

Email : kent.zendrato@student.matanauniversity.ac.id
RPubs : https://rpubs.com/kentzend03/
Jurusan : Fisika Medis
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
Integral
library(mosaicCalc)
Int <- function(x)
{
Fungsi=makeFun(4*x^2+2~x)
Integral= antiD(Fungsi(4*x**2)~x)
Integral_Tentu=Integral(0)-Integral(7)
Integral_Tak_Tentu=Integral(3:5)
return (cat(c("Integral Tentu :", Integral_Tentu, "\n",
"Integral Tak Tentu :", Integral_Tak_Tentu)))
}
Int(x)
## Integral Tentu : -215143.6
## Integral Tak Tentu : 3116.4 13115.2 40010
Keliling Lingkaran, Luas Lingkaran, dan Volume Bola
Misal diketahui π = 22/7 dan R = 14, maka hitunglah keliling lingkaran, luas lingkaran, dan volume bola berdasarkan data yang tersedia.
KLV <- function(π,R)
{
K = 2*π*R
L = π*R^2
V = 4/3*π*R^3
return(cat(c("Keliling:", K, sep = "\n",
"Luas Permukaan:", L, sep = "\n",
"Volume:", V)))
}
KLV(22/7,14)
## Keliling: 88
## Luas Permukaan: 616
## Volume: 11498.6666666667
LS0tDQp0aXRsZTogIkFsZ29yaXRtYSAmIFN0cnVrdHVyIERhdGEiDQpzdWJ0aXRsZTogIlR1Z2FzIDQiDQphdXRob3I6ICJLZW50IEp1YW4gTmF0YW5pZWwgWWFvaXNva2hpIFplbmRyYXRvICgyMDIxNDUyMDAwNCkiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50OiANCiAgICBodG1sX2RvY3VtZW50OiBudWxsDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdGhlbWU6IHNhbmRzdG9uZQ0KICAgIGNzczogc3R5bGUxLmNzcw0KICAgIGhpZ2hsaWdodDogbW9ub2Nocm9tZQ0KLS0tDQoNCg0KPGltZyBzdHlsZT0iZmxvYXQ6IHJpZ2h0OyBtYXJnaW46IDBweCAxMDBweCAwcHggMHB4OyB3aWR0aDoyNSUiIHNyYz0iZm90by5wbmciLz4gDQoNCmBgYHtyIGxvZ28sIGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnMzAlJ30NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJsb2dvLnBuZyIpDQpgYGANCg0KRW1haWwgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7OiAga2VudC56ZW5kcmF0b0BzdHVkZW50Lm1hdGFuYXVuaXZlcnNpdHkuYWMuaWQgPGJyPg0KUlB1YnMgICZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogaHR0cHM6Ly9ycHVicy5jb20va2VudHplbmQwMy8gPGJyPg0KSnVydXNhbiAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBbRmlzaWthIE1lZGlzXShodHRwczovL21hdGFuYXVuaXZlcnNpdHkuYWMuaWQvP2x5PWFjYWRlbWljJmM9c2IpIDxicj4NCkFkZHJlc3MgICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IEFSQSBDZW50ZXIsIE1hdGFuYSBVbml2ZXJzaXR5IFRvd2VyIDxicj4NCiZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7IEpsLiBDQkQgQmFyYXQgS2F2LCBSVC4xLCBDdXJ1ZyBTYW5nZXJlbmcsIEtlbGFwYSBEdWEsIFRhbmdlcmFuZywgQmFudGVuIDE1ODEwLg0KDQoqKioqDQoNCiMgSW50ZWdyYWwNCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KG1vc2FpY0NhbGMpDQoNCkludCA8LSBmdW5jdGlvbih4KQ0Kew0KRnVuZ3NpPW1ha2VGdW4oNCp4XjIrMn54KQ0KSW50ZWdyYWw9IGFudGlEKEZ1bmdzaSg0KngqKjIpfngpDQpJbnRlZ3JhbF9UZW50dT1JbnRlZ3JhbCgwKS1JbnRlZ3JhbCg3KQ0KSW50ZWdyYWxfVGFrX1RlbnR1PUludGVncmFsKDM6NSkNCnJldHVybiAoY2F0KGMoIkludGVncmFsIFRlbnR1IDoiLCBJbnRlZ3JhbF9UZW50dSwgIlxuIiwgDQoiSW50ZWdyYWwgVGFrIFRlbnR1IDoiLCBJbnRlZ3JhbF9UYWtfVGVudHUpKSkNCn0NCkludCh4KQ0KYGBgDQoNCg0KIyBLZWxpbGluZyBMaW5na2FyYW4sIEx1YXMgTGluZ2thcmFuLCBkYW4gVm9sdW1lIEJvbGENCk1pc2FsIGRpa2V0YWh1aSDPgCA9IDIyLzcgZGFuIFIgPSAxNCwgbWFrYSBoaXR1bmdsYWgga2VsaWxpbmcgbGluZ2thcmFuLCBsdWFzIGxpbmdrYXJhbiwgZGFuIHZvbHVtZSBib2xhIGJlcmRhc2Fya2FuIGRhdGEgeWFuZyB0ZXJzZWRpYS4NCg0KYGBge3J9DQpLTFYgPC0gZnVuY3Rpb24oz4AsUikNCnsNCiAgSyA9IDIqz4AqUg0KICBMID0gz4AqUl4yDQogIFYgPSA0LzMqz4AqUl4zDQogIHJldHVybihjYXQoYygiS2VsaWxpbmc6IiwgSywgc2VwID0gIlxuIiwNCiAgICAgICAgICAgICAgICJMdWFzIFBlcm11a2FhbjoiLCBMLCBzZXAgPSAiXG4iLA0KICAgICAgICAgICAgICAgIlZvbHVtZToiLCBWKSkpDQp9DQpLTFYoMjIvNywxNCkNCmBgYA0KDQojIE5pbGFpIE1ha3NpbXVtLCBNaW51bXVtLCBSYXRhLVJhdGEsIE1lZGlhbiwgTW9kZSwgVmFyaWFuc2ksIFN0YW5kYXJkIERldmlhc2kgcGFkYSBEYXRhIEJlcmZyZWt1ZW5zaQ0KDQp8fHwNCnw6LS06fDotLTp8DQp8KipOaWxhaSoqfCoqRnJla3VlbnNpKip8DQp8NTB8MnwNCnw2MHw1fA0KfDcwfDR8DQp8ODB8MXwNCnw5MHwzfA0KDQpgYGB7cn0NCiBIYXNpbDwtc2VxKDUwLDkwLDEwKQ0KRnJlazwtYygyLDUsNCwxLDMpDQoNCg0KZmk9MTUNCnRibT02OS41ICAgDQppbnRlcnZhbD0xMCAgICANCmZrYiA9IDEzICAgICAgICANCmY9IDQgICAgICAgICAgIA0KZDE9IDEgDQpkMiA9IDMNCnhpPShIYXNpbC8yKSAgICAgICAgICAgICANCmZpeGk9KHhpKkZyZWspICAgICAgICAgIA0KZml4aTI9eGleMipGcmVrICAgICANCg0KSGFzaWxfdGVzdDwtZnVuY3Rpb24oSGFzaWwsZnJlaykNCnsNCiAgIG5pbGFpbWF4PW1heChIYXNpbCkNCiAgIG5pbGFpbWluPW1pbihIYXNpbCkNCiAgIG5pbGFpbWVhbj1zdW0oSGFzaWwqRnJlaykvc3VtKEZyZWspDQogIE1lZGlhbj10Ym0rKChmaS8yLWZrYikvZikqaW50ZXJ2YWwNCiAgTW9kZT10Ym0raW50ZXJ2YWwqKGQxLyhkMStkMikpDQogIFZhcmlhbnNpPShzdW0oZml4aTIpLShzdW0oZml4aSleMi9maSkpL2ZpLTENCiBzdGQ9c3FydChWYXJpYW5zaSkNCiAgcmV0dXJuKGNhdCgiIE5pbGFpIG1ha3NpbXVtOiAgIiwgbmlsYWltYXgsIlxuIiwNCiAgICAgICAgICAgICAgICIgTmlsYWlsIG1pbmltdW06ICIsICBuaWxhaW1pbiwiXG4iLA0KICAgICAgICAgICAgICAgIk1lYW46IiAsICBuaWxhaW1lYW4sIlxuIiwNCiAgICAgICAgICAgICAiTWVkaWFuOiIsIE1lZGlhbiwiXG4iLA0KICAgICAgICAgICAgICJNb2RlOiAiLE1vZGUsIlxuIiwNCiAgICAgICAgICAgICAiVmFyaWFuc2k6ICIsVmFyaWFuc2ksIlxuIiwNCiAgICAgICAgICAgICAiU3RhbmRhcmQgRGV2YXNpOiAiLHN0ZCkpDQp9DQpIYXNpbF90ZXN0KCBIYXNpbCxmcmVrKQ0KYGBg