AIM : XX Document Note : The maps, plots and app within this document are interactive so make sure you give them a play like zooming in and out in the maps but also on the plots. Clicking on the legend allows to only select and display the time series needed.

Table of contents

  1. (Calculate/estimate attributes for MHW using same methodology as Gupta et al. 2020)(#NZMHW)

  2. Bibliography

Calculate/estimate attributes for MHW using same methodology as Gupta et al. (2020)

Data and Methodology for MHW event detection

Data - Downloading and Preparing NOAA OISST Data By Robert W Schlegel and AJ Smit From https://robwschlegel.github.io/heatwaveR/articles/OISST_preparation.html

Event Detection - Uses heatwaveR::, translation of GitHub python functions from Eric C.J. Oliver (published in paper Holbrook et al. (2019) A global assessment of marine heatwaves and their drivers) https://robwschlegel.github.io/heatwaveR/articles/gridded_event_detection.html

The file MHW_Events_NZ.csv is the output of the function event_only() from Robert W Schlegel and AJ Smit, used on data OISST around NZ (lat(-30, -51),lon(159, 179)) and using climatologyPeriod = c(“1982-01-01,” “2011-01-01”)

Here we load the resulting dataframe for gain of time

Let’s keep now the years with the longest (using column ‘duration’) and the most intense (using column ‘intensity_cumulative’) at every pixel.

## Position of Buoys
DT <- data.table(
  place=c("M1", "M2", "M3", "M4","M5"),
  longitude=c(174.913383333333, 175.148166666667, 175.312116666667, 175.500816666667, 175.75775),
  latitude=c(-36.1809666666667, -35.8098333333333, -35.5358333333333, -35.2278666666667, -34.8114666666667))

DT_sf = st_as_sf(DT, coords = c("longitude", "latitude"), 
                 crs = "+proj=longlat +datum=WGS84")
##

most_extreme_MHW_year_intensity <- read_csv('Most_ExtremeMHW_Year_CumInt_NZ.csv')
## 
## -- Column specification --------------------------------------------------------
## cols(
##   lon = col_double(),
##   lat = col_double(),
##   year = col_double(),
##   max_intensity = col_double()
## )
## Plot

pal <- c(brewer.pal(9,'Purples'),brewer.pal(9,'Blues'),brewer.pal(9,'Oranges'),brewer.pal(8,'Reds'))
p_intensity <- ggplot() + 
  geom_tile(data=most_extreme_MHW_year_intensity,aes(x=lon,y=lat,fill=year)) + 
  scale_fill_gradientn(colours=pal) + 
  ggtitle('Year of Most Intense MHW events (1981-2020)') + 
  borders('world',xlim=c(170,180),ylim=c(-40,-30)) + 
  xlim(c(170,180)) + ylim(c(-40,-30)) +
  geom_sf(data=DT_sf,col='grey',size=1.5) +
  theme_bw()
ggplotly(p_intensity)

Figure 1 - Year of Most Intense MHW events around New Zealand North East Coast.

Highlights:

  • 2016: light red –> Important year! M1 and M3 buoys are within pixels where 2016 Most intense MHW!
  • Other years worth noticying: 1998 (blue), 2017-2018-2020 (darker red)
## OISST Time series in M1
pix_data <- read_csv('OISST_174E875_36S125_M1.csv')
## 
## -- Column specification --------------------------------------------------------
## cols(
##   lon = col_double(),
##   lat = col_double(),
##   t = col_date(format = ""),
##   temp = col_double()
## )
##

## Detect event at this pixel
event <- function(df){
  # First calculate the climatologies
  #clim <- ts2clm(data = df, climatologyPeriod = c("1982-01-01", "2011-01-01"))
  clim <- ts2clm(data = df, climatologyPeriod = c("1983-01-01", "2012-12-31"))
  # Then the events
  event <- detect_event(data = clim)
  # Return only the event metric dataframe of results
  #return(event$event)
  return(event)
}

pix_event <- event(pix_data)


p <- event_line(pix_event, start_date = "2015-01-01", end_date = "2017-01-01", spread=500, category = TRUE) +
  ggtitle('NOAA OISST time series + Climatology and Thresholds at (174.875;-36.125)') +
  theme_bw()


p2 <- ggplot(pix_event$event, aes(x = date_peak, y = duration)) +
  geom_lolli(aes(colour = intensity_cumulative)) +
  #scale_color_distiller(palette = "Spectral", name = "Cumulative \nintensity") +
  scale_color_viridis_c(option = 'magma',direction=-1,begin=0.1) +
  xlab("Date") + ylab("Event duration [days]") +
  geom_vline(xintercept=c(as.Date("2015-01-01"),as.Date("2017-01-01")),linetype="dashed", color = "grey", size=1) +
  ggtitle('MHW Duration & Cumulative Intensity per events at (174.875;-36.125)') +
  theme(legend.position = 'bottom')+
  theme_bw()

grid.arrange(p2,p, ncol=1)
Figure 2 - MHW events around New Zealand North East Coast.

Figure 2 - MHW events around New Zealand North East Coast.

Highlights:

  • Summer/Fall 2016: Strongest/longest MHW event in pixel since 1982!
  • Other years worth noticying: around 2000 (El Nino?)

Bibliography

Gupta, Alex Sen, Mads Thomsen, Jessica A Benthuysen, Alistair J Hobday, Eric Oliver, Lisa V Alexander, Michael T Burrows, et al. 2020. “Drivers and Impacts of the Most Extreme Marine Heatwaves Events.” Scientific Reports 10 (1): 1–15.
Holbrook, Neil J, Hillary A Scannell, Alexander Sen Gupta, Jessica A Benthuysen, Ming Feng, Eric CJ Oliver, Lisa V Alexander, et al. 2019. “A Global Assessment of Marine Heatwaves and Their Drivers.” Nature Communications 10 (1): 1–13.