So many ways to visualize data
Treemaps
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.4 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
#install.packages("treemap")
library(treemap)
library(RColorBrewer)
data <- read.csv("http://datasets.flowingdata.com/post-data.txt")
head(data)
## id views comments category
## 1 5019 148896 28 Artistic Visualization
## 2 1416 81374 26 Visualization
## 3 1416 81374 26 Featured
## 4 3485 80819 37 Featured
## 5 3485 80819 37 Mapping
## 6 3485 80819 37 Data Sources
Heatmaps
Load the nba data from Yau’s website
This data appears to contain dat about 2008 NBA player stats.
nba <- read.csv("http://datasets.flowingdata.com/ppg2008.csv")
nba
## Name G MIN PTS FGM FGA FGP FTM FTA FTP X3PM X3PA
## 1 Dwyane Wade 79 38.6 30.2 10.8 22.0 0.491 7.5 9.8 0.765 1.1 3.5
## 2 LeBron James 81 37.7 28.4 9.7 19.9 0.489 7.3 9.4 0.780 1.6 4.7
## 3 Kobe Bryant 82 36.2 26.8 9.8 20.9 0.467 5.9 6.9 0.856 1.4 4.1
## 4 Dirk Nowitzki 81 37.7 25.9 9.6 20.0 0.479 6.0 6.7 0.890 0.8 2.1
## 5 Danny Granger 67 36.2 25.8 8.5 19.1 0.447 6.0 6.9 0.878 2.7 6.7
## 6 Kevin Durant 74 39.0 25.3 8.9 18.8 0.476 6.1 7.1 0.863 1.3 3.1
## 7 Kevin Martin 51 38.2 24.6 6.7 15.9 0.420 9.0 10.3 0.867 2.3 5.4
## 8 Al Jefferson 50 36.6 23.1 9.7 19.5 0.497 3.7 5.0 0.738 0.0 0.1
## 9 Chris Paul 78 38.5 22.8 8.1 16.1 0.503 5.8 6.7 0.868 0.8 2.3
## 10 Carmelo Anthony 66 34.5 22.8 8.1 18.3 0.443 5.6 7.1 0.793 1.0 2.6
## 11 Chris Bosh 77 38.1 22.7 8.0 16.4 0.487 6.5 8.0 0.817 0.2 0.6
## 12 Brandon Roy 78 37.2 22.6 8.1 16.9 0.480 5.3 6.5 0.824 1.1 2.8
## 13 Antawn Jamison 81 38.2 22.2 8.3 17.8 0.468 4.2 5.6 0.754 1.4 3.9
## 14 Tony Parker 72 34.1 22.0 8.9 17.5 0.506 3.9 5.0 0.782 0.3 0.9
## 15 Amare Stoudemire 53 36.8 21.4 7.6 14.1 0.539 6.1 7.3 0.835 0.1 0.1
## 16 Joe Johnson 79 39.5 21.4 7.8 18.0 0.437 3.8 4.6 0.826 1.9 5.2
## 17 Devin Harris 69 36.1 21.3 6.6 15.1 0.438 7.2 8.8 0.820 0.9 3.2
## 18 Michael Redd 33 36.4 21.2 7.5 16.6 0.455 4.0 4.9 0.814 2.1 5.8
## 19 David West 76 39.3 21.0 8.0 17.0 0.472 4.8 5.5 0.884 0.1 0.3
## 20 Zachary Randolph 50 35.1 20.8 8.3 17.5 0.475 3.6 4.9 0.734 0.6 1.9
## 21 Caron Butler 67 38.6 20.8 7.3 16.2 0.453 5.1 6.0 0.858 1.0 3.1
## 22 Vince Carter 80 36.8 20.8 7.4 16.8 0.437 4.2 5.1 0.817 1.9 4.9
## 23 Stephen Jackson 59 39.7 20.7 7.0 16.9 0.414 5.0 6.0 0.826 1.7 5.2
## 24 Ben Gordon 82 36.6 20.7 7.3 16.0 0.455 4.0 4.7 0.864 2.1 5.1
## 25 Dwight Howard 79 35.7 20.6 7.1 12.4 0.572 6.4 10.7 0.594 0.0 0.0
## 26 Paul Pierce 81 37.4 20.5 6.7 14.6 0.457 5.7 6.8 0.830 1.5 3.8
## 27 Al Harrington 73 34.9 20.1 7.3 16.6 0.439 3.2 4.0 0.793 2.3 6.4
## 28 Jamal Crawford 65 38.1 19.7 6.4 15.7 0.410 4.6 5.3 0.872 2.2 6.1
## 29 Yao Ming 77 33.6 19.7 7.4 13.4 0.548 4.9 5.7 0.866 0.0 0.0
## 30 Richard Jefferson 82 35.9 19.6 6.5 14.9 0.439 5.1 6.3 0.805 1.4 3.6
## 31 Jason Terry 74 33.6 19.6 7.3 15.8 0.463 2.7 3.0 0.880 2.3 6.2
## 32 Deron Williams 68 36.9 19.4 6.8 14.5 0.471 4.8 5.6 0.849 1.0 3.3
## 33 Tim Duncan 75 33.7 19.3 7.4 14.8 0.504 4.5 6.4 0.692 0.0 0.0
## 34 Monta Ellis 25 35.6 19.0 7.8 17.2 0.451 3.1 3.8 0.830 0.3 1.0
## 35 Rudy Gay 79 37.3 18.9 7.2 16.0 0.453 3.3 4.4 0.767 1.1 3.1
## 36 Pau Gasol 81 37.1 18.9 7.3 12.9 0.567 4.2 5.4 0.781 0.0 0.0
## 37 Andre Iguodala 82 39.8 18.8 6.6 14.0 0.473 4.6 6.4 0.724 1.0 3.2
## 38 Corey Maggette 51 31.1 18.6 5.7 12.4 0.461 6.7 8.1 0.824 0.5 1.9
## 39 O.J. Mayo 82 38.0 18.5 6.9 15.6 0.438 3.0 3.4 0.879 1.8 4.6
## 40 John Salmons 79 37.5 18.3 6.5 13.8 0.472 3.6 4.4 0.830 1.6 3.8
## 41 Richard Hamilton 67 34.0 18.3 7.0 15.6 0.447 3.3 3.9 0.848 1.0 2.8
## 42 Ray Allen 79 36.3 18.2 6.3 13.2 0.480 3.0 3.2 0.952 2.5 6.2
## 43 LaMarcus Aldridge 81 37.1 18.1 7.4 15.3 0.484 3.2 4.1 0.781 0.1 0.3
## 44 Josh Howard 52 31.9 18.0 6.8 15.1 0.451 3.3 4.2 0.782 1.1 3.2
## 45 Maurice Williams 81 35.0 17.8 6.5 13.9 0.467 2.6 2.8 0.912 2.3 5.2
## 46 Shaquille O'neal 75 30.1 17.8 6.8 11.2 0.609 4.1 6.9 0.595 0.0 0.0
## 47 Rashard Lewis 79 36.2 17.7 6.1 13.8 0.439 2.8 3.4 0.836 2.8 7.0
## 48 Chauncey Billups 79 35.3 17.7 5.2 12.4 0.418 5.3 5.8 0.913 2.1 5.0
## 49 Allen Iverson 57 36.7 17.5 6.1 14.6 0.417 4.8 6.1 0.781 0.5 1.7
## 50 Nate Robinson 74 29.9 17.2 6.1 13.9 0.437 3.4 4.0 0.841 1.7 5.2
## X3PP ORB DRB TRB AST STL BLK TO PF
## 1 0.317 1.1 3.9 5.0 7.5 2.2 1.3 3.4 2.3
## 2 0.344 1.3 6.3 7.6 7.2 1.7 1.1 3.0 1.7
## 3 0.351 1.1 4.1 5.2 4.9 1.5 0.5 2.6 2.3
## 4 0.359 1.1 7.3 8.4 2.4 0.8 0.8 1.9 2.2
## 5 0.404 0.7 4.4 5.1 2.7 1.0 1.4 2.5 3.1
## 6 0.422 1.0 5.5 6.5 2.8 1.3 0.7 3.0 1.8
## 7 0.415 0.6 3.0 3.6 2.7 1.2 0.2 2.9 2.3
## 8 0.000 3.4 7.5 11.0 1.6 0.8 1.7 1.8 2.8
## 9 0.364 0.9 4.7 5.5 11.0 2.8 0.1 3.0 2.7
## 10 0.371 1.6 5.2 6.8 3.4 1.1 0.4 3.0 3.0
## 11 0.245 2.8 7.2 10.0 2.5 0.9 1.0 2.3 2.5
## 12 0.377 1.3 3.4 4.7 5.1 1.1 0.3 1.9 1.6
## 13 0.351 2.4 6.5 8.9 1.9 1.2 0.3 1.5 2.7
## 14 0.292 0.4 2.7 3.1 6.9 0.9 0.1 2.6 1.5
## 15 0.429 2.2 5.9 8.1 2.0 0.9 1.1 2.8 3.1
## 16 0.360 0.8 3.6 4.4 5.8 1.1 0.2 2.5 2.2
## 17 0.291 0.4 2.9 3.3 6.9 1.7 0.2 3.1 2.4
## 18 0.366 0.7 2.5 3.2 2.7 1.1 0.1 1.6 1.4
## 19 0.240 2.1 6.4 8.5 2.3 0.6 0.9 2.1 2.7
## 20 0.330 3.1 6.9 10.1 2.1 0.9 0.3 2.3 2.7
## 21 0.310 1.8 4.4 6.2 4.3 1.6 0.3 3.1 2.5
## 22 0.385 0.9 4.2 5.1 4.7 1.0 0.5 2.1 2.9
## 23 0.338 1.2 3.9 5.1 6.5 1.5 0.5 3.9 2.6
## 24 0.410 0.6 2.8 3.5 3.4 0.9 0.3 2.4 2.2
## 25 0.000 4.3 9.6 13.8 1.4 1.0 2.9 3.0 3.4
## 26 0.391 0.7 5.0 5.6 3.6 1.0 0.3 2.8 2.7
## 27 0.364 1.4 4.9 6.2 1.4 1.2 0.3 2.2 3.1
## 28 0.360 0.4 2.6 3.0 4.4 0.9 0.2 2.3 1.4
## 29 1.000 2.6 7.2 9.9 1.8 0.4 1.9 3.0 3.3
## 30 0.397 0.7 3.9 4.6 2.4 0.8 0.2 2.0 3.1
## 31 0.366 0.5 1.9 2.4 3.4 1.3 0.3 1.6 1.9
## 32 0.310 0.4 2.5 2.9 10.7 1.1 0.3 3.4 2.0
## 33 0.000 2.7 8.0 10.7 3.5 0.5 1.7 2.2 2.3
## 34 0.308 0.6 3.8 4.3 3.7 1.6 0.3 2.7 2.7
## 35 0.351 1.4 4.2 5.5 1.7 1.2 0.7 2.6 2.8
## 36 0.500 3.2 6.4 9.6 3.5 0.6 1.0 1.9 2.1
## 37 0.307 1.1 4.6 5.7 5.3 1.6 0.4 2.7 1.9
## 38 0.253 1.0 4.6 5.5 1.8 0.9 0.2 2.4 3.8
## 39 0.384 0.7 3.1 3.8 3.2 1.1 0.2 2.8 2.5
## 40 0.417 0.7 3.5 4.2 3.2 1.1 0.3 2.1 2.3
## 41 0.368 0.7 2.4 3.1 4.4 0.6 0.1 2.0 2.6
## 42 0.409 0.8 2.7 3.5 2.8 0.9 0.2 1.7 2.0
## 43 0.250 2.9 4.6 7.5 1.9 1.0 1.0 1.5 2.6
## 44 0.345 1.1 3.9 5.1 1.6 1.1 0.6 1.7 2.6
## 45 0.436 0.6 2.9 3.4 4.1 0.9 0.1 2.2 2.7
## 46 0.000 2.5 5.9 8.4 1.7 0.7 1.4 2.2 3.4
## 47 0.397 1.2 4.6 5.7 2.6 1.0 0.6 2.0 2.5
## 48 0.408 0.4 2.6 3.0 6.4 1.2 0.2 2.2 2.0
## 49 0.283 0.5 2.5 3.0 5.0 1.5 0.1 2.6 1.5
## 50 0.325 1.3 2.6 3.9 4.1 1.3 0.1 1.9 2.8
Create a cool-color heatmap of the nba 2008 data
nba <- nba[order(nba$PTS),]
row.names(nba) <- nba$Name
nba <- nba[,2:19]
nba_matrix <- data.matrix(nba)
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv=NA,
col = cm.colors(256), scale="column", margins=c(5,10),
xlab = "NBA Player Stats",
ylab = "NBA Players",
main = "NBA Player Stats in 2008")
Change the heatmap colors to heat colors
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv=NA, col = heat.colors(256),
scale="column", margins=c(5,10),
xlab = "NBA Player Stats",
ylab = "NBA Players",
main = "NBA Player Stats in 2008")
Use the viridis colors
## Loading required package: viridisLite
#install.packages("viridisLite")
library(viridisLite)
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv = NA, col = viridis(25, direction = -1),
scale="column", margins=c(5,10),
xlab = "NBA Player Stats",
ylab = "NBA Players",
main = "NBA Player Stats in 2008")
Code for creating a treemap
#install.packages("viridis")
library(viridis)
treemap(data, index="category", vSize="views",
vColor="comments", type="value",
palette="RdYlBu")
Use RColorBrewer to change the palette to RdYlBu
treemap(data, index="category", vSize="views",
vColor="comments", type="manual",
palette="RdYlBu")
Use the dataset NYCFlights13 to create a heatmap that explores Late Arrivals
#install.packages("nycflights13")
library(nycflights13)
library(RColorBrewer)
flights <- flights
Late Arrivals Affect the Usage Cost of Airports
This was modified from Raul Miranda’s work
flights_nona <- flights %>%
filter(!is.na(distance) & !is.na(arr_delay))
delays <- flights_nona %>% # create a delays dataframe by:
group_by (dest) %>% # grouping by point of destination
summarize (count = n(), # creating variables: number of flights to each destination,
dist = mean (distance), # the mean distance flown to each destination,
delay = mean (arr_delay), # the mean delay of arrival to each destination,
delaycost = mean(count*delay/dist)) # delay cost index defined as:
# [(number of flights)*delay/distance] for a destination
delays <- arrange(delays, desc(delaycost)) # sort the rows by delay cost
head(delays) # look at the data
## # A tibble: 6 x 5
## dest count dist delay delaycost
## <chr> <int> <dbl> <dbl> <dbl>
## 1 DCA 9111 211. 9.07 391.
## 2 IAD 5383 225. 13.9 332.
## 3 ATL 16837 757. 11.3 251.
## 4 BOS 15022 191. 2.91 230.
## 5 CLT 13674 538. 7.36 187.
## 6 RDU 7770 427. 10.1 183.
This gives Reagan National (DCA) with the highest delay cost. Now get the top 100 and create the heatmap.
top100 <- delays %>% # select the 100 largest delay costs
head(100) %>%
arrange(delaycost) # sort ascending so the heatmap displays descending costs
row.names(top100) <- top100$dest # rename the rows according to destination airport codes
## Warning: Setting row names on a tibble is deprecated.
Create a matrix from the dataframe
row.names(top100) <- top100$dest # rename the rows according to destination airport codes
## Warning: Setting row names on a tibble is deprecated.
delays_mat <- data.matrix(top100) # convert delays dataframe to a matrix (required by heatmap)
delays_mat2 <- delays_mat[,2:5] # remove the redundant column of destination airport codes
Call heatmap using a ColorBrewer color set, margins=c(7,10) for aspect ratio, titles of graph, x and y labels,font size of x and y labels, and set up a RowSideColors bar
varcols = setNames(colorRampPalette(brewer.pal(nrow(delays_mat2), "YlGnBu"))(nrow(delays_mat2)),
rownames(delays_mat2)) # parameter for RowSideColors
## Warning in brewer.pal(nrow(delays_mat2), "YlGnBu"): n too large, allowed maximum for palette YlGnBu is 9
## Returning the palette you asked for with that many colors
heatmap(delays_mat2,
Rowv = NA, Colv = NA,
col= colorRampPalette(brewer.pal(nrow(delays_mat2), "YlGnBu"))(nrow(delays_mat2)),
s=0.6, v=1, scale="column",
margins=c(7,10),
main = "Cost of Late Arrivals",
xlab = "Flight Characteristics",
ylab="Arrival Airport", labCol = c("Flights","Distance","Delay","Cost Index"),
cexCol=1, cexRow =1, RowSideColors = varcols)
## layout: widths = 0.05 0.2 4 , heights = 0.25 4 ; lmat=
## [,1] [,2] [,3]
## [1,] 0 0 4
## [2,] 3 1 2
## Warning in brewer.pal(nrow(delays_mat2), "YlGnBu"): n too large, allowed maximum for palette YlGnBu is 9
## Returning the palette you asked for with that many colors
Here is a trivial streamgraph using simulated names over time
# Create data:
year=rep(seq(1990,2016) , each=10)
name=rep(letters[1:10] , 27)
value=sample( seq(0,1,0.0001) , length(year))
data=data.frame(year, name, value)
# Basic stream graph: just give the 3 arguments
streamgraph(data, key="name", value="value", date="year")
## Warning in widget_html(name = class(x)[1], package = attr(x, "package"), :
## streamgraph_html returned an object of class `list` instead of a `shiny.tag`.
Now look at the babynames dataset
ncol(babynames)
## [1] 5
str(babynames)
## tibble [1,924,665 x 5] (S3: tbl_df/tbl/data.frame)
## $ year: num [1:1924665] 1880 1880 1880 1880 1880 1880 1880 1880 1880 1880 ...
## $ sex : chr [1:1924665] "F" "F" "F" "F" ...
## $ name: chr [1:1924665] "Mary" "Anna" "Emma" "Elizabeth" ...
## $ n : int [1:1924665] 7065 2604 2003 1939 1746 1578 1472 1414 1320 1288 ...
## $ prop: num [1:1924665] 0.0724 0.0267 0.0205 0.0199 0.0179 ...
Babynames streamgraph
Mouse over the colors and years to look at the pattern of various names
babynames %>%
filter(grepl("^Kr", name)) %>%
group_by(year, name) %>%
tally(wt=n) %>%
streamgraph("name", "n", "year")
## Warning in widget_html(name = class(x)[1], package = attr(x, "package"), :
## streamgraph_html returned an object of class `list` instead of a `shiny.tag`.
# Streamgraphing Commercial Real Estate Transaction Volume by Asset Class Since 2001
dat <- read.csv("http://asbcllc.com/blog/2015/february/cre_stream_graph_test/data/cre_transaction-data.csv")
dat %>%
streamgraph("asset_class", "volume_billions", "year", interpolate="cardinal") %>%
sg_axis_x(1, "year", "%Y") %>%
sg_fill_brewer("PuOr")
## Warning in widget_html(name = class(x)[1], package = attr(x, "package"), :
## streamgraph_html returned an object of class `list` instead of a `shiny.tag`.
Alluvials
Load the alluvial package
#install.packages("alluvial")
library(alluvial)
Refugees is a prebuilt dataset in the alluvial package
If you want to save the prebuilt dataset to your folder, use the write_csv function
#install.packages("ggalluvial")
library(ggalluvial)
alluvial::Refugees
## country year refugees
## 1 Afghanistan 2003 2136043
## 2 Burundi 2003 531637
## 3 Congo DRC 2003 453465
## 4 Iraq 2003 368580
## 5 Myanmar 2003 151384
## 6 Palestine 2003 350568
## 7 Somalia 2003 402336
## 8 Sudan 2003 606242
## 9 Syria 2003 20819
## 10 Vietnam 2003 363179
## 11 Afghanistan 2004 2084109
## 12 Burundi 2004 485454
## 13 Congo DRC 2004 461042
## 14 Iraq 2004 311905
## 15 Myanmar 2004 161013
## 16 Palestine 2004 350617
## 17 Somalia 2004 389304
## 18 Sudan 2004 730647
## 19 Syria 2004 21440
## 20 Vietnam 2004 349809
## 21 Afghanistan 2005 2166149
## 22 Burundi 2005 438706
## 23 Congo DRC 2005 430929
## 24 Iraq 2005 262299
## 25 Myanmar 2005 164864
## 26 Palestine 2005 349673
## 27 Somalia 2005 395553
## 28 Sudan 2005 693632
## 29 Syria 2005 16401
## 30 Vietnam 2005 358268
## 31 Afghanistan 2006 2107519
## 32 Burundi 2006 396541
## 33 Congo DRC 2006 401914
## 34 Iraq 2006 1450905
## 35 Myanmar 2006 202826
## 36 Palestine 2006 334142
## 37 Somalia 2006 464252
## 38 Sudan 2006 686311
## 39 Syria 2006 12338
## 40 Vietnam 2006 374279
## 41 Afghanistan 2007 1909911
## 42 Burundi 2007 375715
## 43 Congo DRC 2007 370386
## 44 Iraq 2007 2279245
## 45 Myanmar 2007 191256
## 46 Palestine 2007 335219
## 47 Somalia 2007 455356
## 48 Sudan 2007 523032
## 49 Syria 2007 13671
## 50 Vietnam 2007 327776
## 51 Afghanistan 2008 1817913
## 52 Burundi 2008 281592
## 53 Congo DRC 2008 367995
## 54 Iraq 2008 1873519
## 55 Myanmar 2008 184347
## 56 Palestine 2008 333990
## 57 Somalia 2008 559153
## 58 Sudan 2008 397013
## 59 Syria 2008 15186
## 60 Vietnam 2008 328183
## 61 Afghanistan 2009 1905804
## 62 Burundi 2009 94239
## 63 Congo DRC 2009 455852
## 64 Iraq 2009 1785212
## 65 Myanmar 2009 206650
## 66 Palestine 2009 95177
## 67 Somalia 2009 678308
## 68 Sudan 2009 348500
## 69 Syria 2009 17884
## 70 Vietnam 2009 339289
## 71 Afghanistan 2010 3054709
## 72 Burundi 2010 84064
## 73 Congo DRC 2010 476693
## 74 Iraq 2010 1683575
## 75 Myanmar 2010 215644
## 76 Palestine 2010 93299
## 77 Somalia 2010 770148
## 78 Sudan 2010 379067
## 79 Syria 2010 18428
## 80 Vietnam 2010 338698
## 81 Afghanistan 2011 2664436
## 82 Burundi 2011 101288
## 83 Congo DRC 2011 491481
## 84 Iraq 2011 1428308
## 85 Myanmar 2011 214594
## 86 Palestine 2011 94121
## 87 Somalia 2011 1075148
## 88 Sudan 2011 491013
## 89 Syria 2011 19900
## 90 Vietnam 2011 337829
## 91 Afghanistan 2012 2586034
## 92 Burundi 2012 73362
## 93 Congo DRC 2012 509082
## 94 Iraq 2012 746181
## 95 Myanmar 2012 215338
## 96 Palestine 2012 94820
## 97 Somalia 2012 1136713
## 98 Sudan 2012 558195
## 99 Syria 2012 728603
## 100 Vietnam 2012 336939
## 101 Afghanistan 2013 2556507
## 102 Burundi 2013 72652
## 103 Congo DRC 2013 499320
## 104 Iraq 2013 401384
## 105 Myanmar 2013 222053
## 106 Palestine 2013 96044
## 107 Somalia 2013 1121772
## 108 Sudan 2013 636400
## 109 Syria 2013 2457255
## 110 Vietnam 2013 314105
#install.packages("scales")
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:viridis':
##
## viridis_pal
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
Refugees <- Refugees
write_csv(Refugees, "refugees.csv")
Create the alluvial to show UNHCR-recognised refugess in the top 10 countries from 2003-2013
Alluvials need the variables: category, time-variable, value
options(scipen = 999) # this code eliminates scientific notation for the refugee values
ggalluv <- ggplot(alluvial::Refugees,
aes(y = refugees, x = year, alluvium = country)) + # time series bump chart (quintic flows)
theme_bw() +
geom_alluvium(aes(fill = country, color = country),
width = .1, alpha = .5, decreasing = FALSE,
curve_type = "sigmoid") +
scale_fill_brewer(palette = "Spectral") +
ggtitle("UNHCR-recognised refugees\nTop 10 countries (2003-2013)\n") +
ylab("Number of Refugees")
ggalluv