Prueba t
x<-rnorm(10)
y<-rnorm(10)
t.test(x,y)
##
## Welch Two Sample t-test
##
## data: x and y
## t = -0.078349, df = 13.835, p-value = 0.9387
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.9416336 0.8753347
## sample estimates:
## mean of x mean of y
## 0.01478263 0.04793212
ttest<-t.test(x,y)
names(ttest)
## [1] "statistic" "parameter" "p.value" "conf.int" "estimate"
## [6] "null.value" "stderr" "alternative" "method" "data.name"
ttest$statistic
## t
## -0.07834856
Generación de los datos t
ts<-replicate(1000,t.test(rnorm(10),rnorm(10))$statistic)
pts<-seq(-5,5,length=100)
plot(pts,dt(pts,df=18),col="blue",type="l")
lines(density(ts))

qqplot(ts,rt(1000,df=18))
abline(0,1,col="blue",lwd=2)

probs<-c(0.90,0.95,0.99)
quantile(ts,probs)
## 90% 95% 99%
## 1.382470 1.723801 2.458574
qt(probs,df=18)
## [1] 1.330391 1.734064 2.552380
t.potencia=function(n){
t1=qt(0.025,df=2*n-2)
t2=qt(0.975,df=2*n-2)
ts=replicate(1000,
t.test(rnorm(n,5.0,1.0),rnorm(n,4.5,1.0))$statistic
)
sum(ts<t1 | ts>t2)/1000
}
t.potencia(90)
## [1] 0.915
nn<-c(30,40,60,80,90,100)
res=sapply(nn,function(nn)t.potencia(nn))
plot(nn,res,type="l")
