#
dta <- read.csv("data0505.csv", header = T)
options(digits = 3)
pacman::p_load(tidyverse, ggplot2, knitr, furniture, gmodels)
dta <- dta %>% mutate( Gender = relevel(Gender, ref = "女"),
Sector = relevel(Sector, ref = "私立"),
Field = relevel(Field, ref = "遊憩與運動學群"),
EduLv = factor(EduLv, levels=c("博士","碩士","普通大學","科技大學",
"技術學院","五專","三專",
"二專","高中","高職","國中")),
EduLv = relevel(EduLv, ref = "技術學院"),
Region = factor(Region, levels =c("宜花東離島","北北基","桃竹苗",
"中彰投","雲嘉南","高屏澎")),
Age = as.numeric(Age),
J_year = as.numeric(J_year),
JobZone = as.numeric(JobZone),
EduZone = as.numeric(EduZone),
JobZone_D = as.numeric(EduZone-JobZone),
Salary = as.numeric(Salary),
SubEduOver = relevel(SubEduOver, ref="符合工作要求"),
Core = recode_factor(as.factor(JobCor), "1" = "無關聯",
"2" = "部分關聯",
"3" = "核心關聯"),
SubEduOver = factor(SubEduOver,levels =c("符合工作要求","高於工作要求","低於工作要求")))
# data construction
glimpse(dta)
## Observations: 1,571
## Variables: 26
## $ SID <fctr> A1, A10, A100, A102, A103, A104, A105, A106, A107...
## $ Gender <fctr> 女, 女, 女, 女, 男, 女, 女, 女, 女, 女, 女, 男, 男, 男, 女, 男, 男...
## $ Sector <fctr> 國立(公立), 國立(公立), 私立, 國立(公立), 國立(公立), 國立(公立), 國立(公立...
## $ EduLv <fctr> 碩士, 碩士, 普通大學, 普通大學, 高職, 普通大學, 普通大學, 普通大學, 普通大學, 普...
## $ SubEduOver <fctr> 符合工作要求, 高於工作要求, 符合工作要求, 符合工作要求, 符合工作要求, 符合工作要求, 符...
## $ Require <fctr> 碩士, 高中/高職, 普通大學, 普通大學, 高中/高職, 普通大學, 普通大學, 普通大學, 普...
## $ Field <fctr> 教育學群, 資訊學群, 外語學群, 教育學群, 工程學群, 文史哲學群, 文史哲學群, 大眾傳播學...
## $ City <fctr> 臺南市, 高雄市, 苗栗縣, 新北市, 高雄市, 南投縣, 嘉義市, 臺北市, 臺北市, 南投縣,...
## $ Category <fctr> 受雇於公營機關, 受雇於公營機關, 受雇於公營機關, 受雇於公營機關, 受雇者於私營企業, 受雇於...
## $ Staff <fctr> 10-29人, 50-99人, 50-99人, 10-29人, 2-9人, 100-199人, 1...
## $ Hours <int> 48, 40, 70, 50, 57, 51, 64, 50, 50, 47, 50, 60, 45...
## $ J_year <dbl> 2, 8, 4, 1, 21, 1, 6, 0, 1, 1, 17, 7, 3, 23, 1, 2,...
## $ J_total <dbl> 2, 8, 4, 1, 30, 1, 6, 0, 2, 2, 28, 7, 30, 26, 1, 1...
## $ income <fctr> 2萬以下, 2-3萬以下, 3-4萬以下, 4-5萬以下, 3-4萬以下, 4-5萬以下, 2萬以...
## $ SubMismatch <int> 4, 2, 3, 4, 5, 4, 5, 4, 3, 3, 4, 4, 4, 4, 5, 5, 3,...
## $ JobSat <int> 6, 4, 3, 5, 5, 6, 7, 5, 3, 6, 3, 5, 4, 7, 3, 4, 4,...
## $ EduZone <dbl> 5, 5, 4, 4, 2, 4, 4, 4, 4, 4, 5, 5, 3, 5, 4, 4, 4,...
## $ Region <fctr> 雲嘉南, 高屏澎, 桃竹苗, 北北基, 高屏澎, 中彰投, 雲嘉南, 北北基, 北北基, 中彰投,...
## $ Salary <dbl> 20000, 25000, 35000, 45000, 35000, 45000, 20000, 3...
## $ Age <dbl> 26, 34, 30, 25, 62, 25, 21, 24, 25, 26, 57, 35, 54...
## $ JobZone <dbl> 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 3,...
## $ JobCor <int> 3, 1, 2, 3, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 3,...
## $ Core <fctr> 核心關聯, 無關聯, 部分關聯, 核心關聯, 無關聯, 部分關聯, 無關聯, 核心關聯, 無關聯,...
## $ ObjOver <fctr> over, over, adequate, adequate, under, adequate, ...
## $ X <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ JobZone_D <dbl> 1, 2, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, ...
# check and pick out
lapply(dta[,c("Sector", "Field", "City", "Region","EduLv", "SubEduOver", "ObjOver")], levels)
## $Sector
## [1] "私立" "國外學校" "國立(公立)"
##
## $Field
## [1] "遊憩與運動學群" "大眾傳播學群" "工程學群" "文史哲學群"
## [5] "外語學群" "生命科學學群" "生物資源學群" "地球與環境學群"
## [9] "法政學群" "社會與心理學群" "建築與設計學群" "財經學群"
## [13] "教育學群" "資訊學群" "管理學群" "數理化學群"
## [17] "醫藥衛生學群" "藝術學群"
##
## $City
## [1] "宜蘭縣" "花蓮縣" "金門縣" "南投縣" "屏東縣" "苗栗縣" "桃園市"
## [8] "高雄市" "基隆市" "雲林縣" "新北市" "新竹市" "新竹縣" "嘉義市"
## [15] "嘉義縣" "彰化縣" "臺中市" "臺北市" "臺東縣" "臺南市" "澎湖縣"
##
## $Region
## [1] "宜花東離島" "北北基" "桃竹苗" "中彰投" "雲嘉南"
## [6] "高屏澎"
##
## $EduLv
## [1] "技術學院" "博士" "碩士" "普通大學" "科技大學" "五專"
## [7] "三專" "二專" "高中" "高職" "國中"
##
## $SubEduOver
## [1] "符合工作要求" "高於工作要求" "低於工作要求"
##
## $ObjOver
## [1] "adequate" "over" "under"
# pick out
names(dta)
## [1] "SID" "Gender" "Sector" "EduLv" "SubEduOver"
## [6] "Require" "Field" "City" "Category" "Staff"
## [11] "Hours" "J_year" "J_total" "income" "SubMismatch"
## [16] "JobSat" "EduZone" "Region" "Salary" "Age"
## [21] "JobZone" "JobCor" "Core" "ObjOver" "X"
## [26] "JobZone_D"
po <- dplyr::select(dta, -City, -income, -JobSat, -X)%>%
filter(Age <= 65 & Age >= 20 & Category != "自營者" )
p <- filter(po,Age <= 40)
p <- p[p$EduLv %in% c("博士","碩士", "普通大學", "科技大學", "技術學院"),]
p <- p %>% mutate( EduLv = factor(EduLv, levels=c("博士","碩士","普通大學","科技大學",
"技術學院")),
EduLv = relevel(EduLv, ref = "技術學院"),
Category = factor(Category,levels=c("受雇者於私營企業","受雇於公營機關")))
# hunt for missing values by variables
apply(apply(p, 1, is.na), 1, sum)
## SID Gender Sector EduLv SubEduOver Require
## 0 0 0 0 0 0
## Field Category Staff Hours J_year J_total
## 0 0 0 0 0 0
## SubMismatch EduZone Region Salary Age JobZone
## 0 0 0 0 0 0
## JobCor Core ObjOver JobZone_D
## 0 0 0 0
#
# define function
d <- function(x){
data.frame(n = t(t(table(x))),
prop = t(t(prop.table(table(x)))),
mean = aggregate(Salary ~ x, p, mean),
sd = aggregate(Salary ~ x, p, sd))
}
#
# table
des <- as.data.frame(rbind(d(p$Gender),d(p$Sector),d(p$EduLv),d(p$Field),d(p$Category),d(p$Region),d(p$SubEduOver),d(p$SubMismatch),d(p$ObjOver),d(p$Core)))%>%
select(c(1,3,6,8,10))
## Warning in `[<-.factor`(`*tmp*`, ri, value = 1:5): invalid factor level, NA
## generated
## Warning in `[<-.factor`(`*tmp*`, ri, value = 1:5): invalid factor level, NA
## generated
kable(des)
| 女 |
817 |
0.608 |
40306 |
15519 |
| 男 |
526 |
0.392 |
51616 |
28691 |
| 私立 |
534 |
0.398 |
39026 |
18068 |
| 國外學校 |
19 |
0.014 |
57632 |
41075 |
| 國立(公立) |
790 |
0.588 |
48285 |
23474 |
| 技術學院 |
35 |
0.026 |
40857 |
24629 |
| 博士 |
5 |
0.004 |
71000 |
15166 |
| 碩士 |
415 |
0.309 |
56410 |
27934 |
| 普通大學 |
640 |
0.477 |
40234 |
16235 |
| 科技大學 |
248 |
0.185 |
36835 |
16548 |
| 遊憩與運動學群 |
27 |
0.020 |
39444 |
18415 |
| 大眾傳播學群 |
45 |
0.034 |
35889 |
12937 |
| 工程學群 |
213 |
0.159 |
57958 |
31424 |
| 文史哲學群 |
79 |
0.059 |
38861 |
14299 |
| 外語學群 |
69 |
0.051 |
40145 |
10501 |
| 生命科學學群 |
33 |
0.025 |
44091 |
16272 |
| 生物資源學群 |
22 |
0.016 |
42273 |
15791 |
| 地球與環境學群 |
21 |
0.016 |
44524 |
11170 |
| 法政學群 |
60 |
0.045 |
42417 |
14801 |
| 社會與心理學群 |
119 |
0.089 |
37437 |
11840 |
| 建築與設計學群 |
46 |
0.034 |
43696 |
42693 |
| 財經學群 |
97 |
0.072 |
42732 |
21759 |
| 教育學群 |
102 |
0.076 |
45833 |
12209 |
| 資訊學群 |
105 |
0.078 |
49000 |
25253 |
| 管理學群 |
129 |
0.096 |
38798 |
16462 |
| 數理化學群 |
58 |
0.043 |
51207 |
18995 |
| 醫藥衛生學群 |
87 |
0.065 |
45000 |
21861 |
| 藝術學群 |
31 |
0.023 |
33226 |
11147 |
| 受雇者於私營企業 |
822 |
0.612 |
44075 |
26847 |
| 受雇於公營機關 |
521 |
0.388 |
45777 |
12166 |
| 宜花東離島 |
49 |
0.036 |
44490 |
16840 |
| 北北基 |
441 |
0.328 |
44580 |
18868 |
| 桃竹苗 |
193 |
0.144 |
54378 |
28199 |
| 中彰投 |
206 |
0.153 |
43495 |
27264 |
| 雲嘉南 |
232 |
0.173 |
41185 |
16263 |
| 高屏澎 |
222 |
0.165 |
41577 |
22290 |
| 符合工作要求 |
911 |
0.678 |
47042 |
24476 |
| 高於工作要求 |
288 |
0.214 |
40694 |
16253 |
| 低於工作要求 |
144 |
0.107 |
38229 |
15196 |
| 1 |
169 |
0.126 |
39320 |
20463 |
| 2 |
238 |
0.177 |
41429 |
17779 |
| 3 |
341 |
0.254 |
42757 |
21788 |
| 4 |
413 |
0.308 |
46792 |
20122 |
| 5 |
182 |
0.136 |
53132 |
30886 |
| adequate |
413 |
0.308 |
42433 |
20377 |
| over |
872 |
0.649 |
45619 |
22868 |
| under |
58 |
0.043 |
47845 |
26376 |
| 無關聯 |
818 |
0.609 |
42586 |
21361 |
| 部分關聯 |
175 |
0.130 |
50171 |
27212 |
| 核心關聯 |
350 |
0.261 |
47043 |
21221 |
# correlation table
pc <- select(p,Hours, J_year, Age, Salary)
tableC(p,Age, J_year, cor_type="pearson")
## N = 1343
## Note: pearson correlation (p-value).
##
## ───────────────────────────────
## [1] [2]
## [1]Age 1.00
## [2]J_year 0.617 (<.001) 1.00
## ───────────────────────────────
# normal way correlation
cor(pc, use="complete.obs", method="spearman")
## Hours J_year Age Salary
## Hours 1.0000 -0.0145 -0.0106 0.131
## J_year -0.0145 1.0000 0.6169 0.287
## Age -0.0106 0.6169 1.0000 0.398
## Salary 0.1314 0.2870 0.3982 1.000
#
# Chi-squared
# normal Pearson
chisq.test(table(p$SubEduOver, p$ObjOver))
##
## Pearson's Chi-squared test
##
## data: table(p$SubEduOver, p$ObjOver)
## X-squared = 40, df = 4, p-value = 9e-08
# Yate's correct
chisq.test(table(p$SubEduOver, p$ObjOver), correct = T)
##
## Pearson's Chi-squared test
##
## data: table(p$SubEduOver, p$ObjOver)
## X-squared = 40, df = 4, p-value = 9e-08
# fisher fisher.test(table(p$SubEduOver, p$ObjOver))
# Pearson's
library(vcd)
## Loading required package: grid
assocstats(table(p$SubEduOver, p$ObjOver))#詳細報表
## X^2 df P(> X^2)
## Likelihood Ratio 41.097 4 2.5667e-08
## Pearson 38.391 4 9.3080e-08
##
## Phi-Coefficient : NA
## Contingency Coeff.: 0.167
## Cramer's V : 0.12
independence_table(table(p$SubEduOver, p$ObjOver))#無關時的期望值
##
## adequate over under
## 符合工作要求 280.2 591.5 39.34
## 高於工作要求 88.6 187.0 12.44
## 低於工作要求 44.3 93.5 6.22
#
# plot
# age
ggplot(p , aes(x = Age))+
geom_bar(position="dodge")+
geom_vline(xintercept = mean(p$Age), color = "black", linetype = 2) +
scale_x_continuous(limits=c(20,65), breaks=seq(20,65, by = 5))+
scale_y_continuous(limits=c(0,180), breaks=seq(0,180, by = 20))+
labs(x = "年齡",y = "人數")+
theme_bw()

# salary
ggplot(p, aes(x = as.factor(Salary))) +
geom_bar(position="dodge")+
labs(x = "薪資",y = "人數") +
theme_bw() +
theme(axis.text.x = element_text(hjust = 1, angle =30))

# age
ggplot(p, aes(x = p$Age, y = p$Salary))+
geom_point(alpha = .5, size = .8)+
labs(x='age',y='salary')+
facet_wrap(~JobZone_D)

ggplot(p , aes(x = Age))+
geom_bar(position="dodge")+
geom_vline(xintercept = mean(p$Age), color = "black", linetype = 2) +
scale_x_continuous(limits=c(20,65), breaks=seq(20,65, by = 5))+
scale_y_continuous(limits=c(0,180), breaks=seq(0,180, by = 20))+
labs(x = "年齡",y = "人數")+
theme_bw()
