Nessa análise buscamos entender que fatores nos dados têm efeito relevante na chance do casal ter um match.

conf
confE

Assim, temos a seguinte fórmula para o cálculo de quantas vezes a probabilidade de dec ter valor sim é maior que a probabilidade de dec ter valor não:

\(\frac{p(dec = yes)}{p(dec = no)} = 0.036*1.69^{fun}*1.06^{reading}*0.94^{music}*0.96^{museums}\)

glance(mod1) 
pR2(mod1)
fitting null model for pseudo-r2
          llh       llhNull            G2      McFadden          r2ML          r2CU 
-2752.2976031 -3198.3205623   892.0459183     0.1394554     0.1731406     0.2326574 

Com o nosso modelo conseguimos explicar 14% da probalidade da variável dec.

visMod = dados %>% 
  data_grid(reading = median(reading), 
            music, 
            museums, 
            fun = median(fun)
            )
mod1 %>% 
  augment(newdata = visMod, type.predict = "response")  %>% 
  ggplot(aes(x = music, colour = factor(museums))) + 
  geom_line(aes(y = .fitted)) +
  labs(
    colour = "museums"
  )

A partir do que foi observado, temos que, por multiplicar por 0.94, cada valor de music a mais o odds da decisão dar sim diminui 6%. Ao analisar o intervalo de confiança criado a partir dessa amostra a influência da variável music pode variar de 0.90 a 0.97, o que quer dizer que o odds pode diminuir entre 10% e 3%. Assim, music vai influenciar na diminuição do odds.

Já com museums, por a multiplicação ser por 0.96, cada 1 valor de amb o odds diminui 4%. A influência dessa variável, ao observamos o IC, pode variar entre 0.93 e 0.99, ou seja, ela pode diminuir o odds da variável dec ser sim em 7% a 1%.

visMod2 = dados %>% 
  data_grid(reading, 
            music = median(music), 
            museums = median(museums), 
            fun
            )
mod1 %>% 
  augment(newdata = visMod2, type.predict = "response")  %>% 
  ggplot(aes(x = fun, colour = factor(reading))) + 
  geom_line(aes(y = .fitted)) +
  labs(
    colour = "reading"
  )

Ao observarmos a variável fun, temos que cada 1 valor a mais da variável fun o odds de dec ser sim aumenta em 69%, pois o multiplica por 1.69. Analisando seu intervalo de confiança verificamos que essa influencia de fun pode variar de 1.63 a 1.76, podendo aumentar o odds em 63% a 76%. Diante disso, observamos que valores altos de fun aumentam o odds da decisão ser sim.

A variável reading também tem uma influência positiva no odds de decisão sim, pois a cada 1 valor a mais o odds da decisão ser sim aumenta em 6%. O IC mostra que a influência dessa variável sobre o odds pode variar entre 1.02 a 1.09, ou seja, pode diminuir o odds entre 3% e 9%.

confE %>% 
  filter(term != "(Intercept)") %>% 
  ggplot(aes(x = reorder(term, conf.low), y = estimate, ymin = conf.low, ymax = conf.high)) +
  geom_linerange() + 
  geom_point(color = "turquoise3", size = 2.5) +
  coord_flip()  +
  labs(
    y = "Estimativa",
    x = "Variáveis com o coeficiente aplicado"
  )

LS0tCnRpdGxlOiAiUmVncmVzc8OjbyByb23Dom50aWNhIgphdXRob3I6ICJNYXJjZWxsYSBTaXF1ZWlyYSIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdGhlbWU6IHJlYWRhYmxlCiAgICBmaWdfd2lkdGg6IDcKCiAgICB0b2NfZmxvYXQ6IHRydWUKLS0tCgpOZXNzYSBhbsOhbGlzZSBidXNjYW1vcyBlbnRlbmRlciBxdWUgZmF0b3JlcyBub3MgZGFkb3MgdMOqbSBlZmVpdG8gcmVsZXZhbnRlIG5hIGNoYW5jZSBkbyBjYXNhbCB0ZXIgdW0gbWF0Y2guCgpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShoZXJlKQpsaWJyYXJ5KHBzY2wpCmxpYnJhcnkodmlyaWRpcykKbGlicmFyeShvcGVuaW50cm8pCmxpYnJhcnkobW9kZWxyKQpsaWJyYXJ5KHRpZHltb2RlbHMpCmxpYnJhcnkodGlkeXIpCnRoZW1lX3NldCh0aGVtZV9idygpKQoKYGBgCgpgYGB7ciByZWFkLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBpbmNsdWRlPUZBTFNFfQpkYWRvcyA9IHJlYWRfY3N2KCJzcGVlZC1kYXRpbmcyLmNzdiIpCmBgYAoKYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KZGFkb3MgPSBkYWRvcyAlPiUgCiAgZmlsdGVyKCFpcy5uYShkZWMpICYgIWlzLm5hKGZ1bikgJiAhaXMubmEocmVhZGluZykgJiAhaXMubmEobXVzaWMpICAmICFpcy5uYShtdXNldW1zKSkgJT4lIAogICAgbXV0YXRlKGRlYyA9IGFzLmZhY3RvcihkZWMpLAogICAgICAgICAgIGZpZWxkID0gYXMuZmFjdG9yKGZpZWxkKSkKYGBgCgoKYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbW9kMSA8LSBnbG0oZGVjIH4gZnVuICsgcmVhZGluZyArIG11c2ljICsgbXVzZXVtcywgCiAgICAgICAgICAgZGF0YSA9IGRhZG9zLAogICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIpCgpjb25mID0gdGlkeShtb2QxLCBjb25mLmludCA9IFRSVUUpICU+JSAKICBzZWxlY3QoLXN0YXRpc3RpYywgLXAudmFsdWUsIC1zdGQuZXJyb3IpCgpjb25mRSA9IHRpZHkobW9kMSwgY29uZi5pbnQgPSBUUlVFLCBleHBvbmVudGlhdGUgPSBUUlVFKSAlPiUgCiAgc2VsZWN0KC1zdGF0aXN0aWMsIC1wLnZhbHVlLCAtc3RkLmVycm9yKQpgYGAKCmBgYHtyfQpjb25mCmNvbmZFCmBgYApBc3NpbSwgdGVtb3MgYSBzZWd1aW50ZSBmw7NybXVsYSBwYXJhIG8gY8OhbGN1bG8gZGUgcXVhbnRhcyB2ZXplcyBhIHByb2JhYmlsaWRhZGUgZGUgZGVjIHRlciB2YWxvciAqKnNpbSoqIMOpIG1haW9yIHF1ZSBhIHByb2JhYmlsaWRhZGUgZGUgZGVjIHRlciB2YWxvciAqKm7Do28qKjoKCiRcZnJhY3twKGRlYyA9IHllcyl9e3AoZGVjID0gbm8pfSA9IDAuMDM2KjEuNjlee2Z1bn0qMS4wNl57cmVhZGluZ30qMC45NF57bXVzaWN9KjAuOTZee211c2V1bXN9JAoKCmBgYHtyfQpnbGFuY2UobW9kMSkgCmBgYAoKYGBge3J9CnBSMihtb2QxKQpgYGAKCkNvbSBvIG5vc3NvIG1vZGVsbyBjb25zZWd1aW1vcyBleHBsaWNhciAxNCUgZGEgcHJvYmFsaWRhZGUgZGEgdmFyacOhdmVsIGRlYy4KCmBgYHtyfQp2aXNNb2QgPSBkYWRvcyAlPiUgCiAgZGF0YV9ncmlkKHJlYWRpbmcgPSBtZWRpYW4ocmVhZGluZyksIAogICAgICAgICAgICBtdXNpYywgCiAgICAgICAgICAgIG11c2V1bXMsIAogICAgICAgICAgICBmdW4gPSBtZWRpYW4oZnVuKQogICAgICAgICAgICApCmBgYAoKYGBge3J9Cm1vZDEgJT4lIAogIGF1Z21lbnQobmV3ZGF0YSA9IHZpc01vZCwgdHlwZS5wcmVkaWN0ID0gInJlc3BvbnNlIikgICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBtdXNpYywgY29sb3VyID0gZmFjdG9yKG11c2V1bXMpKSkgKyAKICBnZW9tX2xpbmUoYWVzKHkgPSAuZml0dGVkKSkgKwogIGxhYnMoCiAgICBjb2xvdXIgPSAibXVzZXVtcyIKICApCmBgYAoKQSBwYXJ0aXIgZG8gcXVlIGZvaSBvYnNlcnZhZG8sIHRlbW9zIHF1ZSwgcG9yIG11bHRpcGxpY2FyIHBvciAwLjk0LCBjYWRhIHZhbG9yIGRlICoqbXVzaWMqKiBhIG1haXMgbyBvZGRzIGRhIGRlY2lzw6NvIGRhciBzaW0gZGltaW51aSA2JS4gQW8gYW5hbGlzYXIgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBjcmlhZG8gYSBwYXJ0aXIgZGVzc2EgYW1vc3RyYSBhIGluZmx1w6puY2lhIGRhIHZhcmnDoXZlbCBtdXNpYyBwb2RlIHZhcmlhciBkZSAwLjkwIGEgMC45NywgbyBxdWUgcXVlciBkaXplciBxdWUgbyBvZGRzIHBvZGUgZGltaW51aXIgZW50cmUgMTAlIGUgMyUuIEFzc2ltLCBtdXNpYyB2YWkgaW5mbHVlbmNpYXIgbmEgZGltaW51acOnw6NvIGRvIG9kZHMuCgpKw6EgY29tICoqbXVzZXVtcyoqLCBwb3IgYSBtdWx0aXBsaWNhw6fDo28gc2VyIHBvciAwLjk2LCBjYWRhIDEgdmFsb3IgZGUgYW1iIG8gb2RkcyBkaW1pbnVpIDQlLiBBIGluZmx1w6puY2lhIGRlc3NhIHZhcmnDoXZlbCwgYW8gb2JzZXJ2YW1vcyBvIElDLCBwb2RlIHZhcmlhciBlbnRyZSAwLjkzIGUgMC45OSwgb3Ugc2VqYSwgZWxhIHBvZGUgZGltaW51aXIgbyBvZGRzIGRhIHZhcmnDoXZlbCBkZWMgc2VyIHNpbSBlbSA3JSBhIDElLgoKYGBge3J9CnZpc01vZDIgPSBkYWRvcyAlPiUgCiAgZGF0YV9ncmlkKHJlYWRpbmcsIAogICAgICAgICAgICBtdXNpYyA9IG1lZGlhbihtdXNpYyksIAogICAgICAgICAgICBtdXNldW1zID0gbWVkaWFuKG11c2V1bXMpLCAKICAgICAgICAgICAgZnVuCiAgICAgICAgICAgICkKYGBgCgpgYGB7cn0KbW9kMSAlPiUgCiAgYXVnbWVudChuZXdkYXRhID0gdmlzTW9kMiwgdHlwZS5wcmVkaWN0ID0gInJlc3BvbnNlIikgICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBmdW4sIGNvbG91ciA9IGZhY3RvcihyZWFkaW5nKSkpICsgCiAgZ2VvbV9saW5lKGFlcyh5ID0gLmZpdHRlZCkpICsKICBsYWJzKAogICAgY29sb3VyID0gInJlYWRpbmciCiAgKQpgYGAKQW8gb2JzZXJ2YXJtb3MgYSB2YXJpw6F2ZWwgKipmdW4qKiwgdGVtb3MgcXVlIGNhZGEgMSB2YWxvciBhIG1haXMgZGEgdmFyacOhdmVsIGZ1biBvIG9kZHMgZGUgZGVjIHNlciBzaW0gYXVtZW50YSBlbSA2OSUsIHBvaXMgbyBtdWx0aXBsaWNhIHBvciAxLjY5LiBBbmFsaXNhbmRvIHNldSBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSB2ZXJpZmljYW1vcyBxdWUgZXNzYSBpbmZsdWVuY2lhIGRlIGZ1biBwb2RlIHZhcmlhciBkZSAxLjYzIGEgMS43NiwgcG9kZW5kbyBhdW1lbnRhciBvIG9kZHMgZW0gNjMlIGEgNzYlLiBEaWFudGUgZGlzc28sIG9ic2VydmFtb3MgcXVlIHZhbG9yZXMgYWx0b3MgZGUgZnVuIGF1bWVudGFtIG8gb2RkcyBkYSBkZWNpc8OjbyBzZXIgc2ltLgoKQSB2YXJpw6F2ZWwgKipyZWFkaW5nKiogdGFtYsOpbSB0ZW0gdW1hIGluZmx1w6puY2lhIHBvc2l0aXZhIG5vIG9kZHMgZGUgZGVjaXPDo28gc2ltLCBwb2lzIGEgY2FkYSAxIHZhbG9yIGEgbWFpcyBvIG9kZHMgZGEgZGVjaXPDo28gc2VyIHNpbSBhdW1lbnRhIGVtIDYlLiBPIElDIG1vc3RyYSBxdWUgYSBpbmZsdcOqbmNpYSBkZXNzYSB2YXJpw6F2ZWwgc29icmUgbyBvZGRzIHBvZGUgdmFyaWFyIGVudHJlIDEuMDIgYSAxLjA5LCBvdSBzZWphLCBwb2RlIGRpbWludWlyIG8gb2RkcyBlbnRyZSAzJSBlIDklLiAKCmBgYHtyfQpjb25mRSAlPiUgCiAgZmlsdGVyKHRlcm0gIT0gIihJbnRlcmNlcHQpIikgJT4lIAogIGdncGxvdChhZXMoeCA9IHJlb3JkZXIodGVybSwgY29uZi5sb3cpLCB5ID0gZXN0aW1hdGUsIHltaW4gPSBjb25mLmxvdywgeW1heCA9IGNvbmYuaGlnaCkpICsKICBnZW9tX2xpbmVyYW5nZSgpICsgCiAgZ2VvbV9wb2ludChjb2xvciA9ICJ0dXJxdW9pc2UzIiwgc2l6ZSA9IDIuNSkgKwogIGNvb3JkX2ZsaXAoKSAgKwogIGxhYnMoCiAgICB5ID0gIkVzdGltYXRpdmEiLAogICAgeCA9ICJWYXJpw6F2ZWlzIGNvbSBvIGNvZWZpY2llbnRlIGFwbGljYWRvIgogICkKYGBg