library(ggplot2)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
a=ggplot(latex,aes(x=`Distancia al río (m)`, y=`Cantidad de látex producido (ml/día)`,col=Podado))+
geom_point()+theme_bw()
ggplotly(a)
b=ggplot(latex,aes(x=`Elevación (msnm)`, y=`Cantidad de látex producido (ml/día)`, col=Podado))+
geom_point()+theme_bw()
ggplotly(b)
ggplot(latex,aes(x=Podado,y=`Cantidad de látex producido (ml/día)`,fill=Podado))+geom_boxplot()
y=`Cantidad de látex producido (ml/día)`
x1=`Distancia al río (m)`
x2=`Elevación (msnm)`
x3=as.numeric(Podado=="SI")
data.frame(y,x1,x2,x3)
## y x1 x2 x3
## 1 24 87 1169 0
## 2 32 12 1168 0
## 3 28 100 1102 0
## 4 37 7 1098 0
## 5 30 15 1165 1
## 6 22 84 1164 1
## 7 25 104 1101 1
## 8 36 5 1097 1
xd=lm(y~x1+x2+x3)
summary(xd)
##
## Call:
## lm(formula = y ~ x1 + x2 + x3)
##
## Residuals:
## 1 2 3 4 5 6 7 8
## 0.03767 0.10861 0.44492 -0.59120 0.33347 -0.51377 -0.07759 0.25788
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 119.515658 6.017345 19.862 3.79e-05 ***
## x1 -0.104735 0.004176 -25.079 1.50e-05 ***
## x2 -0.073945 0.005294 -13.969 0.000152 ***
## x3 -2.132494 0.355281 -6.002 0.003877 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5021 on 4 degrees of freedom
## Multiple R-squared: 0.9953, Adjusted R-squared: 0.9917
## F-statistic: 281 on 3 and 4 DF, p-value: 4.176e-05
cor(y,x1)
## [1] -0.854005
cor(y,x2)
## [1] -0.4563459
cor(y,x3)
## [1] -0.1935736
predict(xd, list(x1=5,x2=1097, x3=1), interval = "confidence")
## fit lwr upr
## 1 35.74212 34.71541 36.76883
La función que se ajusta a los datos es \(y=119.515658-0.104735x_1-0.073945x_2-2.132494x_3\)
library(agricolae)
## Warning: package 'agricolae' was built under R version 4.0.5
##ANOVA
uwu=lm(y~x3)
anova(uwu)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x3 1 8.0 8.00 0.2336 0.646
## Residuals 6 205.5 34.25
##Post ANOVA
com=LSD.test(uwu,"x3")
com
## $statistics
## MSerror Df Mean CV t.value LSD
## 34.25 6 29.25 20.00803 2.446912 10.1259
##
## $parameters
## test p.ajusted name.t ntr alpha
## Fisher-LSD none x3 2 0.05
##
## $means
## y std r LCL UCL Min Max Q25 Q50 Q75
## 0 30.25 5.560276 4 23.08991 37.41009 24 37 27.00 30.0 33.25
## 1 28.25 6.130525 4 21.08991 35.41009 22 36 24.25 27.5 31.50
##
## $comparison
## NULL
##
## $groups
## y groups
## 0 30.25 a
## 1 28.25 a
##
## attr(,"class")
## [1] "group"