Assignment: Your assignment is to use your notes from class - along with help from classmates, UTAs, and me - to turn this script into a fleshed-out description of what is going on.
This is a substantial project - we’ll work on it in steps over the rest of the unit.
We are currently focused on the overall process and will cover the details over the rest of this unit.
Your first assignment is to get this script to run from top to bottom by adding all of the missing R commands. Once you have done that, you can knit it into an HTML file and upload it to RPubs. (Note - you’ll need to add the YAML header!)
Your second assignment, which will be posted later, is to answer all the TODO and other prompts to add information. You can start on this, but you don’t have to do this on your first time through the code.
Delete all the prompts like TODO() as you compete them. Use RStudio’s search function to see if you’ve missed any - there are a LOT!
Add YAML header!!! Give it a title — title: “Portfolio Assignment” author: Michelle Khattri date: “9/26/21” output: html_document —
By: Nathan L. Brouwer
Phylogenies can be used to assess the shared origins of a nucleotide sequence, amino acid sequence, etc. We can create phylogenetic trees based on seqeunce’s conserved regions and where they differ from each other.
Asseccion Number DNA sequencing Bioinformatics Bioconductor Reproducibility Pairwise alignment MSA Consensus sequence Indel Genetic distance Phylogenetics Clade
Make a list of at least 5 key functions Put in the format of package::function
devtools:: install.github(“brouwern/compbio4all”) reentrez:: entrez_fetch CRAN:: nchar compbio4all::fasta_cleaner Biostrings:: pairwiseAlignment devtools::install_github(“YuLab-SMU/ggmsa”)
Add the necessary calls to library() to load call packages Indicate which packages cam from Bioconducotr, CRAN, and GitHub
# github packages
library(compbio4all)
library(ggmsa)
# CRAN packages
library(rentrez)
library(seqinr)
library(ape)
# Bioconductor packages
library(msa)
library(Biostrings)
We are retrieving the macromolecular sequences from online databases such as NCBI using the sequence’s accession number and the type of database we are getting it from (ex. in this case, protein). In this case, we are retrieving the sequence of the human 3 shroom gene. We do this with the entrez_fetch function (rentrez:: entrez_fetch).
# Human shroom 3 (H. sapiens)
hShroom3 <- entrez_fetch(db = "protein",
id = "NP_065910",
rettype = "fasta")
The cat function prints the output of the fasta file we retrieved. It converts the argument into character strings and then prints them.
cat(hShroom3)
## >NP_065910.3 protein Shroom3 [Homo sapiens]
## MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKL
## QAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAA
## WSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYL
## RRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGR
## ERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNI
## PRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSL
## GSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGM
## LYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFC
## SVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDF
## QEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTK
## AEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQ
## GFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEP
## LGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGS
## PESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPH
## TPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFP
## ESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAY
## LQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLS
## GANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSG
## FGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTP
## CPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGP
## RGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTS
## DPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPV
## YSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEA
## ESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDK
## SLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYY
## SVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEA
## LISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHED
## ARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDF
## IPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL
#Retrieving other sequences This code chunk is retrieving other sequences of the shroom genes, but the shroom genes from mouse, human 2, and sea urchin.
# Mouse shroom 3a (M. musculus)
mShroom3a <- entrez_fetch(db = "protein",
id = "AAF13269",
rettype = "fasta")
# Human shroom 2 (H. sapiens)
hShroom2 <- entrez_fetch(db = "protein",
id = "CAA58534",
rettype = "fasta")
# Sea-urchin shroom
sShroom <- entrez_fetch(db = "protein",
id = "XP_783573",
rettype = "fasta")
#nchar function The nchar function counts the number of characters. For the shroom sequences, the nchar function tells us the number of amino acids in each of shroom genes.
nchar(hShroom3)
## [1] 2070
nchar(mShroom3a)
## [1] 2083
nchar(sShroom)
## [1] 1758
nchar(hShroom2)
## [1] 1673
The function fasta_cleaner is used to clean the fasta file that we retrieved from NCBI. It removes the characters that are likely to cause errors down the road. It converts fasta file stored as an object into a vector.
fasta_cleaner
## function (fasta_object, parse = TRUE)
## {
## fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)", "\\4",
## fasta_object)
## fasta_object <- gsub("\n", "", fasta_object)
## if (parse == TRUE) {
## fasta_object <- stringr::str_split(fasta_object, pattern = "",
## simplify = FALSE)
## }
## return(fasta_object[[1]])
## }
## <bytecode: 0x0000000021d72ed0>
## <environment: namespace:compbio4all>
We can take the full code of the function and include it in the script. WE can do this with entrez_fetch_list <- function(db, id, rettype, …){
#setup list for storing output n.seq <- length(id) list.output <- as.list(rep(NA, n.seq)) names(list.output) <- id
# get output for(i in 1:length(id)){ list.output[[i]] <- rentrez::entrez_fetch(db = db, id = id[i], rettype = rettype) }
return(list.output) }
fasta_cleaner <- function(fasta_object, parse = TRUE){
fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)","\\4",fasta_object)
fasta_object <- gsub("\n", "", fasta_object)
if(parse == TRUE){
fasta_object <- stringr::str_split(fasta_object,
pattern = "",
simplify = FALSE)
}
return(fasta_object[[1]])
}
#Fasta cleaning This code chunk is using fasta_cleaner to convert the fasta files we retrieved into a vector and also cleaning the data.
hShroom3 <- fasta_cleaner(hShroom3, parse = F)
mShroom3a <- fasta_cleaner(mShroom3a, parse = F)
hShroom2 <- fasta_cleaner(hShroom2, parse = F)
sShroom <- fasta_cleaner(sShroom, parse = F)
hShroom3
## [1] "MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKLQAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAAWSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYLRRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGRERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNIPRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSLGSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGMLYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFCSVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDFQEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTKAEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQGFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEPLGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGSPESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPHTPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFPESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAYLQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLSGANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSGFGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTPCPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGPRGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTSDPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPVYSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEAESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDKSLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYYSVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEALISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHEDARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDFIPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL"
The code chunk below is aligning the data for hShroom3 and mShroom3a as a pairwise alignment. This is primarily used to identify regions of similarity and compare the sequences.
# add necessary function
align.h3.vs.m3a <- Biostrings::pairwiseAlignment(
hShroom3,
mShroom3a)
This object shows the alignment between hShroom3 and mShroom3a. It additionally shows the score for the alignment.
align.h3.vs.m3a
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: MMRTTEDFHKPSATLN-SNTATKGRYIYLEAFLE...KAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL
## subject: MK-TPENLEEPSATPNPSRTPTE-RFVYLEALLE...KAGAISLPPALTGHATPGGTSVFGGVFPTLTSPL
## score: 2189.934
This shows the percent identity of the two sequences (the percent of how similar they are to eachother)
# add necessary function
Biostrings::pid(align.h3.vs.m3a)
## [1] 70.56511
In this code chunk, we are aligning two different sequences, the human shroom 3 and the human shroom 2.
align.h3.vs.h2 <- Biostrings::pairwiseAlignment(
hShroom3,
hShroom2)
This code chunk is giving us an alignment score, similar to how we aligned human schroom 3 and mouse shroom 3a and that gave us a score. A higher score means more of the sequence is similar. In the above alignment,human shroom gene and mouse shroom gene actually have a higher similarity than the human gene 3 and the human gene 2.
score(align.h3.vs.h2)
## [1] -5673.853
The score of a alignment generally means more likley to be related. The pid is the actualy percent identity of the two seqeuences, excluding any indels.
Biostrings::pid(align.h3.vs.h2)
## [1] 33.83277
This table is showing asseccion numbers and the names of the sequences we are looking at. Through this command, we are making a vector for this.
shroom_table <- c("CAA78718" , "X. laevis Apx" , "xShroom1",
"NP_597713" , "H. sapiens APXL2" , "hShroom1",
"CAA58534" , "H. sapiens APXL", "hShroom2",
"ABD19518" , "M. musculus Apxl" , "mShroom2",
"AAF13269" , "M. musculus ShroomL" , "mShroom3a",
"AAF13270" , "M. musculus ShroomS" , "mShroom3b",
"NP_065910", "H. sapiens Shroom" , "hShroom3",
"ABD59319" , "X. laevis Shroom-like", "xShroom3",
"NP_065768", "H. sapiens KIAA1202" , "hShroom4a",
"AAK95579" , "H. sapiens SHAP-A" , "hShroom4b",
#"DQ435686" , "M. musculus KIAA1202" , "mShroom4",
"ABA81834" , "D. melanogaster Shroom", "dmShroom",
"EAA12598" , "A. gambiae Shroom", "agShroom",
"XP_392427" , "A. mellifera Shroom" , "amShroom",
"XP_783573" , "S. purpuratus Shroom" , "spShroom") #sea urchin
This code chunk is converting different aspects of the data into a matrix, a data frame, a vectors. At the end, we create a simplified name for the species
# convert to matrix
shroom_table_matrix <- matrix(shroom_table,
byrow = T,
nrow = 14)
# convert to data frame
shroom_table <- data.frame(shroom_table_matrix,
stringsAsFactors = F)
# naming columns
names(shroom_table) <- c("accession", "name.orig","name.new")
# Create simplified species names
shroom_table$spp <- "Homo"
shroom_table$spp[grep("laevis",shroom_table$name.orig)] <- "Xenopus"
shroom_table$spp[grep("musculus",shroom_table$name.orig)] <- "Mus"
shroom_table$spp[grep("melanogaster",shroom_table$name.orig)] <- "Drosophila"
shroom_table$spp[grep("gambiae",shroom_table$name.orig)] <- "mosquito"
shroom_table$spp[grep("mellifera",shroom_table$name.orig)] <- "bee"
shroom_table$spp[grep("purpuratus",shroom_table$name.orig)] <- "sea urchin"
This code chunk is printing the data fram we made in the code chunk above.
shroom_table
## accession name.orig name.new spp
## 1 CAA78718 X. laevis Apx xShroom1 Xenopus
## 2 NP_597713 H. sapiens APXL2 hShroom1 Homo
## 3 CAA58534 H. sapiens APXL hShroom2 Homo
## 4 ABD19518 M. musculus Apxl mShroom2 Mus
## 5 AAF13269 M. musculus ShroomL mShroom3a Mus
## 6 AAF13270 M. musculus ShroomS mShroom3b Mus
## 7 NP_065910 H. sapiens Shroom hShroom3 Homo
## 8 ABD59319 X. laevis Shroom-like xShroom3 Xenopus
## 9 NP_065768 H. sapiens KIAA1202 hShroom4a Homo
## 10 AAK95579 H. sapiens SHAP-A hShroom4b Homo
## 11 ABA81834 D. melanogaster Shroom dmShroom Drosophila
## 12 EAA12598 A. gambiae Shroom agShroom mosquito
## 13 XP_392427 A. mellifera Shroom amShroom bee
## 14 XP_783573 S. purpuratus Shroom spShroom sea urchin
The $ allows us to bring up a specific object within a data frame. For example, in the next code section we are bringing up just the accession column of shroom_table.
shroom_table$accession
## [1] "CAA78718" "NP_597713" "CAA58534" "ABD19518" "AAF13269" "AAF13270"
## [7] "NP_065910" "ABD59319" "NP_065768" "AAK95579" "ABA81834" "EAA12598"
## [13] "XP_392427" "XP_783573"
This code chunk retrieves a the sequences labelled in shroom_table$accession.
# add necessary function
shrooms <- entrez_fetch (db = "protein",
id = shroom_table$accession,
rettype = "fasta")
This code chunk prints the sequence we retrieved in the previous code chunk and converts it to character vectors.
cat(shrooms)
This code chunk is downloading what we did but so it is in a different format. It is retrieving the sequence from the shroom_table.
shrooms_list <- entrez_fetch_list(db = "protein",
id = shroom_table$accession,
rettype = "fasta")
This function is telling us the size of the shrooms_list. It is similar to the nchar function.
length(shrooms_list)
## [1] 14
In this code chunk, we are using fasta cleaner to clean the data again
for(i in 1:length(shrooms_list)){
shrooms_list[[i]] <- fasta_cleaner(shrooms_list[[i]], parse = F)
}
TODO: summarize what is going on in this code chunk, then annotate each line of code with what its doing
# XXXXXXXXCX
shrooms_vector <- rep(NA, length(shrooms_list))
# XXXXXXXXCX
for(i in 1:length(shrooms_vector)){
shrooms_vector[i] <- shrooms_list[[i]]
}
# XXXXXXXXCX
names(shrooms_vector) <- names(shrooms_list)
TODO: explain what this is doing then add the necessary function.
# add necessary function
shrooms_vector_ss <- Biostrings::AAStringSet (shrooms_vector)
TODO: briefly summarize what this section of the document will do.
Readings will be assigned to explain what MSAs are.
TODO: briefly explain what this chunk does, then add the necessary function.
# add necessary function
shrooms_align <- msa (shrooms_vector_ss,
method = "ClustalW")
## use default substitution matrix
TODO: briefly summarize what this section will do.
TODO: Briefly summarize what output is shown below
shrooms_align
## CLUSTAL 2.1
##
## Call:
## msa(shrooms_vector_ss, method = "ClustalW")
##
## MsaAAMultipleAlignment with 14 rows and 2252 columns
## aln names
## [1] -------------------------...------------------------- NP_065768
## [2] -------------------------...------------------------- AAK95579
## [3] -------------------------...SVFGGVFPTLTSPL----------- AAF13269
## [4] -------------------------...SVFGGVFPTLTSPL----------- AAF13270
## [5] -------------------------...CTFSGIFPTLTSPL----------- NP_065910
## [6] -------------------------...NKS--LPPPLTSSL----------- ABD59319
## [7] -------------------------...------------------------- CAA58534
## [8] -------------------------...------------------------- ABD19518
## [9] -------------------------...LT----------------------- NP_597713
## [10] -------------------------...------------------------- CAA78718
## [11] -------------------------...------------------------- EAA12598
## [12] -------------------------...------------------------- ABA81834
## [13] MTELQPSPPGYRVQDEAPGPPSCPP...------------------------- XP_392427
## [14] -------------------------...AATSSSSNGIGGPEQLNSNATSSYC XP_783573
## Con -------------------------...------------------------- Consensus
TODO: briefly explain what is being done in this chunk. This is tricky (and annoying) so do your best
# WHAT IS THE LINE BELOW DOING? (its tricky - do your best)
class(shrooms_align) <- "AAMultipleAlignment"
# WHAT IS THE LINE BELOW DOING? This is simpler
shrooms_align_seqinr <- msaConvert(shrooms_align, type = "seqinr::alignment")
TODO: what is the output this produces
print_msa(alignment = shrooms_align_seqinr,
chunksize = 60)
TODO: explain this output and how its differnet from the prevoius
## add necessary function
ggmsa:: ggmsa (shrooms_align, # shrooms_align, NOT shrooms_align_seqinr
start = 2000,
end = 2100)
TODO: explain what this command is doing. Add the package the function is coming from using :: notation This may not work for everyone. If its not working you can comment it out.
#msaPrettyPrint(shrooms_align, # alignment
# file = "shroom_msa.pdf", # file name
#y=c(2000, 2100), # range
#askForOverwrite=FALSE)
TODO: explain what this command is doing
getwd()
## [1] "C:/Users/Ashok/Desktop/Computational Bio"