Desarrollar ejercicios para encontrar la probabilidad de eventos de un espacio muestral
Construir ejercicios de probabilidad conforme a partir de datos conforme la teoría de probabilidad.
A partir de un conjunto de datos generados estimar y determinar las probabilidades.
Para cuando los espacios muestrales tienen un espacio finito o un número de elementos finito, la probabilidad de ocurrencia de un evento que resulta de tal experimento estadístico se evalúa utilizando un conjunto de números reales denominados pesos o probabilidades, que van de 0 a 1. [@walpole2012].
Para todo punto en el espacio muestral se asigna una probabilidad tal que la suma de todas las probabilidades es 1. [@walpole2012].
Si se tiene certeza para creer que al llevar a cabo el experimento es bastante probable que ocurra cierto punto muestral, le tendríamos que asignar a éste una probabilidad cercana a uno. Por el contrario, si se cree que no hay probabilidades de que ocurra cierto punto muestral, se tendría que asignar a éste una probabilidad cercana a cero.
En un espacio muestral en donde todos los puntos muestrales tienen la misma oportunidad de ocurrencia, por lo tanto, se les asignan probabilidades iguales.
A los puntos fuera del espacio muestral, es decir, a los eventos simples que no tienen posibilidades de ocurrir, se les asigna una probabilidad de cero.
Entonces: La probabilidad de un evento A debe estar entre cero y uno
\[ 0 \le P(A) \le 1 \]
La probabilidad de todo el espacio muestral S debe ser uno \[ P(S) = 1 \]
La probabilidad de que no ocurra un evento es cero
\[ p(\phi) = 0 \]
Ejemplo: lanzar un dado. La probabilidad de que caiga un 1, un 2, un 3 un 4 un 5 un 6 es la misma para cada elemento. Siendo S el espacio muestral, cual es la probabilidad de que al lanzar un dado a una mesa, el valor del mismo cara arriba sea un 5?, y ¿cuál es la probabilidad de que sea un 7?
¿Cuántas veces está el 5 en el espacio muestral S?. Una sola vez.
¿Cuántas veces está el 7 en el espacio muestral S?. Ninguna
Entonces dividir el número de ocurrencias del 5 entre el número total de elementos N.
\[ prob = \frac{n}{N} \times 100 \]
dado <- c(1,2,3,4,5,6)
N <- length(dado)
# N
filtro <- subset(dado, dado == 5)
filtro
## [1] 5
n <- length(filtro)
# n
paste("La probabilidad de que al lanzar el dado sea cinco es : ", n , " de entre", N , " elementos que existen en el espacio muestral. Representa: ", round(n/N * 100,2), "%")
## [1] "La probabilidad de que al lanzar el dado sea cinco es : 1 de entre 6 elementos que existen en el espacio muestral. Representa: 16.67 %"
Se cargan librerías necesarias para distintos ejercicios
library(gtools)
¿Que probabilidad existe de que al lanzar los dos dados de que salga 10 la suma de los valores cara arriba de cada dado.
A partir de un vector dado del 1 al 6 que son los valores del dado generar permutaciones en donde se puedan repetir los valores del dado.
Poner nombre con la función names() nombres de columnas al conjunto de datos lanzar_dados.
Con la función cbind() se agrega una columna al conjunto de datos.
Con apply() se hace la suma de cada renglón del conjunto de datos lanzar_dados.
dado <- c(1,2,3,4,5,6)
lanzar_dados <- data.frame(permutations(n=6, r = 2, v = dado, repeats.allowed = TRUE))
names(lanzar_dados) <- c("dado1", "dado2")
lanzar_dados <- cbind(lanzar_dados, suma = apply(X = lanzar_dados, MARGIN = 1, FUN = sum))
lanzar_dados
## dado1 dado2 suma
## 1 1 1 2
## 2 1 2 3
## 3 1 3 4
## 4 1 4 5
## 5 1 5 6
## 6 1 6 7
## 7 2 1 3
## 8 2 2 4
## 9 2 3 5
## 10 2 4 6
## 11 2 5 7
## 12 2 6 8
## 13 3 1 4
## 14 3 2 5
## 15 3 3 6
## 16 3 4 7
## 17 3 5 8
## 18 3 6 9
## 19 4 1 5
## 20 4 2 6
## 21 4 3 7
## 22 4 4 8
## 23 4 5 9
## 24 4 6 10
## 25 5 1 6
## 26 5 2 7
## 27 5 3 8
## 28 5 4 9
## 29 5 5 10
## 30 5 6 11
## 31 6 1 7
## 32 6 2 8
## 33 6 3 9
## 34 6 4 10
## 35 6 5 11
## 36 6 6 12
Encontrar en cuantas ocasiones la suma de los dos dados es diez, se hace con la función subset()
suma <- 10
N <- nrow(lanzar_dados) # Cantidad de obervaciones
filtro <- subset(lanzar_dados, suma == 10)
filtro
## dado1 dado2 suma
## 24 4 6 10
## 29 5 5 10
## 34 6 4 10
n <- nrow(filtro) # Cantidad de eventos que cumplen una condición
n
## [1] 3
paste("Existen ", n, " alternativas de que la suma de lanzamiento de dos dados sea ", suma, " de un total de ",N, " lo que representa ", round(n/N * 100,2), "%", "probable ")
## [1] "Existen 3 alternativas de que la suma de lanzamiento de dos dados sea 10 de un total de 36 lo que representa 8.33 % probable "
Se reparten dos barajas y el jugador debe sumar los valores numéricos de las dos barajas.
La pregunta es: ¿Qué probabilidad existe de que al recibir dos cartas de una baraja de 52 cartas modalidad inglesa la suma de las dos cartas sea 20?
El As vale 1 punto
Los valores numéricos valen lo que indica la carta
Los monos (J, Q y K ) valen 10 puntos
Reutilizar código que existe en “../funciones/mis.funciones.r”
source ("https://raw.githubusercontent.com/rpizarrog/Trabajos-en-R-AD2021/main/funciones/misfunciones.R")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
El espacio muestral de todas las cartas almacenada en una variable llamada S.casos.
S.casos <- data.frame(permutations(13,2,baraja, repeats.allowed = TRUE))
names(S.casos) <- c("C1", "C2")
S.casos
## C1 C2
## 1 10 10
## 2 10 2
## 3 10 3
## 4 10 4
## 5 10 5
## 6 10 6
## 7 10 7
## 8 10 8
## 9 10 9
## 10 10 A
## 11 10 J
## 12 10 K
## 13 10 Q
## 14 2 10
## 15 2 2
## 16 2 3
## 17 2 4
## 18 2 5
## 19 2 6
## 20 2 7
## 21 2 8
## 22 2 9
## 23 2 A
## 24 2 J
## 25 2 K
## 26 2 Q
## 27 3 10
## 28 3 2
## 29 3 3
## 30 3 4
## 31 3 5
## 32 3 6
## 33 3 7
## 34 3 8
## 35 3 9
## 36 3 A
## 37 3 J
## 38 3 K
## 39 3 Q
## 40 4 10
## 41 4 2
## 42 4 3
## 43 4 4
## 44 4 5
## 45 4 6
## 46 4 7
## 47 4 8
## 48 4 9
## 49 4 A
## 50 4 J
## 51 4 K
## 52 4 Q
## 53 5 10
## 54 5 2
## 55 5 3
## 56 5 4
## 57 5 5
## 58 5 6
## 59 5 7
## 60 5 8
## 61 5 9
## 62 5 A
## 63 5 J
## 64 5 K
## 65 5 Q
## 66 6 10
## 67 6 2
## 68 6 3
## 69 6 4
## 70 6 5
## 71 6 6
## 72 6 7
## 73 6 8
## 74 6 9
## 75 6 A
## 76 6 J
## 77 6 K
## 78 6 Q
## 79 7 10
## 80 7 2
## 81 7 3
## 82 7 4
## 83 7 5
## 84 7 6
## 85 7 7
## 86 7 8
## 87 7 9
## 88 7 A
## 89 7 J
## 90 7 K
## 91 7 Q
## 92 8 10
## 93 8 2
## 94 8 3
## 95 8 4
## 96 8 5
## 97 8 6
## 98 8 7
## 99 8 8
## 100 8 9
## 101 8 A
## 102 8 J
## 103 8 K
## 104 8 Q
## 105 9 10
## 106 9 2
## 107 9 3
## 108 9 4
## 109 9 5
## 110 9 6
## 111 9 7
## 112 9 8
## 113 9 9
## 114 9 A
## 115 9 J
## 116 9 K
## 117 9 Q
## 118 A 10
## 119 A 2
## 120 A 3
## 121 A 4
## 122 A 5
## 123 A 6
## 124 A 7
## 125 A 8
## 126 A 9
## 127 A A
## 128 A J
## 129 A K
## 130 A Q
## 131 J 10
## 132 J 2
## 133 J 3
## 134 J 4
## 135 J 5
## 136 J 6
## 137 J 7
## 138 J 8
## 139 J 9
## 140 J A
## 141 J J
## 142 J K
## 143 J Q
## 144 K 10
## 145 K 2
## 146 K 3
## 147 K 4
## 148 K 5
## 149 K 6
## 150 K 7
## 151 K 8
## 152 K 9
## 153 K A
## 154 K J
## 155 K K
## 156 K Q
## 157 Q 10
## 158 Q 2
## 159 Q 3
## 160 Q 4
## 161 Q 5
## 162 Q 6
## 163 Q 7
## 164 Q 8
## 165 Q 9
## 166 Q A
## 167 Q J
## 168 Q K
## 169 Q Q
Total de casos del espacio muestral:
N <- nrow(S.casos) # El número de opciones
N
## [1] 169
Determinar columna para suma de las dos cartas
S.casos <- f.sumar.cartas(S.casos)
## Warning in ifelse(C1 == "J" | C1 == "Q" | C1 == "K", 10, as.numeric(C1)): NAs
## introducidos por coerción
## Warning in ifelse(C2 == "J" | C2 == "Q" | C2 == "K", 10, as.numeric(C2)): NAs
## introducidos por coerción
S.casos
## C1 C2 valor1 valor2 suma
## 1 10 10 10 10 20
## 2 10 2 10 2 12
## 3 10 3 10 3 13
## 4 10 4 10 4 14
## 5 10 5 10 5 15
## 6 10 6 10 6 16
## 7 10 7 10 7 17
## 8 10 8 10 8 18
## 9 10 9 10 9 19
## 10 10 A 10 1 11
## 11 10 J 10 10 20
## 12 10 K 10 10 20
## 13 10 Q 10 10 20
## 14 2 10 2 10 12
## 15 2 2 2 2 4
## 16 2 3 2 3 5
## 17 2 4 2 4 6
## 18 2 5 2 5 7
## 19 2 6 2 6 8
## 20 2 7 2 7 9
## 21 2 8 2 8 10
## 22 2 9 2 9 11
## 23 2 A 2 1 3
## 24 2 J 2 10 12
## 25 2 K 2 10 12
## 26 2 Q 2 10 12
## 27 3 10 3 10 13
## 28 3 2 3 2 5
## 29 3 3 3 3 6
## 30 3 4 3 4 7
## 31 3 5 3 5 8
## 32 3 6 3 6 9
## 33 3 7 3 7 10
## 34 3 8 3 8 11
## 35 3 9 3 9 12
## 36 3 A 3 1 4
## 37 3 J 3 10 13
## 38 3 K 3 10 13
## 39 3 Q 3 10 13
## 40 4 10 4 10 14
## 41 4 2 4 2 6
## 42 4 3 4 3 7
## 43 4 4 4 4 8
## 44 4 5 4 5 9
## 45 4 6 4 6 10
## 46 4 7 4 7 11
## 47 4 8 4 8 12
## 48 4 9 4 9 13
## 49 4 A 4 1 5
## 50 4 J 4 10 14
## 51 4 K 4 10 14
## 52 4 Q 4 10 14
## 53 5 10 5 10 15
## 54 5 2 5 2 7
## 55 5 3 5 3 8
## 56 5 4 5 4 9
## 57 5 5 5 5 10
## 58 5 6 5 6 11
## 59 5 7 5 7 12
## 60 5 8 5 8 13
## 61 5 9 5 9 14
## 62 5 A 5 1 6
## 63 5 J 5 10 15
## 64 5 K 5 10 15
## 65 5 Q 5 10 15
## 66 6 10 6 10 16
## 67 6 2 6 2 8
## 68 6 3 6 3 9
## 69 6 4 6 4 10
## 70 6 5 6 5 11
## 71 6 6 6 6 12
## 72 6 7 6 7 13
## 73 6 8 6 8 14
## 74 6 9 6 9 15
## 75 6 A 6 1 7
## 76 6 J 6 10 16
## 77 6 K 6 10 16
## 78 6 Q 6 10 16
## 79 7 10 7 10 17
## 80 7 2 7 2 9
## 81 7 3 7 3 10
## 82 7 4 7 4 11
## 83 7 5 7 5 12
## 84 7 6 7 6 13
## 85 7 7 7 7 14
## 86 7 8 7 8 15
## 87 7 9 7 9 16
## 88 7 A 7 1 8
## 89 7 J 7 10 17
## 90 7 K 7 10 17
## 91 7 Q 7 10 17
## 92 8 10 8 10 18
## 93 8 2 8 2 10
## 94 8 3 8 3 11
## 95 8 4 8 4 12
## 96 8 5 8 5 13
## 97 8 6 8 6 14
## 98 8 7 8 7 15
## 99 8 8 8 8 16
## 100 8 9 8 9 17
## 101 8 A 8 1 9
## 102 8 J 8 10 18
## 103 8 K 8 10 18
## 104 8 Q 8 10 18
## 105 9 10 9 10 19
## 106 9 2 9 2 11
## 107 9 3 9 3 12
## 108 9 4 9 4 13
## 109 9 5 9 5 14
## 110 9 6 9 6 15
## 111 9 7 9 7 16
## 112 9 8 9 8 17
## 113 9 9 9 9 18
## 114 9 A 9 1 10
## 115 9 J 9 10 19
## 116 9 K 9 10 19
## 117 9 Q 9 10 19
## 118 A 10 1 10 11
## 119 A 2 1 2 3
## 120 A 3 1 3 4
## 121 A 4 1 4 5
## 122 A 5 1 5 6
## 123 A 6 1 6 7
## 124 A 7 1 7 8
## 125 A 8 1 8 9
## 126 A 9 1 9 10
## 127 A A 1 1 2
## 128 A J 1 10 11
## 129 A K 1 10 11
## 130 A Q 1 10 11
## 131 J 10 10 10 20
## 132 J 2 10 2 12
## 133 J 3 10 3 13
## 134 J 4 10 4 14
## 135 J 5 10 5 15
## 136 J 6 10 6 16
## 137 J 7 10 7 17
## 138 J 8 10 8 18
## 139 J 9 10 9 19
## 140 J A 10 1 11
## 141 J J 10 10 20
## 142 J K 10 10 20
## 143 J Q 10 10 20
## 144 K 10 10 10 20
## 145 K 2 10 2 12
## 146 K 3 10 3 13
## 147 K 4 10 4 14
## 148 K 5 10 5 15
## 149 K 6 10 6 16
## 150 K 7 10 7 17
## 151 K 8 10 8 18
## 152 K 9 10 9 19
## 153 K A 10 1 11
## 154 K J 10 10 20
## 155 K K 10 10 20
## 156 K Q 10 10 20
## 157 Q 10 10 10 20
## 158 Q 2 10 2 12
## 159 Q 3 10 3 13
## 160 Q 4 10 4 14
## 161 Q 5 10 5 15
## 162 Q 6 10 6 16
## 163 Q 7 10 7 17
## 164 Q 8 10 8 18
## 165 Q 9 10 9 19
## 166 Q A 10 1 11
## 167 Q J 10 10 20
## 168 Q K 10 10 20
## 169 Q Q 10 10 20
Nuevamente la pregunta es: ¿qué probabilidad existe de que al recibir dos cartas de una baraja de 52 cartas modalidad inglesa la suma de las dos cartas sea 20?
sumados <- 20
filtro <- subset(S.casos, suma == sumados)
n <- nrow(filtro)
filtro
## C1 C2 valor1 valor2 suma
## 1 10 10 10 10 20
## 11 10 J 10 10 20
## 12 10 K 10 10 20
## 13 10 Q 10 10 20
## 131 J 10 10 10 20
## 141 J J 10 10 20
## 142 J K 10 10 20
## 143 J Q 10 10 20
## 144 K 10 10 10 20
## 154 K J 10 10 20
## 155 K K 10 10 20
## 156 K Q 10 10 20
## 157 Q 10 10 10 20
## 167 Q J 10 10 20
## 168 Q K 10 10 20
## 169 Q Q 10 10 20
paste("De las ", N, "alternativas, ", " existe ", n, " posibilidades de que la suma de las dos cartas repartidas sea", sumados, " ,que representa el ", round(n/N * 100, 2), "%")
## [1] "De las 169 alternativas, existe 16 posibilidades de que la suma de las dos cartas repartidas sea 20 ,que representa el 9.47 %"
La ruleta tiene 39 números en colores negro y rojo ¿que probabilidad existe de que al dar vuelta se detenga en un valor en específico?
numeros <- 1:36
colores <- c("Negro", "Rojo")
S.ruleta <- c(paste(as.character(1:36), "Rojo"),
paste(as.character(1:36), "Negro"))
S.ruleta
## [1] "1 Rojo" "2 Rojo" "3 Rojo" "4 Rojo" "5 Rojo" "6 Rojo"
## [7] "7 Rojo" "8 Rojo" "9 Rojo" "10 Rojo" "11 Rojo" "12 Rojo"
## [13] "13 Rojo" "14 Rojo" "15 Rojo" "16 Rojo" "17 Rojo" "18 Rojo"
## [19] "19 Rojo" "20 Rojo" "21 Rojo" "22 Rojo" "23 Rojo" "24 Rojo"
## [25] "25 Rojo" "26 Rojo" "27 Rojo" "28 Rojo" "29 Rojo" "30 Rojo"
## [31] "31 Rojo" "32 Rojo" "33 Rojo" "34 Rojo" "35 Rojo" "36 Rojo"
## [37] "1 Negro" "2 Negro" "3 Negro" "4 Negro" "5 Negro" "6 Negro"
## [43] "7 Negro" "8 Negro" "9 Negro" "10 Negro" "11 Negro" "12 Negro"
## [49] "13 Negro" "14 Negro" "15 Negro" "16 Negro" "17 Negro" "18 Negro"
## [55] "19 Negro" "20 Negro" "21 Negro" "22 Negro" "23 Negro" "24 Negro"
## [61] "25 Negro" "26 Negro" "27 Negro" "28 Negro" "29 Negro" "30 Negro"
## [67] "31 Negro" "32 Negro" "33 Negro" "34 Negro" "35 Negro" "36 Negro"
¿Cuál es la la probabilidad de que al darle vuelta la ruleta se detenga en un valor específico, por ejemplo, en la casilla “20 Negro.”?
N <- length(S.ruleta)
n <- 1
paste ("La probabilidad de que caiga un valor en la ruleta de ", N , " alternativas es: ", round(n/N * 100, 2), "%")
## [1] "La probabilidad de que caiga un valor en la ruleta de 72 alternativas es: 1.39 %"
En la vida cotidiana vemos con frecuencia eventos que atrapan nuestra atención, la curiosidad, una característica importante en el ser humano, por entender la realidad es el origen del conocimiento; a lo largo de los años la humanidad ha buscado comprender la vida a través de la razón, y lo ha logrado en gran medida gracias a las matemáticas y la ciencia en general.
Vemos cómo casi todo tiene un método para elaborarse, llevarse a cabo; y aún en los casos donde la razón casi no tiene cabida, el hombre se las ha ingeniado incluso para entender eso que no entiende; le da sustento a aquello hasta donde su razón lo permite.
Este hecho tan contradictorio de entender y explicar aquello que no se puede controlar se ve en diferentes ámbitos, como por ejemplo el inconsciente en psicoanálisis, el cual de alguna manera se puede percibir y externar más no controlar. Lo mismo ocurre con la teoría de la probabilidad; como existen aquellos eventos en los que no podemos intervenir, tal como en el resultado tras el lanzar una moneda o unos dados, el humano acepta tal realidad pero la justifica, y ello es la probabilidad: entender tanto como sea posible los eventos de un espacio muestral y a partir de ello decidir según la situación.
Entender lo anterior a través de R y RStudio lo amplifica y lleva a otro nivel para comprender el qué estamos haciendo. Es como contemplar el mundo desde una ventana.