tabla_006 Educación

¿Cuál es la principal razón por la cual no asiste actualmente a algún establecimiento educacional?

VE-CC

DataIntelligence
date:01-10-2021

1 Introducción

direccion <- switch(2,"C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/","C:/Users/chris/OneDrive/Documentos/archivos_grandes/")

dataset_06 <<- readRDS(paste0(direccion,"casen_2006_c.rds"))
dataset_06 <- mutate_if(dataset_06, is.factor, as.character)
dataset_09 <<- readRDS(paste0(direccion,"casen_2009_c.rds"))
dataset_09 <- mutate_if(dataset_09, is.factor, as.character)
dataset_11 <<- readRDS(paste0(direccion,"casen_2011_c.rds"))
dataset_11 <- mutate_if(dataset_11, is.factor, as.character)
dataset_13 <<- readRDS(paste0(direccion,"casen_2013_c.rds"))
dataset_13 <- mutate_if(dataset_13, is.factor, as.character)
dataset_15 <<- readRDS(paste0(direccion,"casen_2015_c.rds"))
dataset_15 <- mutate_if(dataset_15, is.factor, as.character)
dataset_17 <<- readRDS(paste0(direccion,"casen_2017_c.rds"))
dataset_17 <- mutate_if(dataset_17, is.factor, as.character)
dataset_20 <<- readRDS(paste0(direccion,"casen_2020_e1.rds"))
dataset_20 <- mutate_if(dataset_20, is.factor, as.character)
casen_2006 <- dataset_06
casen_2009 <- dataset_09
casen_2011 <- dataset_11
casen_2013 <- dataset_13
casen_2015 <- dataset_15
casen_2017 <- dataset_17
casen_2020 <- dataset_20
carrera <- read_xlsx("C:/Users/chris/OneDrive/Documentos/GitHub/ds_ttcc_ok/AstridCodigos/Diccionario/tabla_006_Diccionario_Educación_no_estudia.xlsx")
carrera <- carrera[-c(1:2),c(1,3)]
names(carrera)[2] <- "Homologacion_006"
diccionario <- function(df){
  variable <- switch(i,"E6","E5","e5","e5","e5a","e5a")
  names(carrera)[1] <- variable
  df <- merge(df, carrera, by = variable)
  
    switch(i,
        case =  casen_2006 <<- df,
        case =  casen_2009 <<- df,
        case =  casen_2011 <<- df,
        case =  casen_2013 <<- df,
        case =  casen_2015 <<- df,
        case =  casen_2017 <<- df 
)
}
for (i in 1:6) {
  
  switch(i,
        case = casen <- casen_2006,
        case = casen <- casen_2009,
        case = casen <- casen_2011,
        case = casen <- casen_2013,
        case = casen <- casen_2015,
        case = casen <- casen_2017,
        # case = casen <- casen_2020
)
  
  diccionario(casen)
  
}
df_tablas <- data.frame()

funcion1 <- function(n){

 xx<-switch(n,"2006","2009","2011","2013","2015","2017")
 tanio <<- xx

 v1 <- switch(n,"Homologacion_006","Homologacion_006","Homologacion_006","Homologacion_006","Homologacion_006","Homologacion_006")


if(xx==2006) {
   
eliminated <- casen_2006 
c <- eliminated[,c(v1)]
anio <- 2006
}
 
 if(xx==2009) {
   
eliminated <- casen_2009
c <- eliminated[,c(v1)]
anio <- 2009
}
 
 if(xx==2011) {
   
eliminated <- casen_2011 
c <- eliminated[,c(v1)]
anio <- 2011
}
 
 if(xx==2013) {
   
eliminated <- casen_2013 
c <- eliminated[,c(v1)]
anio <- 2013
}
 
 if(xx==2015) {
   
eliminated <- casen_2015 
c <- eliminated[,c(v1)]
anio <- 2015
}

if(xx==2017) {
    
eliminated <- casen_2017  
c <- eliminated[,c(v1)]
anio <- 2017
}
 
 
################ -- frecuencia
expan<-switch(n,"EXPC","EXPC","expc_full","expc","expc_todas","expc","expc")
tabla_matp <-xtabs(eliminated[,(expan)]~c, data = eliminated)
tabla_matp <- as.data.frame(tabla_matp) 
names(tabla_matp)[1] <- "categorias"
data_df1 <<- tabla_matp
################ 
} 

for (n in 1:6){
  
  funcion1(n) 
  assign(paste0("tabla_",tanio),data_df1)

}
tabla_f <- merge(tabla_2006, tabla_2009, by= "categorias",  all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2011, by= "categorias", all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2013, by= "categorias", all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2015, by= "categorias", all.x = T, all.y = T)
tabla_f <- merge(tabla_f, tabla_2017, by= "categorias", all.x = T, all.y = T) 




colnames(tabla_f) <- c("Variable","2006","2009","2011","2013","2015","2017")
 
tabla_f <- mutate_all(tabla_f, ~replace(., is.na(.), 0))

tabla_t <- tabla_f
tabla_t$a2007 <- NA
tabla_t$a2008 <- NA
tabla_t$a2010 <- NA
tabla_t$a2012 <- NA
tabla_t$a2014 <- NA
tabla_t$a2016 <- NA
# tabla_t$a2018 <- NA
# tabla_t$a2019 <- NA 
 
tabla_t <- tabla_t[,c("Variable","2006","a2007","a2008","2009","a2010","2011","a2012","2013","a2014","2015","a2016","2017")]
receptaculo <- data.frame()
for (n in 1:nrow(tabla_t)) {
  calculado <- na.approx(c(tabla_t[n,c(2:ncol(tabla_t))])) 
  receptaculo <- rbind(receptaculo,calculado)
}
receptaculo <- cbind(tabla_t$Variable,receptaculo)
colnames(receptaculo) <- c("categorias",paste0(seq(2006,2017,1)))

################
 
datatable(receptaculo, extensions = 'Buttons', escape = FALSE, rownames = TRUE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'ruralidad'),
          list(extend='pdf',
            filename= 'ruralidad')),
          text = 'Download')), scrollX = TRUE))%>%
    formatRound(columns=c(paste0(seq(2006,2017,1))) ,mark = "", digits=0)