Introduction

In biology, phylogenies are used to create a phylogenetic tree that can then be further analyzed.

Vocab

Multiple Sequence Alignment (MSA) phylogenetic tree fasta file pairwise alignment shroom gene packages cat distance matrix percent identity (PID) list

Key functions

rentrez::entrez_fetch Biostrings::pairwiseAlignment devtools::install_github(“brouwern/compbio4all”) compbio4all::entrez_fetch_list Biostrings::AAStringSet

Software Preliminaires

Add the necessary calls to library() to load call packages Indicate which packages cam from Bioconducotr, CRAN, and GitHub

Load packages into memory

#devtools
devtools::install_github("brouwern/compbio4all")
library(compbio4all)
devtools::install_github("YuLab-SMU/ggmsa")
## RCurl      (1.98-1.4 -> 1.98-1.5) [CRAN]
## S4Vectors  (0.30.0   -> 0.30.1  ) [CRAN]
## lifecycle  (1.0.0    -> 1.0.1   ) [CRAN]
## cpp11      (0.3.1    -> 0.4.0   ) [CRAN]
## mime       (0.11     -> 0.12    ) [CRAN]
## pillar     (1.6.2    -> 1.6.3   ) [CRAN]
## data.table (1.14.0   -> 1.14.2  ) [CRAN]
## tibble     (3.1.4    -> 3.1.5   ) [CRAN]
## tidyr      (1.1.3    -> 1.1.4   ) [CRAN]
## digest     (0.6.27   -> 0.6.28  ) [CRAN]
## 
##   There is a binary version available but the source version is later:
##        binary source needs_compilation
## tibble  3.1.4  3.1.5              TRUE
## 
## package 'RCurl' successfully unpacked and MD5 sums checked
## package 'S4Vectors' successfully unpacked and MD5 sums checked
## package 'lifecycle' successfully unpacked and MD5 sums checked
## package 'cpp11' successfully unpacked and MD5 sums checked
## package 'mime' successfully unpacked and MD5 sums checked
## package 'pillar' successfully unpacked and MD5 sums checked
## package 'data.table' successfully unpacked and MD5 sums checked
## package 'tidyr' successfully unpacked and MD5 sums checked
## package 'digest' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\fropo\AppData\Local\Temp\RtmpUhhsnt\downloaded_packages
##   
  
  
   checking for file 'C:\Users\fropo\AppData\Local\Temp\RtmpUhhsnt\remotes741c678c4a8e\YuLab-SMU-ggmsa-eb8859c/DESCRIPTION' ...
  
   checking for file 'C:\Users\fropo\AppData\Local\Temp\RtmpUhhsnt\remotes741c678c4a8e\YuLab-SMU-ggmsa-eb8859c/DESCRIPTION' ... 
  
v  checking for file 'C:\Users\fropo\AppData\Local\Temp\RtmpUhhsnt\remotes741c678c4a8e\YuLab-SMU-ggmsa-eb8859c/DESCRIPTION'
## 
  
  
  
-  preparing 'ggmsa':
##    checking DESCRIPTION meta-information ...
  
   checking DESCRIPTION meta-information ... 
  
v  checking DESCRIPTION meta-information
## 
  
  
  
-  checking for LF line-endings in source and make files and shell scripts
## 
  
  
  
-  checking for empty or unneeded directories
## 
  
  
  
-  looking to see if a 'data/datalist' file should be added
## 
  
  
  
-  building 'ggmsa_0.99.2.tar.gz'
## 
  
   
## 
library(ggmsa)

# CRAN packages
library(rentrez)
library(seqinr)
library(ape)

# Bioconductor packages
library(BiocManager)
BiocManager::install("msa")
library(msa)
BiocManager::install("Biostrings")
library(Biostrings)
force = TRUE

Loading macromolecular sequences

This is finding the data for the hShroom3 and preparing it to be sequenced and eventually aligned. The rentrez::entrez_fetch function is using the package to load the necessary function.

# Human shroom 3 (H. sapiens)
hShroom3 <- rentrez::entrez_fetch(db = "protein", 
                          id = "NP_065910", 
                          rettype = "fasta")

The cat() function takes into account line breaks and formats the data in a cleaner way.

cat(hShroom3)
## >NP_065910.3 protein Shroom3 [Homo sapiens]
## MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKL
## QAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAA
## WSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYL
## RRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGR
## ERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNI
## PRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSL
## GSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGM
## LYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFC
## SVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDF
## QEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTK
## AEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQ
## GFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEP
## LGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGS
## PESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPH
## TPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFP
## ESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAY
## LQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLS
## GANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSG
## FGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTP
## CPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGP
## RGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTS
## DPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPV
## YSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEA
## ESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDK
## SLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYY
## SVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEA
## LISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHED
## ARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDF
## IPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL

This chunk is assigning the various shroom gene data to their respective variables. This allows the fasta files to be set up for proper alignment!

# Mouse shroom 3a (M. musculus)
mShroom3a <- rentrez::entrez_fetch(db = "protein", 
                          id = "AAF13269", 
                          rettype = "fasta")

# Human shroom 2 (H. sapiens)
hShroom2 <- rentrez::entrez_fetch(db = "protein", 
                          id = "CAA58534", 
                          rettype = "fasta")


# Sea-urchin shroom
sShroom <- rentrez::entrez_fetch(db = "protein", 
                          id = "XP_783573", 
                          rettype = "fasta")

This chunk calculates the number of characters, or in this case, the amount of amino acids, in the sequences!

nchar(hShroom3)
## [1] 2070
nchar(mShroom3a)
## [1] 2083
nchar(sShroom)
## [1] 1758
nchar(hShroom2)
## [1] 1673

Prepping macromolecular sequences

The library() function loads the data from the installed packages and allows it to be ready for use.

library(compbio4all)
fasta_cleaner
## function (fasta_object, parse = TRUE) 
## {
##     fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)", "\\4", 
##         fasta_object)
##     fasta_object <- gsub("\n", "", fasta_object)
##     if (parse == TRUE) {
##         fasta_object <- stringr::str_split(fasta_object, pattern = "", 
##             simplify = FALSE)
##     }
##     return(fasta_object[[1]])
## }
## <bytecode: 0x00000000504af138>
## <environment: namespace:compbio4all>

If you can’t download compbio4all, you can still add the function to your session. You can do this by defining the function using function(), followed by instructions for the code in {}.

fasta_cleaner <- function(fasta_object, parse = TRUE){

  fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)","\\4",fasta_object)
  fasta_object <- gsub("\n", "", fasta_object)

  if(parse == TRUE){
    fasta_object <- stringr::str_split(fasta_object,
                                       pattern = "",
                                       simplify = FALSE)
  }

  return(fasta_object[[1]])
}

Using fasta_cleaner allows the sequences to be “cleaned up” and presented in a nicer format.

hShroom3  <- fasta_cleaner(hShroom3,  parse = F)
mShroom3a <- fasta_cleaner(mShroom3a, parse = F)
hShroom2  <- fasta_cleaner(hShroom2,  parse = F)
sShroom   <- fasta_cleaner(sShroom,   parse = F)
hShroom3
## [1] "MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKLQAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAAWSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYLRRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGRERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNIPRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSLGSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGMLYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFCSVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDFQEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTKAEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQGFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEPLGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGSPESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPHTPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFPESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAYLQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLSGANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSGFGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTPCPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGPRGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTSDPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPVYSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEAESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDKSLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYYSVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEALISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHEDARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDFIPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL"

Pairwise Alignment of sequences

The code below is taking the two sequences and figuring out the best way to align them to have the most matches.

library(Biostrings)
align.h3.vs.m3a <- Biostrings::pairwiseAlignment          (
                  hShroom3,
                  mShroom3a)

Global alignment shows the comparison of the entire sequence. The score shows the similarity between the two sequences, with each matching pair having a score of 1.

align.h3.vs.m3a
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: MMRTTEDFHKPSATLN-SNTATKGRYIYLEAFLE...KAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL
## subject: MK-TPENLEEPSATPNPSRTPTE-RFVYLEALLE...KAGAISLPPALTGHATPGGTSVFGGVFPTLTSPL
## score: 2189.934

This shows the percent identity, or PID, of the sequence alignment. It gives the percent similarity between the two sequences.

library(Biostrings)
Biostrings::pid(align.h3.vs.m3a)
## [1] 70.56511

This is another pairwise alignment, but this time using the hShroom3 and hShroom2 genes. The previous chunk was calculating the percent identity of the sequences, or the percent of how similar they are.

align.h3.vs.h2 <- Biostrings::pairwiseAlignment(
                  hShroom3,
                  hShroom2)

This is calculating the number of identical matches within the sequences to output their score. The last output was showing their percent identity, or the percent of how similar they are to each other, with roughly 71% similarity.

score(align.h3.vs.h2)
## [1] -5673.853

Score displays the number of individual identical matches in an alignment. PID displays the percent identity between the sequences, or the ratio of similarity between them. PID does not account for indels.

Biostrings::pid(align.h3.vs.h2)
## [1] 33.83277

The shroom family of genes

The table shows a concise display of accession numbers, their genus and species, and the name of their shroom gene.

shroom_table <- c("CAA78718" , "X. laevis Apx" ,         "xShroom1",
            "NP_597713" , "H. sapiens APXL2" ,     "hShroom1",
            "CAA58534" , "H. sapiens APXL",        "hShroom2",
            "ABD19518" , "M. musculus Apxl" ,      "mShroom2",
            "AAF13269" , "M. musculus ShroomL" ,   "mShroom3a",
            "AAF13270" , "M. musculus ShroomS" ,   "mShroom3b",
            "NP_065910", "H. sapiens Shroom" ,     "hShroom3",
            "ABD59319" , "X. laevis Shroom-like",  "xShroom3",
            "NP_065768", "H. sapiens KIAA1202" ,   "hShroom4a",
            "AAK95579" , "H. sapiens SHAP-A" ,     "hShroom4b",
            #"DQ435686" , "M. musculus KIAA1202" ,  "mShroom4",
            "ABA81834" , "D. melanogaster Shroom", "dmShroom",
            "EAA12598" , "A. gambiae Shroom",      "agShroom",
            "XP_392427" , "A. mellifera Shroom" ,  "amShroom",
            "XP_783573" , "S. purpuratus Shroom" , "spShroom") #sea urchin

The following chunk is collecting the data into a matrix, then a data frame, and eventually making it look clean and easy to read.

# convert to Matrix
shroom_table_matrix <- matrix(shroom_table,
                                  byrow = T,
                                  nrow = 14)
# convert to Data Frame
shroom_table <- data.frame(shroom_table_matrix, 
                     stringsAsFactors = F)

# Creating name columns
names(shroom_table) <- c("accession", "name.orig","name.new")

# Create simplified species names
shroom_table$spp <- "Homo"
shroom_table$spp[grep("laevis",shroom_table$name.orig)] <- "Xenopus"
shroom_table$spp[grep("musculus",shroom_table$name.orig)] <- "Mus"
shroom_table$spp[grep("melanogaster",shroom_table$name.orig)] <- "Drosophila"
shroom_table$spp[grep("gambiae",shroom_table$name.orig)] <- "mosquito"
shroom_table$spp[grep("mellifera",shroom_table$name.orig)] <- "bee"
shroom_table$spp[grep("purpuratus",shroom_table$name.orig)] <- "sea urchin"

This is displaying all of the data previously loaded into an easy to read table.

shroom_table
##    accession              name.orig  name.new        spp
## 1   CAA78718          X. laevis Apx  xShroom1    Xenopus
## 2  NP_597713       H. sapiens APXL2  hShroom1       Homo
## 3   CAA58534        H. sapiens APXL  hShroom2       Homo
## 4   ABD19518       M. musculus Apxl  mShroom2        Mus
## 5   AAF13269    M. musculus ShroomL mShroom3a        Mus
## 6   AAF13270    M. musculus ShroomS mShroom3b        Mus
## 7  NP_065910      H. sapiens Shroom  hShroom3       Homo
## 8   ABD59319  X. laevis Shroom-like  xShroom3    Xenopus
## 9  NP_065768    H. sapiens KIAA1202 hShroom4a       Homo
## 10  AAK95579      H. sapiens SHAP-A hShroom4b       Homo
## 11  ABA81834 D. melanogaster Shroom  dmShroom Drosophila
## 12  EAA12598      A. gambiae Shroom  agShroom   mosquito
## 13 XP_392427    A. mellifera Shroom  amShroom        bee
## 14 XP_783573   S. purpuratus Shroom  spShroom sea urchin

Aligning multiple sequences

The $ allows us to take out a specific element of each set of data to compare.

shroom_table$accession
##  [1] "CAA78718"  "NP_597713" "CAA58534"  "ABD19518"  "AAF13269"  "AAF13270" 
##  [7] "NP_065910" "ABD59319"  "NP_065768" "AAK95579"  "ABA81834"  "EAA12598" 
## [13] "XP_392427" "XP_783573"

The chunk is assigning the new table to a variable.

shrooms <-rentrez::entrez_fetch(db = "protein", 
                          id = shroom_table$accession, 
                          rettype = "fasta")

This is putting the data in a nice format because cat() will pay attention to new line characters.

cat(shrooms)

Using compbio4all we are directly loading the list from entrez, and then with that we can perform more functions on the data.

shrooms_list <- compbio4all::entrez_fetch_list(db = "protein", 
                          id = shroom_table$accession, 
                          rettype = "fasta")
is(shrooms_list)
## [1] "list"             "vector"           "list_OR_List"     "vector_OR_Vector"
## [5] "vector_OR_factor"
length(shrooms_list)
## [1] 14
nchar(shrooms_list)
##  CAA78718 NP_597713  CAA58534  ABD19518  AAF13269  AAF13270 NP_065910  ABD59319 
##      1486       915      1673      1543      2083      1895      2070      1864 
## NP_065768  AAK95579  ABA81834  EAA12598 XP_392427 XP_783573 
##      1560       778      1647       750      2230      1758

TODO: briefly explain what I am doing this

length(shrooms_list)
## [1] 14

TODO: briefly explain what I am doing this. We will get into the details of for() loops in R later in the semester.

for(i in 1:length(shrooms_list)){
  shrooms_list[[i]] <- fasta_cleaner(shrooms_list[[i]], parse = F)
}

TODO: summarize what is going on in this code chunk, then annotate each line of code with what its doing

# XXXXXXXXCX
shrooms_vector <- rep(NA, length(shrooms_list))

# XXXXXXXXCX
for(i in 1:length(shrooms_vector)){
  shrooms_vector[i] <- shrooms_list[[i]]
}

#  XXXXXXXXCX
names(shrooms_vector) <- names(shrooms_list)

TODO: explain what this is doing then add the necessary function.

# add necessary function
shrooms_vector_ss <- Biostrings::AAStringSet(shrooms_vector)

MSA

TODO: briefly summarize what this section of the document will do.
Readings will be assigned to explain what MSAs are.

Building an XXXXXXXX (MSA)

TODO: briefly explain what this chunk does, then add the necessary function.

library(msa)
shrooms_align <-msa(shrooms_vector_ss,
                     method = "ClustalW")
## use default substitution matrix

Viewing an MSA

TODO: briefly summarize what this section will do.

Viewing an MSA in R

TODO: Briefly summarize what output is shown below

shrooms_align
## CLUSTAL 2.1  
## 
## Call:
##    msa(shrooms_vector_ss, method = "ClustalW")
## 
## MsaAAMultipleAlignment with 14 rows and 2252 columns
##      aln                                                   names
##  [1] -------------------------...------------------------- NP_065768
##  [2] -------------------------...------------------------- AAK95579
##  [3] -------------------------...SVFGGVFPTLTSPL----------- AAF13269
##  [4] -------------------------...SVFGGVFPTLTSPL----------- AAF13270
##  [5] -------------------------...CTFSGIFPTLTSPL----------- NP_065910
##  [6] -------------------------...NKS--LPPPLTSSL----------- ABD59319
##  [7] -------------------------...------------------------- CAA58534
##  [8] -------------------------...------------------------- ABD19518
##  [9] -------------------------...LT----------------------- NP_597713
## [10] -------------------------...------------------------- CAA78718
## [11] -------------------------...------------------------- EAA12598
## [12] -------------------------...------------------------- ABA81834
## [13] MTELQPSPPGYRVQDEAPGPPSCPP...------------------------- XP_392427
## [14] -------------------------...AATSSSSNGIGGPEQLNSNATSSYC XP_783573
##  Con -------------------------...------------------------- Consensus

TODO: briefly explain what is being done in this chunk. This is tricky (and annoying) so do your best

# WHAT IS THE LINE BELOW DOING? (its tricky - do your best)
class(shrooms_align) <- "AAMultipleAlignment"

# WHAT IS THE LINE BELOW DOING? This is simpler
shrooms_align_seqinr <- msaConvert(shrooms_align, type = "seqinr::alignment")

TODO: what is the output this produces

print_msa(alignment = shrooms_align_seqinr, 
          chunksize = 60)

Displaying an MSA XXXXXXXX

TODO: explain this output and how its differnet from the previous

library(ggmsa)
ggmsa::ggmsa(shrooms_align,   # shrooms_align, NOT shrooms_align_seqinr
      start = 2000, 
      end = 2100) 

Saving an MSA as PDF

TODO: explain what this command is doing. Add the package the function is coming from using :: notation This may not work for everyone. If its not working you can comment it out.

msaPrettyPrint(shrooms_align,             # alignment
               file = "shroom_msa.pdf",   # file name
               y=c(2000, 2100),           # range
               askForOverwrite=FALSE)

TODO: explain what this command is doing

getwd()
## [1] "C:/Users/fropo/Downloads"