conf
confE
\(p(dec = sim) = \frac{e^{-3.14+0.52*fun-0.01*age-0.07*amb+0.03*intel}}{1 + {e^{-3.14+0.52*fun-0.01*age-0.07*amb+0.03*intel}}}\)
A fórmula da probabilidade de dec ter valor sim
\(\frac{p(dec = sim)}{p(dec = no)} = 0.043*1.68^{fun}*0.98^{age}*0.92^{amb}*1.03^{intel}\)
A fórmula da para saber quantas vezes a probabilidade de dec ter valor sim é maior que a probabilidade de dec ter valor “no”.
glance(mod1)
pR2(mod1)
fitting null model for pseudo-r2
llh llhNull G2 McFadden r2ML r2CU
-2616.3115893 -3010.2298236 787.8364687 0.1308599 0.1631265 0.2193856
Esse modelo consegue explicar 13% da probalidade da variável dec.
Visualizando o modelo
visMod = dados %>%
data_grid(intel = median(intel),
age,
amb,
fun = median(fun)
)
mod1 %>%
augment(newdata = visMod, type.predict = "response") %>%
ggplot(aes(x = age, colour = factor(amb))) +
geom_line(aes(y = .fitted))

A cada ano a mais o odds diminuem 2%, já que multiplica ele por 0.98. Ou seja, a cada 1 valor a mais na idade diminuimos 2% o odds da decisão dar sim. Analizando o intervalo de confiança criado a partir dessa amostra a influência da variável age pode variar de 0.96 a 1.009, ou seja, pode diminuir o odds 4% a aumentar em 0,9%. Com isso não podemos ter certeza se a variável age influencia o odds.
O amb também tem um comportamento negativo, mas a cada 1 valor de amb o odds diminue 10%, pois multiplica ele por 0.90. Olhando para o seu intervalo de confiança, a influencia da variável amb pode variar de 0.87 a 0.97, ou seja, ela pode diminuir o odds da variável dec ser sim em 3% a 13%. Baseado no intervalo de confiança valores mais altos de amb diminuem o odds.
visMod2 = dados %>%
data_grid(intel,
age = median(age),
amb = median(amb),
fun
)
mod1 %>%
augment(newdata = visMod2, type.predict = "response") %>%
ggplot(aes(x = fun, colour = factor(intel))) +
geom_line(aes(y = .fitted))

As variáveis fun e intel tem uma influência positiva no odds de decisão ser sim. A cada 1 valor a mais da variável fun o odds de dec ser sim aumenta em 68%, pois o multiplica por 1.68. Analisando seu intervalo de confiança verificamos que essa influencia de fun pode variar de 1.61 a 1.77, podendo aumentar o odds em 61% a 77%. Baseado nesse intervalo podemos considerar que valores altos de fun aumentam o odds de dec ser sim.
Já a variável intel, a cada 1 valor a mais o odds da decisão ser sim aumenta em 3%. Seu intervalo de confiança mostra que sua influencia sobre o odds pode variar entre 0.97 a 1.09, ou seja, pode diminuir o odds em 3% a aumentar em 9%. Isso nos mostra que não podemos ter certeza se a variável intel influencia positivamente, negativamente ou se realmente influencia o odds.
confE %>%
filter(term != "(Intercept)") %>%
ggplot(aes(x = reorder(term, conf.low), y = estimate, ymin = conf.low, ymax = conf.high)) +
geom_linerange() +
geom_point( color = "red", size = 2) +
coord_flip() +
labs(
y = "Estimate",
x = "Variáveis com coeficiente aplicado"
)

LS0tCnRpdGxlOiAiUmVncmVzc8OjbyBMb2fDrXN0aWNhIgphdXRob3I6ICJEb3VnbGFzIExpbWEiCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazoKICAgIHRoZW1lOiByZWFkYWJsZQogICAgZmlnX3dpZHRoOiA3CgogICAgdG9jX2Zsb2F0OiB0cnVlCi0tLQoKCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGhlcmUpCmxpYnJhcnkocHNjbCkKbGlicmFyeSh2aXJpZGlzKQpsaWJyYXJ5KG9wZW5pbnRybykKbGlicmFyeShtb2RlbHIpCmxpYnJhcnkodGlkeW1vZGVscykKbGlicmFyeSh0aWR5cikKdGhlbWVfc2V0KHRoZW1lX2J3KCkpCgpgYGAKCmBgYHtyIHJlYWQsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIGluY2x1ZGU9RkFMU0V9CmRhZG9zID0gcmVhZF9jc3YoCiAgICBoZXJlOjpoZXJlKCJkYXRhL3NwZWVkLWRhdGluZzIuY3N2IikKKQpgYGAKCmBgYHtyIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmRhZG9zID0gZGFkb3MgJT4lIAogIGZpbHRlcighaXMubmEoZGVjKSAmICFpcy5uYShmdW4pICYgIWlzLm5hKGFnZSkgJiAhaXMubmEoYW1iKSAgJiAhaXMubmEoaW50ZWwpKSAlPiUgCiAgICBtdXRhdGUoZGVjID0gYXMuZmFjdG9yKGRlYyksCiAgICAgICAgICAgZmllbGQgPSBhcy5mYWN0b3IoZmllbGQpKQpgYGAKCgpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQptb2QxIDwtIGdsbShkZWMgfiBmdW4gKyBhZ2UgKyBhbWIgKyBpbnRlbCwgCiAgICAgICAgICAgZGF0YSA9IGRhZG9zLAogICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIpCgpjb25mID0gdGlkeShtb2QxLCBjb25mLmludCA9IFRSVUUpICU+JSAKICBzZWxlY3QoLXN0YXRpc3RpYywgLXAudmFsdWUsIC1zdGQuZXJyb3IpCiMgRVhQT05FTkNJQU5ETzoKCmNvbmZFID0gdGlkeShtb2QxLCBjb25mLmludCA9IFRSVUUsIGV4cG9uZW50aWF0ZSA9IFRSVUUpICU+JSAKICBzZWxlY3QoLXN0YXRpc3RpYywgLXAudmFsdWUsIC1zdGQuZXJyb3IpCmBgYAoKYGBge3J9CmNvbmYKY29uZkUKYGBgCgoKJHAoZGVjID0gc2ltKSA9IFxmcmFje2Veey0zLjE0KzAuNTIqZnVuLTAuMDEqYWdlLTAuMDcqYW1iKzAuMDMqaW50ZWx9fXsxICsge2Veey0zLjE0KzAuNTIqZnVuLTAuMDEqYWdlLTAuMDcqYW1iKzAuMDMqaW50ZWx9fX0kCgpBIGbDs3JtdWxhIGRhIHByb2JhYmlsaWRhZGUgZGUgZGVjIHRlciB2YWxvciBzaW0KCiRcZnJhY3twKGRlYyA9IHNpbSl9e3AoZGVjID0gbm8pfSA9IDAuMDQzKjEuNjhee2Z1bn0qMC45OF57YWdlfSowLjkyXnthbWJ9KjEuMDNee2ludGVsfSQKCkEgZsOzcm11bGEgZGEgcGFyYSBzYWJlciBxdWFudGFzIHZlemVzIGEgcHJvYmFiaWxpZGFkZSBkZSBkZWMgdGVyIHZhbG9yIHNpbSDDqSBtYWlvciBxdWUgYSBwcm9iYWJpbGlkYWRlIGRlIGRlYyB0ZXIgdmFsb3IgIm5vIi4KCgpgYGB7cn0KZ2xhbmNlKG1vZDEpIApgYGAKCmBgYHtyfQpwUjIobW9kMSkKYGBgCkVzc2UgbW9kZWxvIGNvbnNlZ3VlIGV4cGxpY2FyIDEzJSBkYSBwcm9iYWxpZGFkZSBkYSB2YXJpw6F2ZWwgZGVjLgoKIyMgVmlzdWFsaXphbmRvIG8gbW9kZWxvCgpgYGB7cn0KdmlzTW9kID0gZGFkb3MgJT4lIAogIGRhdGFfZ3JpZChpbnRlbCA9IG1lZGlhbihpbnRlbCksIAogICAgICAgICAgICBhZ2UsIAogICAgICAgICAgICBhbWIsIAogICAgICAgICAgICBmdW4gPSBtZWRpYW4oZnVuKQogICAgICAgICAgICApCmBgYAoKCmBgYHtyfQptb2QxICU+JSAKICBhdWdtZW50KG5ld2RhdGEgPSB2aXNNb2QsIHR5cGUucHJlZGljdCA9ICJyZXNwb25zZSIpICAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gYWdlLCBjb2xvdXIgPSBmYWN0b3IoYW1iKSkpICsgCiAgZ2VvbV9saW5lKGFlcyh5ID0gLmZpdHRlZCkpIApgYGAKCkEgY2FkYSBhbm8gYSBtYWlzIG8gb2RkcyBkaW1pbnVlbSAyJSwgasOhIHF1ZSBtdWx0aXBsaWNhIGVsZSBwb3IgMC45OC4gT3Ugc2VqYSwgYSBjYWRhIDEgdmFsb3IgYSBtYWlzIG5hIGlkYWRlIGRpbWludWltb3MgMiUgbyBvZGRzIGRhIGRlY2lzw6NvIGRhciBzaW0uIEFuYWxpemFuZG8gbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBjcmlhZG8gYSBwYXJ0aXIgZGVzc2EgYW1vc3RyYSBhIGluZmx1w6puY2lhIGRhIHZhcmnDoXZlbCBhZ2UgcG9kZSB2YXJpYXIgZGUgMC45NiBhIDEuMDA5LCBvdSBzZWphLCBwb2RlIGRpbWludWlyIG8gb2RkcyA0JSBhIGF1bWVudGFyIGVtIDAsOSUuIENvbSBpc3NvIG7Do28gcG9kZW1vcyB0ZXIgY2VydGV6YSBzZSBhIHZhcmnDoXZlbCBhZ2UgaW5mbHVlbmNpYSBvIG9kZHMuCgpPIGFtYiB0YW1iw6ltIHRlbSB1bSBjb21wb3J0YW1lbnRvIG5lZ2F0aXZvLCBtYXMgYSBjYWRhIDEgdmFsb3IgZGUgYW1iIG8gb2RkcyBkaW1pbnVlIDEwJSwgcG9pcyBtdWx0aXBsaWNhIGVsZSBwb3IgMC45MC4gT2xoYW5kbyBwYXJhIG8gc2V1IGludGVydmFsbyBkZSBjb25maWFuw6dhLCBhIGluZmx1ZW5jaWEgZGEgdmFyacOhdmVsIGFtYiBwb2RlIHZhcmlhciBkZSAwLjg3IGEgMC45Nywgb3Ugc2VqYSwgZWxhIHBvZGUgZGltaW51aXIgbyBvZGRzIGRhIHZhcmnDoXZlbCBkZWMgc2VyIHNpbSBlbSAzJSBhIDEzJS4gQmFzZWFkbyBubyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSB2YWxvcmVzIG1haXMgYWx0b3MgZGUgYW1iIGRpbWludWVtIG8gb2Rkcy4KCmBgYHtyfQp2aXNNb2QyID0gZGFkb3MgJT4lIAogIGRhdGFfZ3JpZChpbnRlbCwgCiAgICAgICAgICAgIGFnZSA9IG1lZGlhbihhZ2UpLCAKICAgICAgICAgICAgYW1iID0gbWVkaWFuKGFtYiksIAogICAgICAgICAgICBmdW4KICAgICAgICAgICAgKQpgYGAKCgpgYGB7cn0KbW9kMSAlPiUgCiAgYXVnbWVudChuZXdkYXRhID0gdmlzTW9kMiwgdHlwZS5wcmVkaWN0ID0gInJlc3BvbnNlIikgICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBmdW4sIGNvbG91ciA9IGZhY3RvcihpbnRlbCkpKSArIAogIGdlb21fbGluZShhZXMoeSA9IC5maXR0ZWQpKSAKYGBgCkFzIHZhcmnDoXZlaXMgZnVuIGUgaW50ZWwgdGVtIHVtYSBpbmZsdcOqbmNpYSBwb3NpdGl2YSBubyBvZGRzIGRlIGRlY2lzw6NvIHNlciBzaW0uIEEgY2FkYSAxIHZhbG9yIGEgbWFpcyBkYSB2YXJpw6F2ZWwgZnVuIG8gb2RkcyBkZSBkZWMgc2VyIHNpbSBhdW1lbnRhIGVtIDY4JSwgcG9pcyBvIG11bHRpcGxpY2EgcG9yIDEuNjguIEFuYWxpc2FuZG8gc2V1IGludGVydmFsbyBkZSBjb25maWFuw6dhIHZlcmlmaWNhbW9zIHF1ZSBlc3NhIGluZmx1ZW5jaWEgZGUgZnVuIHBvZGUgdmFyaWFyIGRlIDEuNjEgYSAxLjc3LCBwb2RlbmRvIGF1bWVudGFyIG8gb2RkcyBlbSA2MSUgYSA3NyUuIEJhc2VhZG8gbmVzc2UgaW50ZXJ2YWxvIHBvZGVtb3MgY29uc2lkZXJhciBxdWUgdmFsb3JlcyBhbHRvcyBkZSBmdW4gYXVtZW50YW0gbyBvZGRzIGRlIGRlYyBzZXIgc2ltLgoKSsOhIGEgdmFyacOhdmVsIGludGVsLCBhIGNhZGEgMSB2YWxvciBhIG1haXMgbyBvZGRzIGRhIGRlY2lzw6NvIHNlciBzaW0gYXVtZW50YSBlbSAzJS4gU2V1IGludGVydmFsbyBkZSBjb25maWFuw6dhIG1vc3RyYSBxdWUgc3VhIGluZmx1ZW5jaWEgc29icmUgbyBvZGRzIHBvZGUgdmFyaWFyIGVudHJlIDAuOTcgYSAxLjA5LCBvdSBzZWphLCBwb2RlIGRpbWludWlyIG8gb2RkcyBlbSAzJSBhIGF1bWVudGFyIGVtIDklLiBJc3NvIG5vcyBtb3N0cmEgcXVlIG7Do28gcG9kZW1vcyB0ZXIgY2VydGV6YSBzZSBhIHZhcmnDoXZlbCBpbnRlbCBpbmZsdWVuY2lhIHBvc2l0aXZhbWVudGUsIG5lZ2F0aXZhbWVudGUgb3Ugc2UgcmVhbG1lbnRlIGluZmx1ZW5jaWEgbyBvZGRzLiAKCgpgYGB7cn0KY29uZkUgJT4lIAogIGZpbHRlcih0ZXJtICE9ICIoSW50ZXJjZXB0KSIpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSByZW9yZGVyKHRlcm0sIGNvbmYubG93KSwgeSA9IGVzdGltYXRlLCB5bWluID0gY29uZi5sb3csIHltYXggPSBjb25mLmhpZ2gpKSArCiAgZ2VvbV9saW5lcmFuZ2UoKSArIAogIGdlb21fcG9pbnQoIGNvbG9yID0gInJlZCIsIHNpemUgPSAyKSArCiAgY29vcmRfZmxpcCgpICArCiAgbGFicygKICAgIHkgPSAiRXN0aW1hdGUiLAogICAgeCA9ICJWYXJpw6F2ZWlzIGNvbSBjb2VmaWNpZW50ZSBhcGxpY2FkbyIKICApCmBgYA==