Assignment: Your assignment is to use your notes from class - along with help from classmates, UTAs, and me - to turn this script into a fleshed-out description of what is going on.
This is a substantial project - we’ll work on it in steps over the rest of the unit.
We are currently focused on the overall process and will cover the details over the rest of this unit.
Your first assignment is to get this script to run from top to bottom by adding all of the missing R commands. Once you have done that, you can knit it into an HTML file and upload it to RPubs. (Note - you’ll need to add the YAML header!)
Your second assignment, which will be posted later, is to answer all the TODO and other prompts to add information. You can start on this, but you don’t have to do this on your first time through the code.
Delete all the prompts like TODO() as you compete them. Use RStudio’s search function to see if you’ve missed any - there are a LOT!
#creating a function to load MSA packages
MSA_Prepwork <- function() {
library(compbio4all)
library(rentrez)
library(seqinr)
library(ape)
library(msa)
library(Biostrings)
library(ggmsa)
}
MSA_Prepwork()
##
## Attaching package: 'ape'
## The following objects are masked from 'package:seqinr':
##
## as.alignment, consensus
## Loading required package: Biostrings
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames,
## dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
## union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
## Loading required package: IRanges
##
## Attaching package: 'IRanges'
## The following object is masked from 'package:grDevices':
##
## windows
## Loading required package: XVector
## Loading required package: GenomeInfoDb
##
## Attaching package: 'Biostrings'
## The following object is masked from 'package:ape':
##
## complement
## The following object is masked from 'package:seqinr':
##
## translate
## The following object is masked from 'package:base':
##
## strsplit
## Registered S3 methods overwritten by 'ggalt':
## method from
## grid.draw.absoluteGrob ggplot2
## grobHeight.absoluteGrob ggplot2
## grobWidth.absoluteGrob ggplot2
## grobX.absoluteGrob ggplot2
## grobY.absoluteGrob ggplot2
By: Zachary A. Falk
In biology we can use phylogeny to reconstruct evolutionary histories, and discover how far back in time speciation events and mutations occurred.
Local alignment Global alignment Indel distance matrix protein domain sequence motif consensus sequence dissimilarity vectorization algorithm
msa::msa Biostrings::pairwiseAllignment Biostrings::pid rentrez::entrez_fetch rentrez::entrez_fetch_list
Add the necessary calls to library() to load call packages Indicate which packages cam from Bioconducotr, CRAN, and GitHub
# github packages
library(compbio4all)
# CRAN packages
library(rentrez)
library(seqinr)
library(ape)
# Bioconductor packages
library(msa)
library(Biostrings)
library(ggmsa)
# Human shroom 3 (H. sapiens)
hShroom3 <- rentrez::entrez_fetch(db = "protein",
id = "NP_065910",
rettype = "fasta")
Here, the cat() function is formating our hShroom3 FASTA file with respect to the new line character (). In other words, it presses “Enter”, starting a new paragraph every time it sees .
cat(hShroom3)
## >NP_065910.3 protein Shroom3 [Homo sapiens]
## MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKL
## QAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAA
## WSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYL
## RRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGR
## ERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNI
## PRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSL
## GSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGM
## LYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFC
## SVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDF
## QEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTK
## AEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQ
## GFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEP
## LGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGS
## PESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPH
## TPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFP
## ESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAY
## LQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLS
## GANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSG
## FGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTP
## CPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGP
## RGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTS
## DPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPV
## YSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEA
## ESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDK
## SLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYY
## SVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEA
## LISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHED
## ARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDF
## IPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL
Now we will fetch some more shroom protein sequences via their accession numbers on Entrez to compare to eachother, and assign them to objects in R.
# Mouse shroom 3a (M. musculus)
mShroom3a <- rentrez::entrez_fetch(db = "protein",
id = "AAF13269",
rettype = "fasta")
# Human shroom 2 (H. sapiens)
hShroom2 <- rentrez::entrez_fetch(db = "protein",
id = "CAA58534",
rettype = "fasta")
# Sea-urchin shroom
sShroom <- rentrez::entrez_fetch(db = "protein",
id = "XP_783573",
rettype = "fasta")
Next, lets check to see how many amino acids long each of our downloaded sequences are.
nchar(hShroom3)
## [1] 2070
nchar(mShroom3a)
## [1] 2083
nchar(sShroom)
## [1] 1758
nchar(hShroom2)
## [1] 1673
fasta_cleaner is a function in the package compbio4all that converts a FASTA file stored as an object into a vector. This will be helpful for running functions on it in R.
fasta_cleaner
## function (fasta_object, parse = TRUE)
## {
## fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)", "\\4",
## fasta_object)
## fasta_object <- gsub("\n", "", fasta_object)
## if (parse == TRUE) {
## fasta_object <- stringr::str_split(fasta_object, pattern = "",
## simplify = FALSE)
## }
## return(fasta_object[[1]])
## }
## <bytecode: 0x000000002c45d6e0>
## <environment: namespace:compbio4all>
If you are unable to download compbio4all, you can create the function yourself with the code below using function().
fasta_cleaner <- function(fasta_object, parse = TRUE){
fasta_object <- sub("^(>)(.*?)(\\n)(.*)(\\n\\n)","\\4",fasta_object)
fasta_object <- gsub("\n", "", fasta_object)
if(parse == TRUE){
fasta_object <- stringr::str_split(fasta_object,
pattern = "",
simplify = FALSE)
}
return(fasta_object[[1]])
}
Lets run fasta_cleaner() on our downloaded FASTA files to convert our sequences into vector objects.
hShroom3 <- fasta_cleaner(hShroom3, parse = F)
mShroom3a <- fasta_cleaner(mShroom3a, parse = F)
hShroom2 <- fasta_cleaner(hShroom2, parse = F)
sShroom <- fasta_cleaner(sShroom, parse = F)
hShroom3
## [1] "MMRTTEDFHKPSATLNSNTATKGRYIYLEAFLEGGAPWGFTLKGGLEHGEPLIISKVEEGGKADTLSSKLQAGDEVVHINEVTLSSSRKEAVSLVKGSYKTLRLVVRRDVCTDPGHADTGASNFVSPEHLTSGPQHRKAAWSGGVKLRLKHRRSEPAGRPHSWHTTKSGEKQPDASMMQISQGMIGPPWHQSYHSSSSTSDLSNYDHAYLRRSPDQCSSQGSMESLEPSGAYPPCHLSPAKSTGSIDQLSHFHNKRDSAYSSFSTSSSILEYPHPGISGRERSGSMDNTSARGGLLEGMRQADIRYVKTVYDTRRGVSAEYEVNSSALLLQGREARASANGQGYDKWSNIPRGKGVPPPSWSQQCPSSLETATDNLPPKVGAPLPPARSDSYAAFRHRERPSSWSSLDQKRLCRPQANSLGSLKSPFIEEQLHTVLEKSPENSPPVKPKHNYTQKAQPGQPLLPTSIYPVPSLEPHFAQVPQPSVSSNGMLYPALAKESGYIAPQGACNKMATIDENGNQNGSGRPGFAFCQPLEHDLLSPVEKKPEATAKYVPSKVHFCSVPENEEDASLKRHLTPPQGNSPHSNERKSTHSNKPSSHPHSLKCPQAQAWQAGEDKRSSRLSEPWEGDFQEDHNANLWRRLEREGLGQSLSGNFGKTKSAFSSLQNIPESLRRHSSLELGRGTQEGYPGGRPTCAVNTKAEDPGRKAAPDLGSHLDRQVSYPRPEGRTGASASFNSTDPSPEEPPAPSHPHTSSLGRRGPGPGSASALQGFQYGKPHCSVLEKVSKFEQREQGSQRPSVGGSGFGHNYRPHRTVSTSSTSGNDFEETKAHIRFSESAEPLGNGEQHFKNGELKLEEASRQPCGQQLSGGASDSGRGPQRPDARLLRSQSTFQLSSEPEREPEWRDRPGSPESPLLDAPFSRAYRNSIKDAQSRVLGATSFRRRDLELGAPVASRSWRPRPSSAHVGLRSPEASASASPHTPRERHSVTPAEGDLARPVPPAARRGARRRLTPEQKKRSYSEPEKMNEVGIVEEAEPAPLGPQRNGMRFPESSVADRRRLFERDGKACSTLSLSGPELKQFQQSALADYIQRKTGKRPTSAAGCSLQEPGPLRERAQSAYLQPGPAALEGSGLASASSLSSLREPSLQPRREATLLPATVAETQQAPRDRSSSFAGGRRLGERRRGDLLSGANGGTRGTQRGDETPREPSSWGARAGKSMSAEDLLERSDVLAGPVHVRSRSSPATADKRQDVLLGQDSGFGLVKDPCYLAGPGSRSLSCSERGQEEMLPLFHHLTPRWGGSGCKAIGDSSVPSECPGTLDHQRQASRTPCPRPPLAGTQGLVTDTRAAPLTPIGTPLPSAIPSGYCSQDGQTGRQPLPPYTPAMMHRSNGHTLTQPPGPRGCEGDGPEHGVEEGTRKRVSLPQWPPPSRAKWAHAAREDSLPEESSAPDFANLKHYQKQQSLPSLCSTSDPDTPLGAPSTPGRISLRISESVLRDSPPPHEDYEDEVFVRDPHPKATSSPTFEPLPPPPPPPPSQETPVYSMDDFPPPPPHTVCEAQLDSEDPEGPRPSFNKLSKVTIARERHMPGAAHVVGSQTLASRLQTSIKGSEAESTPPSFMSVHAQLAGSLGGQPAPIQTQSLSHDPVSGTQGLEKKVSPDPQKSSEDIRTEALAKEIVHQDKSLADILDPDSRLKTTMDLMEGLFPRDVNLLKENSVKRKAIQRTVSSSGCEGKRNEDKEAVSMLVNCPAYYSVSAPKAELLNKIKEMPAEVNEEEEQADVNEKKAELIGSLTHKLETLQEAKGSLLTDIKLNNALGEEVEALISELCKPNEFDKYRMFIGDLDKVVNLLLSLSGRLARVENVLSGLGEDASNEERSSLYEKRKILAGQHEDARELKENLDRRERVVLGILANYLSEEQLQDYQHFVKMKSTLLIEQRKLDDKIKLGQEQVKCLLESLPSDFIPKAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL"
Now that our FASTA files are in a usable format for R, we can do some biology with them, or at least our computer can. Lets begin with a pairwise alignment and store it as an object. This code below is aligning hShroom3 with mShroom3a by using the pairwiseAlignment function from the Biostrings package.
# add necessary function
align.h3.vs.m3a <- Biostrings::pairwiseAlignment (
hShroom3,
mShroom3a)
If we now display our object, we are shown the pairwise alignment. This is the computer’s best guess as to how our two sequences’ protein chains line up with each other.
align.h3.vs.m3a
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: MMRTTEDFHKPSATLN-SNTATKGRYIYLEAFLE...KAGALALPPNLTSEPIPAGGCTFSGIFPTLTSPL
## subject: MK-TPENLEEPSATPNPSRTPTE-RFVYLEALLE...KAGAISLPPALTGHATPGGTSVFGGVFPTLTSPL
## score: 2189.934
Now that we have run the pairwise alignment, we can calculate the percent identity (pid) between these two sequences using the pid() function in the Biostrings package. These two sequences have 70.56% identity.
# add necessary function
Biostrings::pid(align.h3.vs.m3a)
## [1] 70.56511
Now, lets compare two human Shroom genes to eachother, rather than a human Shroom gene and a mouse Shroom gene. We will again use the pairwiseAlignment() function and store these as a new object.
align.h3.vs.h2 <- Biostrings::pairwiseAlignment(
hShroom3,
hShroom2)
When we calculate the score for our new human-human alignment, we get a much lower value than the score for our previous mouse-human alignment. For alignment scores, higher is more similar.
score(align.h3.vs.h2)
## [1] -5673.853
Lets look at the percent identity for this alignment. You’ll notice the outputs of score() and pid() are different. Both are measures of similarity (a.k.a. identity), but they calculate in different ways. Percent Identity is calculated by measuring the proportion of amino acids that are similar in the two sequences, excluding indels (insertion or deletion mutations). Score is calculated by giving positive points to similarities, zero points for differences, and negative points for indels.
Biostrings::pid(align.h3.vs.h2)
## [1] 33.83277
Below we are creating a table of the different kinds of Shroom genes found across various species. Each row is a different gene from a different species, listing from left to right their accession number, original name, and new name.
shroom_table <- c("CAA78718" , "X. laevis Apx" , "xShroom1",
"NP_597713" , "H. sapiens APXL2" , "hShroom1",
"CAA58534" , "H. sapiens APXL", "hShroom2",
"ABD19518" , "M. musculus Apxl" , "mShroom2",
"AAF13269" , "M. musculus ShroomL" , "mShroom3a",
"AAF13270" , "M. musculus ShroomS" , "mShroom3b",
"NP_065910", "H. sapiens Shroom" , "hShroom3",
"ABD59319" , "X. laevis Shroom-like", "xShroom3",
"NP_065768", "H. sapiens KIAA1202" , "hShroom4a",
"AAK95579" , "H. sapiens SHAP-A" , "hShroom4b",
#"DQ435686" , "M. musculus KIAA1202" , "mShroom4",
"ABA81834" , "D. melanogaster Shroom", "dmShroom",
"EAA12598" , "A. gambiae Shroom", "agShroom",
"XP_392427" , "A. mellifera Shroom" , "amShroom",
"XP_783573" , "S. purpuratus Shroom" , "spShroom") #sea urchin
then annotate each line with what was done.
This code chunk below will convert the table we just made through two different forms of data structure (matrix and data frame), and a vector of column titles, respectively. Next, it will add a column of simplified names for each row based off of the species that Shroom gene was sequenced from.
# convert to matrix
shroom_table_matrix <- matrix(shroom_table, #converts shroom_table to a matrix
byrow = T, #tells matrix() to fill the table by row, left to right
nrow = 14) #tells matrix() we want number of rows = 14
# convert to dataframe
shroom_table <- data.frame(shroom_table_matrix, #converts the matrix we just made to a dataframe
stringsAsFactors = F) #tells R we do not want character strings stored as factors
# naming columns
names(shroom_table) <- c("accession", "name.orig","name.new") # adds names to each column
# Create simplified species names
shroom_table$spp <- "Homo" #adds spp column for all rows that says "Homo"
shroom_table$spp[grep("laevis",shroom_table$name.orig)] <- "Xenopus" #adds Xenopus to rows where mentioned
shroom_table$spp[grep("musculus",shroom_table$name.orig)] <- "Mus" #adds Mus where mentioned
shroom_table$spp[grep("melanogaster",shroom_table$name.orig)] <- "Drosophila"#adds Drosophila where mentioned
shroom_table$spp[grep("gambiae",shroom_table$name.orig)] <- "mosquito" #adds mosquito where mentioned
shroom_table$spp[grep("mellifera",shroom_table$name.orig)] <- "bee" #adds bee to rows where mentioned
shroom_table$spp[grep("purpuratus",shroom_table$name.orig)] <- "sea urchin" #adds sea urchin where mentioned
Now, we display our data frame, with its newly added column names and spp column
shroom_table
## accession name.orig name.new spp
## 1 CAA78718 X. laevis Apx xShroom1 Xenopus
## 2 NP_597713 H. sapiens APXL2 hShroom1 Homo
## 3 CAA58534 H. sapiens APXL hShroom2 Homo
## 4 ABD19518 M. musculus Apxl mShroom2 Mus
## 5 AAF13269 M. musculus ShroomL mShroom3a Mus
## 6 AAF13270 M. musculus ShroomS mShroom3b Mus
## 7 NP_065910 H. sapiens Shroom hShroom3 Homo
## 8 ABD59319 X. laevis Shroom-like xShroom3 Xenopus
## 9 NP_065768 H. sapiens KIAA1202 hShroom4a Homo
## 10 AAK95579 H. sapiens SHAP-A hShroom4b Homo
## 11 ABA81834 D. melanogaster Shroom dmShroom Drosophila
## 12 EAA12598 A. gambiae Shroom agShroom mosquito
## 13 XP_392427 A. mellifera Shroom amShroom bee
## 14 XP_783573 S. purpuratus Shroom spShroom sea urchin
This line of code is displaying all of the accession numbers in our data frame. By using the $ sign we can specify to R which column in a dataframe we would like to access. In the example below we are accessing the accession column in the shroom_table dataframe. This will be helpful for fetching our family of genes via their accession numbers for alignment.
shroom_table$accession
## [1] "CAA78718" "NP_597713" "CAA58534" "ABD19518" "AAF13269" "AAF13270"
## [7] "NP_065910" "ABD59319" "NP_065768" "AAK95579" "ABA81834" "EAA12598"
## [13] "XP_392427" "XP_783573"
As mentioned above, we can now fetch the whole family of Shroom genes via their accession numbers on Entrez using entrez_fetch() in the rentrez function. We also specified below that we want them as FASTA file types and we want them to be stored in a new object called “shrooms.”
# add necessary function
shrooms <-rentrez::entrez_fetch(db = "protein",
id = shroom_table$accession,
rettype = "fasta")
Here again we are formatting all of our FASTA files, now in “shrooms,” to respect the new line character ()
cat(shrooms)
TODO: in a brief sentence explain what this is doing and if/how its different from the previous code chunks
Similarly to fetching the FASTA files as we did with entrez_fetch(), we can use entrez_fetch_list() to fetch the files and store them in a list object in R. This is different from storing them as a character vector as we did with entrez_fetch() above.
shrooms_list <- entrez_fetch_list(db = "protein",
id = shroom_table$accession,
rettype = "fasta")
TODO: briefly explain what I am doing this
length(shrooms_list)
## [1] 14
TODO: briefly explain what I am doing this. We will get into the details of for() loops in R later in the semester.
for(i in 1:length(shrooms_list)){
shrooms_list[[i]] <- fasta_cleaner(shrooms_list[[i]], parse = F)
}
TODO: summarize what is going on in this code chunk, then annotate each line of code with what its doing
# XXXXXXXXCX
shrooms_vector <- rep(NA, length(shrooms_list))
# XXXXXXXXCX
for(i in 1:length(shrooms_vector)){
shrooms_vector[i] <- shrooms_list[[i]]
}
# XXXXXXXXCX
names(shrooms_vector) <- names(shrooms_list)
TODO: explain what this is doing then add the necessary function.
# add necessary function
shrooms_vector_ss <- Biostrings::AAStringSet(shrooms_vector)
TODO: briefly summarize what this section of the document will do.
Readings will be assigned to explain what MSAs are.
TODO: briefly explain what this chunk does, then add the necessary function.
# add necessary function
shrooms_align <-msa(shrooms_vector_ss,
method = "ClustalW")
## use default substitution matrix
TODO: briefly summarize what this section will do.
TODO: Briefly summarize what output is shown below
shrooms_align
## CLUSTAL 2.1
##
## Call:
## msa(shrooms_vector_ss, method = "ClustalW")
##
## MsaAAMultipleAlignment with 14 rows and 2252 columns
## aln names
## [1] -------------------------...------------------------- NP_065768
## [2] -------------------------...------------------------- AAK95579
## [3] -------------------------...SVFGGVFPTLTSPL----------- AAF13269
## [4] -------------------------...SVFGGVFPTLTSPL----------- AAF13270
## [5] -------------------------...CTFSGIFPTLTSPL----------- NP_065910
## [6] -------------------------...NKS--LPPPLTSSL----------- ABD59319
## [7] -------------------------...------------------------- CAA58534
## [8] -------------------------...------------------------- ABD19518
## [9] -------------------------...LT----------------------- NP_597713
## [10] -------------------------...------------------------- CAA78718
## [11] -------------------------...------------------------- EAA12598
## [12] -------------------------...------------------------- ABA81834
## [13] MTELQPSPPGYRVQDEAPGPPSCPP...------------------------- XP_392427
## [14] -------------------------...AATSSSSNGIGGPEQLNSNATSSYC XP_783573
## Con -------------------------...------------------------- Consensus
TODO: briefly explain what is being done in this chunk. This is tricky (and annoying) so do your best
# WHAT IS THE LINE BELOW DOING? (its tricky - do your best)
class(shrooms_align) <- "AAMultipleAlignment"
# WHAT IS THE LINE BELOW DOING? This is simpler
shrooms_align_seqinr <- msaConvert(shrooms_align, type = "seqinr::alignment")
TODO: what is the output this produces
print_msa(alignment = shrooms_align_seqinr,
chunksize = 60)
TODO: explain this output and how its differnet from the prevoius
## add necessary function
library(ggmsa)
ggmsa::ggmsa(shrooms_align, # shrooms_align, NOT shrooms_align_seqinr
start = 2000,
end = 2100)
TODO: explain what this command is doing. Add the package the function is coming from using :: notation This may not work for everyone. If its not working you can comment it out.
#msa::msaPrettyPrint(shrooms_align, # alignment
# file = "shroom_msa.pdf", # file name
# y=c(2000, 2100), # range
# askForOverwrite=FALSE)
TODO: explain what this command is doing
getwd()
## [1] "C:/Users/zfalk/Documents/R/CompBio"