pbinom(4, size=15, prob=0.3)
## [1] 0.5154911
dbinom(4, size = 15, prob = 0.3)
## [1] 0.2186231
dbinom(6, size = 15, prob = 0.7)
## [1] 0.01159
pbinom(4, size=15, prob=0.3)-pbinom(1, size=15, prob=0.3)
## [1] 0.4802235
1-pbinom(1, size=15, prob=0.3)
## [1] 0.9647324
pbinom(1, size=15, prob=0.7)
## [1] 5.165607e-07
pbinom(5, size=15, prob=0.3)-pbinom(2, size=15, prob=0.3)
## [1] 0.5947937
dbinom(1, size = 6, prob = 0.1)
## [1] 0.354294
1-pbinom(1, size=6, prob=0.1)
## [1] 0.114265
1-pbinom(3, size=5, prob=0.9)
## [1] 0.91854
p=0.25
n=25
p*n
## [1] 6.25
sqrt(25*0.25*(1-0.25))
## [1] 2.165064
1-pbinom(10.59, size=25, prob=0.25)
## [1] 0.02966991
1-pbinom(9, size=15, prob=0.6)
## [1] 0.4032156
pbinom(7, size=15, prob=0.4)
## [1] 0.7868968
pbinom(10, size=15, prob=0.4)-pbinom(4, size=15, prob=0.4)
## [1] 0.7733746
dbinom(2, size = 10, prob = 0.08)
## [1] 0.147807
sum(dbinom(9:10, size = 10, prob = 0.81))
## [1] 0.4067565
sum(dbinom(0:15, size = 25, prob = 0.8))
## [1] 0.01733187
1-sum(dbinom(0:15, size = 25, prob = 0.7))
## [1] 0.810564
1-sum(dbinom(0:15, size = 25, prob = 0.6))
## [1] 0.424617
sum(dbinom(0:14, size = 25, prob = 0.8))
## [1] 0.00555492
1-sum(dbinom(0:14, size = 25, prob = 0.7))
## [1] 0.9022
1-sum(dbinom(0:14, size = 25, prob = 0.6))
## [1] 0.585775
1- dbinom(0, size = 2, prob = 0.9)
## [1] 0.99
1- sum(dbinom(0:1, size = 4, prob = 0.9))
## [1] 0.9963
Para este punto P(x>1) así que para pasar a x<1, se le resta el total así que P(x>1)=1-P(x<1), por lo tanto el único valor que puede tomar x es x=0, con n=2 pero ahora p=0.5
1-dbinom(0, size = 2, prob = 0.5)
## [1] 0.75
1- sum(dbinom(0:1, size = 4, prob = 0.5))
## [1] 0.6875
p=0.5
n=20
mu=p*n
sqrt(20*0.5*(1-0.5))
## [1] 2.236068
1- sum(dbinom(6:14, size = 20, prob = 0.5))
## [1] 0.04138947
1- sum(dbinom(6:14, size = 20, prob = 0.75))
## [1] 0.6171765
qnorm(0.9838)
## [1] 2.139441
qnorm(.791)
## [1] 0.8098959
qnorm(1-0.121)
## [1] 1.170002
qnorm(0.834)
## [1] 0.9700933
qnorm(0.508)
## [1] 0.02005437
-qnorm(.0055)
## [1] 2.542699
-qnorm(.09)
## [1] 1.340755
-qnorm(.663)
## [1] -0.4206646
pnorm(50,mean=46.8,sd=1.75,lower.tail=TRUE)
## [1] 0.9662681
pnorm(48,mean=46.8,sd=1.75,lower.tail=FALSE)
## [1] 0.2464466
pnorm(48.55,mean=46.8,sd=1.5,lower.tail=TRUE)
## [1] 0.8783275
pnorm(10,mean=8.8,sd=2.8,lower.tail=FALSE)
## [1] 0.3341176
pnorm(20,mean=8.8,sd=2.8,lower.tail=FALSE)
## [1] 3.167124e-05
pnorm(10,mean=8.8,sd=2.8,lower.tail=TRUE) - pnorm(5,mean=8.8,sd=2.8,lower.tail=TRUE)
## [1] 0.5785145
qnorm(0.98, mean = 8.8, sd = 2.8, lower.tail=TRUE)
## [1] 14.5505
sum(dbinom(1:4, size = 4, prob = 0.3341176))
## [1] 0.803397
pnorm(105, mean = 104, sd = 5, lower.tail=TRUE)-pnorm(105, mean = 104, sd = 5, lower.tail=TRUE)
## [1] 0
pnorm(105,mean=104,sd=5,lower.tail=TRUE)
## [1] 0.5792597
pnorm(105,mean=104,sd=5,lower.tail=TRUE)
## [1] 0.5792597
1 - (pnorm(109, mean = 104, sd = 5, lower.tail=TRUE) - pnorm(99, mean = 104, sd = 5, lower.tail=TRUE))
## [1] 0.3173105
104-3.1*5
## [1] 88.5
104+3.1*5
## [1] 119.5
qnorm(.91, mean = 30, sd = 5, lower.tail=TRUE)
## [1] 36.70378
qnorm(0.06, mean = 30, sd = 5, lower.tail=TRUE)
## [1] 22.22613
qnorm(0.90, mean = 3.000, sd = 0.140, lower.tail=TRUE)
## [1] 3.179417
p<-pnorm(100, mean = 200, sd = 30, lower.tail=TRUE)
p*5
## [1] 0.002145302
library(matlib)
## Warning in rgl.init(initValue, onlyNULL): RGL: unable to open X11 display
## Warning: 'rgl.init' failed, running with 'rgl.useNULL = TRUE'.
A <- matrix(c(1, 1.28, 1, -2.57), 2, 2, TRUE)
b <- c(10.256, 9.671)
showEqn(A, b)
## 1*x1 + 1.28*x2 = 10.256
## 1*x1 - 2.57*x2 = 9.671
Solve(A,b)
## x1 = 10.06150649
## x2 = 0.15194805
(1- (pnorm(0.504, mean = 0.499, sd = 0.002, lower.tail=TRUE)- pnorm(0.496, mean = 0.499, sd = 0.002, lower.tail=TRUE)))
## [1] 0.07301687
qnorm(0.99, mean = 12, sd = 3.5, lower.tail=TRUE)
## [1] 20.14222
1-pnorm(4000, mean = 3432, sd = 483, lower.tail=TRUE)
## [1] 0.1198007
pnorm(4000,mean=3432,sd=483,lower.tail=TRUE) - pnorm(3000,mean=3432,sd=483,lower.tail=TRUE)
## [1] 0.694648
pnorm(2000, mean = 3432, sd = 483, lower.tail=TRUE) + pnorm(5000, mean = 3432, sd = 483, lower.tail=FALSE)
## [1] 0.002098803
pnorm(3175.15, mean = 3432, sd = 483, lower.tail=FALSE)
## [1] 0.702561
3432-3.290527*482
## [1] 1845.966
3432+3.290527*482
## [1] 5018.034
pnorm(7, mean = 7.5662, sd = 1.0626, lower.tail=FALSE)
## [1] 0.7029292
La distribución de pesos expresados en libras es: Normal µ = 7.5662, Desviación estándar σ = 1.0626, 0.7029292