RSM$etapar
item.locations
##  Decenter_2  Decenter_3  Decenter_4  Decenter_5  Decenter_6  Decenter_7 
##   0.3124396   0.8902153  -0.6750616   0.4555666  -0.5624306   0.5884371 
##  Decenter_8  Decenter_9 Decenter_10 Decenter_11       Cat 2       Cat 3 
##   0.4745873  -0.2019576  -0.1134441  -0.7474657   1.3604576   4.5972779 
##       Cat 4 
##   9.6350309
summary(item.locations)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -0.7475 -0.2020  0.4556  1.2318  0.8902  9.6350
n.items <- ncol(Medi_data)
# Obtain Item 1's location
i1 <- 0 - sum(item.locations[1:(n.items - 1)])
item.locations.all <- c(i1, item.locations[c(1:(n.items - 1))])
item.locations.all
##              Decenter_2  Decenter_3  Decenter_4  Decenter_5  Decenter_6 
##  -0.4208863   0.3124396   0.8902153  -0.6750616   0.4555666  -0.5624306 
##  Decenter_7  Decenter_8  Decenter_9 Decenter_10 Decenter_11 
##   0.5884371   0.4745873  -0.2019576  -0.1134441  -0.7474657
# Apply thresholds() function to the model object in order to obtain item locations (not centered at zero logits):
items.and.taus <- thresholds(Medi_RSM)
items.and.taus.table <- as.data.frame(items.and.taus$threshtable)
uncentered.item.locations <- items.and.taus.table$X1.Location

# Set the mean of the item locations to zero logits:
centered.item.locations <- scale(uncentered.item.locations, scale = FALSE)
summary(centered.item.locations)
##        V1         
##  Min.   :-0.7475  
##  1st Qu.:-0.4917  
##  Median :-0.1134  
##  Mean   : 0.0000  
##  3rd Qu.: 0.4651  
##  Max.   : 0.8902
centered.item.locations
##             [,1]
##  [1,] -0.4208863
##  [2,]  0.3124396
##  [3,]  0.8902153
##  [4,] -0.6750616
##  [5,]  0.4555666
##  [6,] -0.5624306
##  [7,]  0.5884371
##  [8,]  0.4745873
##  [9,] -0.2019576
## [10,] -0.1134441
## [11,] -0.7474657
## attr(,"scaled:center")
## [1] 2.408758

Plot Item Response Function

# items.to.plot <- c(1:11)
plotICC(Medi_RSM, ask = FALSE)

Person parameter

# Calculate person parameters:
person.locations.estimate <- person.parameter(Medi_RSM)

# Store person parameters and their standard errors in a dataframe object:
person.locations <- cbind.data.frame(person.locations.estimate$thetapar,
                                     person.locations.estimate$se.theta)
names(person.locations) <- c("theta", "SE")

# View summary statistics for person parameters:
summary(person.locations)
##      theta              SE        
##  Min.   :0.5826   Min.   :0.3956  
##  1st Qu.:2.3342   1st Qu.:0.4012  
##  Median :2.9897   Median :0.4086  
##  Mean   :2.9124   Mean   :0.4133  
##  3rd Qu.:3.4989   3rd Qu.:0.4159  
##  Max.   :6.2395   Max.   :0.6455

Item and person fit

# Exam Item fit
item.fit.results <- itemfit(person.locations.estimate)
item.fit <- cbind.data.frame(item.fit.results$i.infitMSQ,
                             item.fit.results$i.outfitMSQ,
                             item.fit.results$i.infitZ,
                             item.fit.results$i.outfitZ)
names(item.fit) <- c("infit_MSE", "outfit_MSE", "std_infit", "std_outfit")
summary(item.fit)
##    infit_MSE        outfit_MSE       std_infit         std_outfit     
##  Min.   :0.6736   Min.   :0.6737   Min.   :-3.6492   Min.   :-3.6569  
##  1st Qu.:0.8259   1st Qu.:0.8268   1st Qu.:-1.8316   1st Qu.:-1.8285  
##  Median :0.9124   Median :0.9122   Median :-0.8721   Median :-0.8816  
##  Mean   :0.9121   Mean   :0.9135   Mean   :-0.9497   Mean   :-0.9349  
##  3rd Qu.:0.9806   3rd Qu.:0.9843   3rd Qu.:-0.1639   3rd Qu.:-0.1267  
##  Max.   :1.1647   Max.   :1.1638   Max.   : 1.5938   Max.   : 1.5932
item.fit
##             infit_MSE outfit_MSE  std_infit std_outfit
## Decenter_1  0.7268730  0.7419581 -2.9938349 -2.8265134
## Decenter_2  0.6735916  0.6736770 -3.6491864 -3.6568735
## Decenter_3  0.9124301  0.9108674 -0.8720733 -0.8906467
## Decenter_4  0.9094132  0.9122409 -0.9050739 -0.8816013
## Decenter_5  0.9509940  0.9458656 -0.4625791 -0.5166380
## Decenter_6  1.0101662  1.0154013  0.1348078  0.1876684
## Decenter_7  0.9498165  0.9532564 -0.4755053 -0.4409914
## Decenter_8  0.8905554  0.8905278 -1.0986197 -1.1012185
## Decenter_9  1.1647317  1.1638264  1.5937960  1.5932181
## Decenter_10 0.7612899  0.7630038 -2.5646016 -2.5557383
## Decenter_11 1.0831533  1.0782461  0.8465551  0.8049873
# Exam person fit
person.fit.results <- personfit(person.locations.estimate)

person.fit <- cbind.data.frame(person.fit.results$p.infitMSQ,
                             person.fit.results$p.outfitMSQ,
                             person.fit.results$p.infitZ,
                             person.fit.results$p.outfitZ)
names(person.fit) <- c("infit_MSE", "outfit_MSE", "std_infit", "std_outfit")
person.fit
##      infit_MSE outfit_MSE    std_infit  std_outfit
## P1   0.9067225  0.9268917 -0.100339364 -0.04943769
## P2   1.2618795  1.2876543  0.709981972  0.76161647
## P3   1.7815786  1.7575408  1.640209628  1.60347333
## P4   0.4875167  0.4829200 -1.396079690 -1.41901655
## P5   0.5874628  0.5876735 -1.110901418 -1.11264806
## P6   0.9041745  0.8914858 -0.090585311 -0.12297481
## P7   1.4918152  1.5122967  1.146915386  1.18385930
## P8   0.9314514  0.9128359 -0.054734224 -0.10778062
## P9   0.8223777  0.8178739 -0.303840020 -0.31681198
## P10  0.7074835  0.7100907 -0.675941643 -0.66650900
## P11  0.7434115  0.7540076 -0.547709897 -0.51948578
## P12  0.5753849  0.5774170 -1.062075625 -1.05830145
## P13  0.6322997  0.6391987 -0.903763455 -0.87844362
## P14  0.5310833  0.5249628 -1.211930647 -1.23223250
## P15  0.7134800  0.7178589 -0.670040512 -0.65628337
## P16  0.6670526  0.6723606 -0.751042508 -0.73423079
## P17  0.7351201  0.7293961 -0.633573021 -0.65663928
## P18  0.4914207  0.4984623 -1.380978775 -1.35881603
## P19  0.9392846  0.9310584 -0.006337431 -0.02634163
## P20  0.4910838  0.4888173 -1.382279003 -1.39602452
## P21  0.6523622  0.6466739 -0.795225731 -0.81467582
## P22  1.2626119  1.2715204  0.711454749  0.72945548
## P23  1.4692489  1.4850919  1.167037580  1.20638194
## P24  0.5835617  0.5839038 -1.015502528 -1.01556880
## P25  1.2258873  1.2633440  0.665578193  0.75270512
## P26  0.6679778  0.6818348 -0.748188077 -0.70529093
## P27  0.4188734  0.4197483 -1.716503262 -1.72206791
## P28  1.1198124  1.1258298  0.428308309  0.44378814
## P29  0.5034115  0.5011152 -1.313748227 -1.32034437
## P30  1.2958820  1.3186864  0.799831357  0.84933386
## P31  0.5390465  0.5363595 -1.202884059 -1.21709738
## P32  0.5827700  0.5915450 -1.072745957 -1.03928959
## P33  0.4365742  0.4280545 -1.619869230 -1.66325388
## P34  0.7440002  0.7541288 -0.519153602 -0.49104821
## P35  1.1544782  1.1576170  0.490372006  0.49768145
## P36  0.8609360  0.8672962 -0.227721756 -0.20967319
## P37  0.3094481  0.3070328 -2.307858730 -2.32116654
## P38  0.8101126  0.8073450 -0.349797436 -0.35935324
## P39  0.1657179  0.1651526 -3.044831298 -3.04770828
## P40  0.3953662  0.4014363 -1.863479518 -1.85126144
## P41  1.9774754  1.9629038  1.955360909  1.93130109
## P42  1.0050483  1.0095097  0.153513554  0.16378712
## P43  2.4339666  2.4233903  2.595278351  2.57850625
## P44  0.2322449  0.2371497 -2.571896816 -2.54427907
## P45  0.8730046  0.8898043 -0.182952871 -0.13783424
## P46  1.1846732  1.1782751  0.556260320  0.54206175
## P47  0.7420940  0.7490278 -0.543354830 -0.52548628
## P48  0.4318197  0.4274191 -1.590985715 -1.61290210
## P49  2.9008862  2.9369119  3.239893064  3.29395591
## P50  0.6329649  0.6342226 -0.891948122 -0.89216081
## P51  1.0287207  1.0026797  0.208601394  0.14775648
## P52  0.6637510  0.6669610 -0.764865390 -0.75690215
## P53  0.3480896  0.3511700 -2.040377970 -2.02023128
## P54  0.3405194  0.3392975 -2.024538220 -2.02605919
## P55  1.1625685  1.0982521  0.521674710  0.37307938
## P56  0.3772076  0.3723307 -1.842192523 -1.86969486
## P57  2.4928259  2.4433318  2.728282419  2.67145909
## P58  0.3372035  0.3402515 -2.166431193 -2.17271349
## P59  1.0743761  1.0790797  0.313548736  0.32460122
## P60  0.7199009  0.7101362 -0.673304534 -0.70839495
## P61  0.4125516  0.4079913 -1.662503350 -1.68481207
## P62  0.4384554  0.4358514 -1.679581190 -1.69094713
## P63  0.8263747  0.8248482 -0.291811977 -0.29642699
## P64  0.6653534  0.6598611 -0.754850796 -0.77339787
## P65  1.2009847  1.1875332  0.586461215  0.55817401
## P66  2.0393503  2.0243925  2.169993787  2.16609530
## P67  0.9229291  0.9141675 -0.068819569 -0.09599444
## P68  0.4432358  0.4422672 -1.537840245 -1.54092413
## P69  0.1456386  0.1475760 -3.451300343 -3.46757359
## P70  1.1954988  1.1917417  0.576766911  0.56848957
## P71  0.3087551  0.3086762 -2.158234173 -2.16334126
## P72  0.8490620  0.8581451 -0.253348631 -0.22757031
## P73  1.3858417  1.3745288  0.970968608  0.94736573
## P74  1.8460109  1.8412004  1.759634025  1.75555880
## P75  2.4732016  2.4628723  2.728179395  2.72587856
## P76  0.1745557  0.1777207 -2.964968066 -2.94434121
## P77  1.7013932  1.6958969  1.507547956  1.49883834
## P78  0.4366604  0.4428753 -1.639662198 -1.62223023
## P79  1.4819228  1.5047082  1.176552465  1.21847657
## P80  0.7924499  0.8138872 -0.393041406 -0.33543528
## P81  0.4047885  0.4087505 -1.719333661 -1.70691761
## P82  0.2352147  0.2335029 -2.712377287 -2.71938899
## P83  0.4769672  0.4839924 -1.437293309 -1.41482159
## P84  0.5121261  0.5063068 -1.449666094 -1.48060807
## P85  1.4542526  1.4482200  1.112107344  1.09880606
## P86  0.8693023  0.8617977 -0.223550621 -0.24673751
## P87  3.4018852  3.3694394  3.716019268  3.68853971
## P88  0.8616349  0.8507889 -0.199113784 -0.22783276
## P89  0.7038746  0.6955723 -0.657352111 -0.68552561
## P90  1.0682440  1.0699096  0.299336556  0.30331061
## P91  0.4561275  0.4593118 -1.504750709 -1.49624748
## P92  0.7887639  0.8119493 -0.423587731 -0.36060251
## P93  0.5487238  0.5536791 -1.138316004 -1.12302368
## P94  0.7122054  0.7215053 -0.614705707 -0.58694288
## P95  1.0042974  1.0072859  0.138101440  0.14549425
## P96  1.7669583  1.7724553  1.669884978  1.67604100
## P98  0.4047885  0.4087505 -1.719333661 -1.70691761
## P99  0.7579087  0.7521367 -0.485104946 -0.50307344
## P100 0.4939251  0.4832271 -1.460358850 -1.52244242
## P101 0.3951156  0.3942916 -1.800525350 -1.81202130
## P102 0.2593238  0.2592143 -2.472410993 -2.48127490
## P103 1.2667206  1.2812019  0.752335014  0.78815800
## P104 0.4185427  0.4233448 -1.637186197 -1.61984576
## P105 1.4556743  1.4714817  1.082860558  1.11292796
## P106 0.4357384  0.4343284 -1.562379510 -1.56869421
## P107 0.9533302  0.9102377  0.012674975 -0.10407891
## P108 0.3315537  0.3309127 -2.031774303 -2.03831409
## P109 1.1686492  1.2117948  0.533432858  0.63228765
## P110 0.5266141  0.5343181 -1.219089001 -1.19070302
## P111 0.8170387  0.8166551 -0.325360756 -0.32786446
## P112 1.3196602  1.3204384  0.824470156  0.82614905
## P113 1.2540379  1.2422416  0.695517542  0.67135902
## P114 0.4982467  0.5050183 -1.442893268 -1.43321290
## P115 1.2837691  1.2609186  0.760297911  0.71500043
## P116 0.6055527  0.6162396 -1.032151582 -1.00624831
## P117 0.8097160  0.8140898 -0.338821587 -0.32669667
## P118 1.3858031  1.3096467  1.005020872  0.85294723
## P119 1.4329995  1.4341083  1.050188028  1.05412444
## P120 0.4247757  0.4253111 -1.625151025 -1.62050825
## P121 0.8093631  0.8260620 -0.358194869 -0.31404879
## P122 2.0841274  2.1120544  2.099555434  2.14236824
## P123 0.5753338  0.5807793 -1.062251605 -1.04674942
## P124 0.4322153  0.4476939 -1.721688143 -1.67388224
## P125 1.5777229  1.5647177  1.355496151  1.33016166
## P126 1.2998755  1.3200065  0.818891507  0.86544429
## P127 1.3093293  1.3031362  0.833323569  0.82379721
## P128 2.6317352  2.6719444  3.023700512  3.10619469
## P129 0.4787953  0.4773767 -1.407507803 -1.41087513
## P130 0.4491035  0.4505809 -1.540437368 -1.53090492
## P131 0.4161403  0.4074894 -1.670388085 -1.71238903
## P132 0.5644981  0.5762007 -1.083456907 -1.04535467
## P133 0.5937027  0.5911464 -1.037766036 -1.05289434
## P134 0.6162995  0.6146976 -0.907436560 -0.91375507
## P135 0.8270644  0.8423571 -0.295555337 -0.25398654
## P136 0.7958670  0.8393933 -0.425189729 -0.30494744
## P137 0.3985316  0.4500191 -1.865256698 -1.65009652
## P139 0.4714177  0.4684817 -1.495330549 -1.51566468
## P140 1.2702794  1.2742186  0.729831724  0.73864301
## P141 1.3917241  1.4383474  1.017075363  1.11970947
## P142 0.2605948  0.2662445 -2.408666887 -2.38020189
## P143 0.2195901  0.2284397 -3.001123141 -2.95091363
## P144 0.3499806  0.3538241 -2.036543943 -2.02847211
## P145 0.9984113  1.0692634  0.171715408  0.31012741
## P146 0.8600185  0.8925791 -0.224764573 -0.13949464
## P147 0.2447640  0.2497757 -2.535192323 -2.51159986
## P148 1.6287074  1.5773534  1.458343583  1.37282467
## P149 0.4979852  0.4887523 -1.355766431 -1.39627677
## P150 0.7715171  0.7523613 -0.451771396 -0.50834560
## P151 0.1456386  0.1475760 -3.451300343 -3.46757359
## P152 0.4832853  0.4811863 -1.374746084 -1.38325477
## P153 0.5237857  0.5220178 -1.229327460 -1.23504306
## P154 1.2524187  1.2585284  0.704542261  0.71893981
## P155 1.5561674  1.5234363  1.260630453  1.20386265
## P156 0.8454152  0.8471843 -0.246543174 -0.24119715
## P157 0.3579751  0.3483375 -1.973437039 -2.02883462
## P158 0.8994981  0.8702890 -0.119302113 -0.19924057
## P159 0.6105633  0.6095036 -0.934771000 -0.94060365
## P160 0.4726545  0.4537087 -1.471744530 -1.55536929
## P161 1.7349981  1.7176738  1.580319574  1.55471372
## P162 3.3290035  3.3715902  3.755852790  3.79476767
## P163 0.8004144  0.8169385 -0.366388948 -0.32253453
## P164 1.0958499  1.0868719  0.364829542  0.34429479
## P165 0.4111091  0.4121787 -1.664133215 -1.66141583
## P166 0.9879469  1.0021542  0.109678707  0.14352544
## P167 0.5147590  0.4997364 -1.292333574 -1.35393704
## P168 0.5480078  0.5500684 -1.197152439 -1.18647655
## P169 1.2362008  1.2933008  0.688332337  0.81783339
## P170 0.3662549  0.3696256 -1.901406821 -1.88151478
## P171 0.9992921  0.9929290  0.140256409  0.12522522
## P172 0.4673802  0.4686849 -1.436084346 -1.43150663
## P173 0.5377619  0.5380347 -1.194513596 -1.19707711
## P174 0.5128243  0.4992801 -1.349178076 -1.41206668
## P175 0.7177602  0.7189833 -0.668915376 -0.66672751
## P176 4.4103746  4.3705313  4.659205798  4.63058496
## P177 0.7047669  0.7066869 -0.646459179 -0.64290632
## P178 0.6129356  0.6157122 -0.971702833 -0.96812129
## P179 1.3170071  1.3289965  0.843182760  0.87040488
## P180 1.1958387  1.2071772  0.574635080  0.59848286
## P181 0.2687137  0.2670147 -2.393951143 -2.41014541
## P182 0.4231978  0.4345742 -1.697624050 -1.65765678
## P183 2.6948798  2.7117347  3.016979774  3.05138418
## P184 0.6035413  0.6622033 -1.022123417 -0.82467316
## P185 0.7761558  0.7888465 -0.435436060 -0.39914892
## P186 0.5162667  0.5177047 -1.319219902 -1.32125077
## P187 1.8605529  1.8641849  1.866584864  1.87261764
## P188 0.5633041  0.5626505 -1.087573621 -1.09183668
## P189 2.4366625  2.3388804  2.845701328  2.71575864
## P190 0.7484399  0.7610158 -0.509409128 -0.47330921
## P191 0.7872073  0.7871042 -0.397927392 -0.39885002

Item/Person separation reliability

## Person separation reliability
person.separation.reliability <- SepRel(person.locations.estimate)
person.separation.reliability
## Separation Reliability: 0.8234
## Item separation reliability:
# Get Item scores
ItemScores <- colSums(Medi_data)
# Get Item SD
ItemSD <- apply(Medi_data,2,sd)
# Calculate the se of the Item
ItemSE <- ItemSD/sqrt(length(ItemSD))
# compute the Observed Variance (also known as Total Person Variability or Squared Standard Deviation)
SSD.ItemScores <- var(ItemScores)
# compute the Mean Square Measurement error (also known as Model Error variance)
Item.MSE <- sum((ItemSE)^2) / length(ItemSE)
# compute the Item Separation Reliability
item.separation.reliability <- (SSD.ItemScores-Item.MSE) / SSD.ItemScores
item.separation.reliability
## [1] 0.9999787

Summarize the result

RSM_summary.table.statistics <- c("Logit Scale Location Mean",
                              "Logit Scale Location SD",
                              "Standard Error Mean",
                              "Standard Error SD",
                              "Outfit MSE Mean",
                              "Outfit MSE SD",
                              "Infit MSE Mean",
                              "Infit MSE SD",
                              "Std. Outfit Mean",
                              "Std. Outfit SD",
                              "Std. Infit Mean",
                              "Std. Infit SD",
                              "Separation.reliability")
delta.se <- Medi_RSM$se.eta

RSM_item.summary.results <- rbind(mean(centered.item.locations),
                              sd(centered.item.locations),
                              mean(delta.se),
                              sd(delta.se),
                              mean(item.fit.results$i.outfitMSQ),
                              sd(item.fit.results$i.outfitMSQ),
                              mean(item.fit.results$i.infitMSQ),
                              sd(item.fit.results$i.infitMSQ),
                              mean(item.fit.results$i.outfitZ),
                              sd(item.fit.results$i.outfitZ),
                              mean(item.fit.results$i.infitZ),
                              sd(item.fit.results$i.infitZ),
                              item.separation.reliability)


RSM_person.summary.results <- rbind(mean(person.locations$theta),
                              sd(person.locations$theta),
                              mean(person.locations$SE),
                              sd(person.locations$SE),
                              mean(person.fit$outfit_MSE),
                              sd(person.fit$outfit_MSE),
                              mean(person.fit$infit_MSE),
                              sd(person.fit$infit_MSE),
                              mean(person.fit$std_outfit),
                              sd(person.fit$std_outfit),
                              mean(person.fit$std_infit),
                              sd(person.fit$std_infit),
                              as.numeric(person.separation.reliability))

# Round the values for presentation in a table:
RSM_item.summary.results_rounded <- round(RSM_item.summary.results, digits = 2)

RSM_person.summary.results_rounded <- round(RSM_person.summary.results, digits = 2)

RSM_Table1 <- cbind.data.frame(RSM_summary.table.statistics,
                           RSM_item.summary.results_rounded, 
                           RSM_person.summary.results_rounded)

# Add descriptive column labels:
names(RSM_Table1) <- c("Statistic", "Items", "Persons")  

# Print the table to the console:
RSM_Table1
##                                             Statistic Items Persons    NA    NA
## X                           Logit Scale Location Mean  0.00    2.91  2.91  2.91
## X.1                           Logit Scale Location SD  0.57    0.98  0.98  0.98
## X.2                               Standard Error Mean  0.16    0.41  0.41  0.41
## X.3                                 Standard Error SD  0.14    0.02  0.02  0.02
## X.4                                   Outfit MSE Mean  0.91    0.91  0.91  0.91
## X.5                                     Outfit MSE SD  0.15    0.65  0.65  0.65
## X.6                                    Infit MSE Mean  0.91    0.91  0.91  0.91
## X.7                                      Infit MSE SD  0.15    0.65  0.65  0.65
## X.8                                  Std. Outfit Mean -0.93   -0.39 -0.39 -0.39
## X.9                                    Std. Outfit SD  1.57    1.45  1.45  1.45
## X.10                                  Std. Infit Mean -0.95   -0.39 -0.39 -0.39
## X.11                                    Std. Infit SD  1.59    1.45  1.45  1.45
## item.separation.reliability    Separation.reliability  1.00    0.82  0.97  0.17

Table 1 is an overall model summary table that provides an overview of the logit scale locations, standard errors, fit statistics, and reliability statistics for items and persons. This type of table is useful for reporting the results from Rasch model analyses because it provides a quick overview of the location estimates and numeric model-data fit statistics for the items and persons in the analysis.

# Calculate the average rating for each item:
Avg_Rating <- apply(Medi_data, 2, mean)

delta.se <- delta.se[1:11]

# Combine item calibration results in a table:
RSM_Table2 <- cbind.data.frame(c(1:ncol(Medi_data)), 
                           Avg_Rating,
                           centered.item.locations,
                           delta.se,
                           item.fit$outfit_MSE,
                           item.fit$std_outfit,
                           item.fit$infit_MSE,
                           item.fit$std_infit)

# Add meaningful column names:
names(RSM_Table2) <- c("Task ID", "Average Rating", "Item Location","Item SE","Outfit MSE","Std. Outfit", "Infit MSE","Std. Infit")                           
# Sort Table 2 by Item difficulty:
RSM_Table2 <- RSM_Table2[order(-RSM_Table2$`Item Location`),]

# Round the numeric values (all columns except the first one) to 2 digits:
RSM_Table2[, -1] <- round(RSM_Table2[,-1], digits = 2)

# Print the table to the console:
RSM_Table2
##             Task ID Average Rating Item Location Item SE Outfit MSE Std. Outfit
## Decenter_3        3           1.84          0.89    0.10       0.91       -0.89
## Decenter_7        7           2.01          0.59    0.09       0.95       -0.44
## Decenter_8        8           2.07          0.47    0.09       0.89       -1.10
## Decenter_5        5           2.08          0.46    0.10       0.95       -0.52
## Decenter_2        2           2.16          0.31    0.10       0.67       -3.66
## Decenter_10      10           2.39         -0.11    0.10       0.76       -2.56
## Decenter_9        9           2.43         -0.20    0.09       1.16        1.59
## Decenter_1        1           2.55         -0.42    0.09       0.74       -2.83
## Decenter_6        6           2.62         -0.56    0.09       1.02        0.19
## Decenter_4        4           2.68         -0.68    0.09       0.91       -0.88
## Decenter_11      11           2.72         -0.75    0.19       1.08        0.80
##             Infit MSE Std. Infit
## Decenter_3       0.91      -0.87
## Decenter_7       0.95      -0.48
## Decenter_8       0.89      -1.10
## Decenter_5       0.95      -0.46
## Decenter_2       0.67      -3.65
## Decenter_10      0.76      -2.56
## Decenter_9       1.16       1.59
## Decenter_1       0.73      -2.99
## Decenter_6       1.01       0.13
## Decenter_4       0.91      -0.91
## Decenter_11      1.08       0.85

Table 2 is a table that summarizes the overall calibrations of individual items. For data sets with manageable sample sizes such as the Liking for Science data example in this chapter, we recommend reporting details about each item in a table similar to this one.

# Calculate the average rating for persons who did not have extreme scores
Person_Avg_Rating <- apply(person.locations.estimate$X.ex,1, mean)

# Combine person calibration results in a table:
RSM_Table3 <- cbind.data.frame(rownames(person.locations),
                          Person_Avg_Rating,
                          person.locations$theta,
                          person.locations$SE,
                          person.fit$outfit_MSE,
                          person.fit$std_outfit,
                          person.fit$infit_MSE,
                          person.fit$std_infit)
                          
# Add meaningful column names:
names(RSM_Table3) <- c("ID", "Average Rating", "Person Location","Person SE","Outfit MSE","Std. Outfit", "Infit MSE","Std. Infit")

# Round the numeric values (all columns except the first one) to 2 digits:
RSM_Table3[, -1] <- round(RSM_Table3[,-1], digits = 2)

# Print the first six rows of the table to the console:
head(RSM_Table3)
##    ID Average Rating Person Location Person SE Outfit MSE Std. Outfit Infit MSE
## P1 P1           2.73            3.67      0.42       0.93       -0.05      0.91
## P2 P2           2.09            2.50      0.40       1.29        0.76      1.26
## P3 P3           2.27            2.82      0.41       1.76        1.60      1.78
## P4 P4           2.55            3.33      0.41       0.48       -1.42      0.49
## P5 P5           1.36            1.23      0.40       0.59       -1.11      0.59
## P6 P6           2.18            2.66      0.40       0.89       -0.12      0.90
##    Std. Infit
## P1      -0.10
## P2       0.71
## P3       1.64
## P4      -1.40
## P5      -1.11
## P6      -0.09