As variáveis usadas neste experimento são: attr, que indica o quão atraente a pessoa 1 (P1) achou a pessoa 2 (P2); sinc, que indica o quão P1 achou P2 sincero; intel, que indica o quão P1 achou P2 inteligente; e a variável fun, que indica o quão P1 achou P2 divertido. A ideia é descobrir qual o efeito dessas variáveis na chance do casal ter match. No caso, nossa variável de interesse é a dec, que indica se houve match entre os dois participantes do encontro.

bm <- glm(dec ~ attr + sinc + intel + fun , 
          data = dados, 
          family = "binomial")
glimpse(bm)

Abaixo, a tabela nos mostra que a estimativa o odds é multiplicado por 1.76 quando P1 acha P2 atraente, ou seja, aumenta o odds em 76%, logo essa variável tem um efeito positivo relevante sobre a variável de resposta. Já a variável sinceridade o odds é multiplicado por 0.92, ou seja, diminui o odds em 8%, logo essa variável tem um efeito negativo sobre a variável de resposta. A variável de inteligência multiplica o odds em 0.95, ou seja, diminui o odds em 5%, logo essa variável tem um efeito negativo sobre a variável de resposta. Por fim, a variável fun multiplica o odds em 1.40, ou seja, aumenta o odds em 40%, logo essa variável tem um efeito positivo sobre a variável de resposta. Assim, P1 achar P2 atranente é a variável que mais tem efeito na chance de o match acontecer entre os participantes.

tidy(bm, conf.int = TRUE, exponentiate = TRUE) %>% select(-p.value)
NA

Nesse tipo de análise com regressão logística não temos um R² análogo ao R² da regressão linear. Aqui, temos um pseudo-R² onde usaremos o R² McFadden que é mais ou menos equivalente ao da regressão linear, mas com limitações. Vendo esse dado, temos que o modelo se ajusta aos dados em 0.228 (22,8%), ou seja, o modelo não se adequa tão bem aos dados.

pR2(bm)
fitting null model for pseudo-r2
          llh       llhNull            G2      McFadden          r2ML          r2CU 
-2451.7238932 -3176.1314982  1448.8152102     0.2280786     0.2672651     0.3591209 

Deixando as variáveis sinc e intel fixas, podemos observar melhor os efeitos que attr e fun exercem sobre o odds de dar match. O gráfico abaixo mostra justamente isso. Nele, podemos ver que as duas variáveis tem muita influência positiva, pois ambas aumentam à medida que aumenta o fitted. Além disso, podemos notar que fun exerce uma influência um pouco menor pois cresce um pouco mais lento que attr.

m = dados %>%
  data_grid(attr  , 
            sinc = median(sinc) ,
            intel= median(intel),
            fun)

mm = augment(bm, 
             newdata = m, 
             type.predict = "response")

bm %>% 
  augment(newdata = m, type.predict = "response")  %>% 
  ggplot(aes(x = fun, colour = factor(attr))) + 
  geom_line(aes(y = .fitted)) 

Deixando as variáveis attr e fun fixas, podemos observar melhor os efeitos que attr e fun exercem sobre odds de dar match. O gráfico abaixo mostra justamente isso. Nele, podemos ver que as duas variáveis tem influência negativa, pois ambas diminuem à medida que aumenta o fitted. Além disso, podemos notar que o grau de influência delas são muito parecidas.

m = dados %>%
  data_grid(attr  = median(attr), 
            sinc ,
            intel,
            fun = median(fun))

mm = augment(bm, 
             newdata = m, 
             type.predict = "response")

bm %>% 
  augment(newdata = m, type.predict = "response")  %>% 
  ggplot(aes(x = intel, colour = factor(sinc))) + 
  geom_line(aes(y = .fitted)) 

Em relação aos intervalos de confiança, podemos observar que sinc está completamente abaixo de 1 indicando que essa variável tem efeito negativo e diminui o odds de dar match entre os participantes. Já em relação a intel, não podemos falar muito porque, apesar de da maior parte do intervalo de confiança estar abaixo de 1, ainda tem valores acima de 1. Portanto, o efeito pode ser negativo ou positivo e, por isso, não podemos dizer nada. Já as variáveis fun e attr tem efeito positivo muito relevante, onde attr tem o maior efeito. Logo, attr e fun influenciam positivamente o odds de dar match entre os participantes.

tidy(bm, conf.int = TRUE, exponentiate = TRUE) %>% 
  filter(term != "(Intercept)") %>% 
  ggplot(aes(x = term, y = estimate, ymin = conf.low, ymax = conf.high)) + 
  geom_point() + 
  geom_linerange() + 
  coord_flip()

LS0tCnRpdGxlOiAiUmVncmVzc8OjbyBSb23Dom50aWNhIgphdXRob3I6ICJKYXJkZWx5IE1hcmlzIgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6CiAgICB0aGVtZTogcmVhZGFibGUKICAgIGZpZ193aWR0aDogNwogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKLS0tCgoKYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoaGVyZSkKbGlicmFyeSh2aXJpZGlzKQpsaWJyYXJ5KG9wZW5pbnRybykKbGlicmFyeShtb2RlbHIpCmxpYnJhcnkodGlkeW1vZGVscykKbGlicmFyeSh0aWR5cikKbGlicmFyeShwc2NsKQp0aGVtZV9zZXQodGhlbWVfYncoKSkKCmtuaXRyOjpvcHRzX2NodW5rJHNldCh0aWR5ID0gRkFMU0UsCiAgICAgICAgICAgICAgICAgICAgICBmaWcud2lkdGggPSA2LAogICAgICAgICAgICAgICAgICAgICAgZmlnLmhlaWdodCA9IDUpCmBgYAoKCmBgYHtyICBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpkYWRvcyA9IHJlYWRfY3N2KCJodHRwczovL3Jhdy5naXRodWJ1c2VyY29udGVudC5jb20vbmF6YXJlbm8vY2llbmNpYS1kZS1kYWRvcy0xL21hc3Rlci81LXJlZ3Jlc3Nhby9zcGVlZC1kYXRpbmcvc3BlZWQtZGF0aW5nMi5jc3YiLCBjb2xfdHlwZXMgPSAKICAgICAgICAgICAgICAgY29scygKICAuZGVmYXVsdCA9IGNvbF9kb3VibGUoKSwKICBmaWVsZCA9IGNvbF9jaGFyYWN0ZXIoKSwKICBmcm9tID0gY29sX2NoYXJhY3RlcigpLAogIGNhcmVlciA9IGNvbF9jaGFyYWN0ZXIoKSwKICBkZWMgPSBjb2xfY2hhcmFjdGVyKCkKKSkgJT4lIAogIGZpbHRlcighaXMubmEoc2luYykgJiAhaXMubmEoYXR0cikgJiAhaXMubmEoaW50ZWwpICYgIWlzLm5hKGZ1bikgICYgIWlzLm5hKGRlYykpICU+JQogIG11dGF0ZShkZWMgPSBhcy5mYWN0b3IoZGVjKSwgCiAgICAgICAgIGdlbmRlciA9IGFzLmZhY3RvcihnZW5kZXIpKQpgYGAKCkFzIHZhcmnDoXZlaXMgdXNhZGFzIG5lc3RlIGV4cGVyaW1lbnRvIHPDo286IGF0dHIsIHF1ZSBpbmRpY2EgbyBxdcOjbyBhdHJhZW50ZSBhIHBlc3NvYSAxIChQMSkgYWNob3UgYSBwZXNzb2EgMiAoUDIpOyBzaW5jLCBxdWUgaW5kaWNhIG8gcXXDo28gUDEgYWNob3UgUDIgc2luY2VybzsgaW50ZWwsIHF1ZSBpbmRpY2EgbyBxdcOjbyBQMSBhY2hvdSBQMiBpbnRlbGlnZW50ZTsgZSBhIHZhcmnDoXZlbCBmdW4sIHF1ZSBpbmRpY2EgbyBxdcOjbyBQMSBhY2hvdSBQMiBkaXZlcnRpZG8uIEEgaWRlaWEgw6kgZGVzY29icmlyIHF1YWwgbyBlZmVpdG8gZGVzc2FzIHZhcmnDoXZlaXMgbmEgY2hhbmNlIGRvIGNhc2FsIHRlciBtYXRjaC4gTm8gY2Fzbywgbm9zc2EgdmFyacOhdmVsIGRlIGludGVyZXNzZSDDqSBhIGRlYywgcXVlIGluZGljYSBzZSBob3V2ZSBtYXRjaCBlbnRyZSBvcyBkb2lzIHBhcnRpY2lwYW50ZXMgZG8gZW5jb250cm8uCgoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KYm0gPC0gZ2xtKGRlYyB+IGF0dHIgKyBzaW5jICsgaW50ZWwgKyBmdW4gLCAKICAgICAgICAgIGRhdGEgPSBkYWRvcywgCiAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiKQpnbGltcHNlKGJtKQoKCmBgYAoKQWJhaXhvLCBhIHRhYmVsYSBub3MgbW9zdHJhIHF1ZSBhIGVzdGltYXRpdmEgbyBvZGRzIMOpIG11bHRpcGxpY2FkbyBwb3IgIDEuNzYgcXVhbmRvIFAxIGFjaGEgUDIgYXRyYWVudGUsIG91IHNlamEsIGF1bWVudGEgbyBvZGRzIGVtIDc2JSwgbG9nbyBlc3NhIHZhcmnDoXZlbCB0ZW0gdW0gZWZlaXRvIHBvc2l0aXZvIHJlbGV2YW50ZSBzb2JyZSBhIHZhcmnDoXZlbCBkZSByZXNwb3N0YS4gSsOhIGEgdmFyacOhdmVsIHNpbmNlcmlkYWRlIG8gb2RkcyDDqSBtdWx0aXBsaWNhZG8gcG9yIDAuOTIsIG91IHNlamEsIGRpbWludWkgbyBvZGRzIGVtIDglLCBsb2dvIGVzc2EgdmFyacOhdmVsIHRlbSB1bSBlZmVpdG8gbmVnYXRpdm8gc29icmUgYSB2YXJpw6F2ZWwgZGUgcmVzcG9zdGEuIEEgdmFyacOhdmVsIGRlIGludGVsaWfDqm5jaWEgbXVsdGlwbGljYSBvIG9kZHMgZW0gMC45NSwgb3Ugc2VqYSwgZGltaW51aSBvIG9kZHMgZW0gNSUsIGxvZ28gZXNzYSB2YXJpw6F2ZWwgdGVtIHVtIGVmZWl0byBuZWdhdGl2byBzb2JyZSBhIHZhcmnDoXZlbCBkZSByZXNwb3N0YS4gUG9yIGZpbSwgYSB2YXJpw6F2ZWwgZnVuIG11bHRpcGxpY2EgbyBvZGRzIGVtIDEuNDAsIG91IHNlamEsIGF1bWVudGEgbyBvZGRzIGVtIDQwJSwgbG9nbyBlc3NhIHZhcmnDoXZlbCB0ZW0gdW0gZWZlaXRvIHBvc2l0aXZvIHNvYnJlIGEgdmFyacOhdmVsIGRlIHJlc3Bvc3RhLiBBc3NpbSwgUDEgYWNoYXIgUDIgYXRyYW5lbnRlIMOpIGEgdmFyacOhdmVsIHF1ZSBtYWlzIHRlbSBlZmVpdG8gbmEgY2hhbmNlIGRlIG8gbWF0Y2ggYWNvbnRlY2VyIGVudHJlIG9zIHBhcnRpY2lwYW50ZXMuCgpgYGB7ciB3YXJuaW5nPUZBTFNFfQp0aWR5KGJtLCBjb25mLmludCA9IFRSVUUsIGV4cG9uZW50aWF0ZSA9IFRSVUUpICU+JSBzZWxlY3QoLXAudmFsdWUpCgpgYGAKTmVzc2UgdGlwbyBkZSBhbsOhbGlzZSBjb20gcmVncmVzc8OjbyBsb2fDrXN0aWNhIG7Do28gdGVtb3MgdW0gUsKyIGFuw6Fsb2dvIGFvIFLCsiBkYSByZWdyZXNzw6NvIGxpbmVhci4gQXF1aSwgdGVtb3MgdW0gcHNldWRvLVLCsiBvbmRlIHVzYXJlbW9zIG8gUsKyIE1jRmFkZGVuIHF1ZSDDqSBtYWlzIG91IG1lbm9zIGVxdWl2YWxlbnRlIGFvIGRhIHJlZ3Jlc3PDo28gbGluZWFyLCBtYXMgY29tIGxpbWl0YcOnw7Vlcy4gVmVuZG8gZXNzZSBkYWRvLCB0ZW1vcyBxdWUgbyBtb2RlbG8gc2UgYWp1c3RhIGFvcyBkYWRvcyBlbSAwLjIyOCAoMjIsOCUpLCBvdSBzZWphLCBvIG1vZGVsbyBuw6NvIHNlIGFkZXF1YSB0w6NvIGJlbSBhb3MgZGFkb3MuCgpgYGB7cn0KcFIyKGJtKQpgYGAKRGVpeGFuZG8gYXMgdmFyacOhdmVpcyBzaW5jIGUgaW50ZWwgZml4YXMsIHBvZGVtb3Mgb2JzZXJ2YXIgbWVsaG9yIG9zIGVmZWl0b3MgcXVlIGF0dHIgZSBmdW4gZXhlcmNlbSBzb2JyZSBvIG9kZHMgZGUgZGFyIG1hdGNoLiBPIGdyw6FmaWNvIGFiYWl4byBtb3N0cmEganVzdGFtZW50ZSBpc3NvLiBOZWxlLCBwb2RlbW9zIHZlciBxdWUgYXMgZHVhcyB2YXJpw6F2ZWlzIHRlbSBtdWl0YSBpbmZsdcOqbmNpYSBwb3NpdGl2YSwgcG9pcyBhbWJhcyBhdW1lbnRhbSDDoCBtZWRpZGEgcXVlIGF1bWVudGEgbyBmaXR0ZWQuIEFsw6ltIGRpc3NvLCBwb2RlbW9zIG5vdGFyIHF1ZSBmdW4gZXhlcmNlIHVtYSBpbmZsdcOqbmNpYSB1bSBwb3VjbyBtZW5vciBwb2lzIGNyZXNjZSB1bSBwb3VjbyBtYWlzIGxlbnRvIHF1ZSBhdHRyLiAKCmBgYHtyfQptID0gZGFkb3MgJT4lCiAgZGF0YV9ncmlkKGF0dHIgICwgCiAgICAgICAgICAgIHNpbmMgPSBtZWRpYW4oc2luYykgLAogICAgICAgICAgICBpbnRlbD0gbWVkaWFuKGludGVsKSwKICAgICAgICAgICAgZnVuKQoKbW0gPSBhdWdtZW50KGJtLCAKICAgICAgICAgICAgIG5ld2RhdGEgPSBtLCAKICAgICAgICAgICAgIHR5cGUucHJlZGljdCA9ICJyZXNwb25zZSIpCgpibSAlPiUgCiAgYXVnbWVudChuZXdkYXRhID0gbSwgdHlwZS5wcmVkaWN0ID0gInJlc3BvbnNlIikgICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBmdW4sIGNvbG91ciA9IGZhY3RvcihhdHRyKSkpICsgCiAgZ2VvbV9saW5lKGFlcyh5ID0gLmZpdHRlZCkpIAoKYGBgCgpEZWl4YW5kbyBhcyB2YXJpw6F2ZWlzIGF0dHIgZSBmdW4gZml4YXMsIHBvZGVtb3Mgb2JzZXJ2YXIgbWVsaG9yIG9zIGVmZWl0b3MgcXVlIGF0dHIgZSBmdW4gZXhlcmNlbSBzb2JyZSBvZGRzIGRlIGRhciBtYXRjaC4gTyBncsOhZmljbyBhYmFpeG8gbW9zdHJhIGp1c3RhbWVudGUgaXNzby4gTmVsZSwgcG9kZW1vcyB2ZXIgcXVlIGFzIGR1YXMgdmFyacOhdmVpcyB0ZW0gaW5mbHXDqm5jaWEgbmVnYXRpdmEsIHBvaXMgYW1iYXMgZGltaW51ZW0gw6AgbWVkaWRhIHF1ZSBhdW1lbnRhIG8gZml0dGVkLiBBbMOpbSBkaXNzbywgcG9kZW1vcyBub3RhciBxdWUgbyBncmF1IGRlIGluZmx1w6puY2lhIGRlbGFzIHPDo28gbXVpdG8gcGFyZWNpZGFzLiAKCmBgYHtyfQptID0gZGFkb3MgJT4lCiAgZGF0YV9ncmlkKGF0dHIgID0gbWVkaWFuKGF0dHIpLCAKICAgICAgICAgICAgc2luYyAsCiAgICAgICAgICAgIGludGVsLAogICAgICAgICAgICBmdW4gPSBtZWRpYW4oZnVuKSkKCm1tID0gYXVnbWVudChibSwgCiAgICAgICAgICAgICBuZXdkYXRhID0gbSwgCiAgICAgICAgICAgICB0eXBlLnByZWRpY3QgPSAicmVzcG9uc2UiKQoKYm0gJT4lIAogIGF1Z21lbnQobmV3ZGF0YSA9IG0sIHR5cGUucHJlZGljdCA9ICJyZXNwb25zZSIpICAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gaW50ZWwsIGNvbG91ciA9IGZhY3RvcihzaW5jKSkpICsgCiAgZ2VvbV9saW5lKGFlcyh5ID0gLmZpdHRlZCkpIAoKYGBgCkVtIHJlbGHDp8OjbyBhb3MgaW50ZXJ2YWxvcyBkZSBjb25maWFuw6dhLCBwb2RlbW9zIG9ic2VydmFyIHF1ZSBzaW5jIGVzdMOhIGNvbXBsZXRhbWVudGUgYWJhaXhvIGRlIDEgaW5kaWNhbmRvIHF1ZSBlc3NhIHZhcmnDoXZlbCB0ZW0gZWZlaXRvIG5lZ2F0aXZvIGUgZGltaW51aSBvIG9kZHMgZGUgZGFyIG1hdGNoIGVudHJlIG9zIHBhcnRpY2lwYW50ZXMuIErDoSBlbSByZWxhw6fDo28gYSBpbnRlbCwgbsOjbyBwb2RlbW9zIGZhbGFyIG11aXRvIHBvcnF1ZSwgYXBlc2FyIGRlIGRhIG1haW9yIHBhcnRlIGRvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGVzdGFyIGFiYWl4byBkZSAxLCBhaW5kYSB0ZW0gdmFsb3JlcyBhY2ltYSBkZSAxLiBQb3J0YW50bywgbyBlZmVpdG8gcG9kZSBzZXIgbmVnYXRpdm8gb3UgcG9zaXRpdm8gZSwgcG9yIGlzc28sIG7Do28gcG9kZW1vcyBkaXplciBuYWRhLiBKw6EgYXMgdmFyacOhdmVpcyBmdW4gZSBhdHRyIHRlbSBlZmVpdG8gcG9zaXRpdm8gbXVpdG8gcmVsZXZhbnRlLCBvbmRlIGF0dHIgdGVtIG8gbWFpb3IgZWZlaXRvLiBMb2dvLCBhdHRyIGUgZnVuIGluZmx1ZW5jaWFtIHBvc2l0aXZhbWVudGUgbyBvZGRzIGRlIGRhciBtYXRjaCBlbnRyZSBvcyBwYXJ0aWNpcGFudGVzLgpgYGB7cn0KdGlkeShibSwgY29uZi5pbnQgPSBUUlVFLCBleHBvbmVudGlhdGUgPSBUUlVFKSAlPiUgCiAgZmlsdGVyKHRlcm0gIT0gIihJbnRlcmNlcHQpIikgJT4lIAogIGdncGxvdChhZXMoeCA9IHRlcm0sIHkgPSBlc3RpbWF0ZSwgeW1pbiA9IGNvbmYubG93LCB5bWF4ID0gY29uZi5oaWdoKSkgKyAKICBnZW9tX3BvaW50KCkgKyAKICBnZW9tX2xpbmVyYW5nZSgpICsgCiAgY29vcmRfZmxpcCgpCmBgYAoKCgo=