setwd("C:/Users/aluno/Documents")
metais<-read.table("metais.txt", h=TRUE)
library(car)
## Warning: package 'car' was built under R version 3.1.3
library (corrplot)
## Warning: package 'corrplot' was built under R version 3.1.3
# Verificando os dados
str (metais)
## 'data.frame':    21 obs. of  6 variables:
##  $ Inf.Pb: num  18 3 4 24 35 31 32 14 40 27 ...
##  $ Eff.Pb: num  3 1 1 21 34 2 4 6 6 9 ...
##  $ Inf.Ni: num  33 47 26 33 23 28 36 41 47 42 ...
##  $ Eff.Ni: num  25 41 8 27 10 16 19 43 18 16 ...
##  $ Inf.Zn: num  194 291 234 225 160 223 206 135 329 221 ...
##  $ Eff.Zn: num  96 81 63 65 31 41 40 47 72 72 ...
summary (metais)
##      Inf.Pb          Eff.Pb           Inf.Ni          Eff.Ni     
##  Min.   : 3.00   Min.   : 1.000   Min.   :13.00   Min.   : 3.00  
##  1st Qu.:14.00   1st Qu.: 4.000   1st Qu.:24.00   1st Qu.:14.00  
##  Median :23.00   Median : 6.000   Median :33.00   Median :18.00  
##  Mean   :21.05   Mean   : 8.238   Mean   :34.05   Mean   :21.86  
##  3rd Qu.:28.00   3rd Qu.: 9.000   3rd Qu.:42.00   3rd Qu.:25.00  
##  Max.   :40.00   Max.   :34.000   Max.   :69.00   Max.   :63.00  
##      Inf.Zn          Eff.Zn    
##  Min.   :135.0   Min.   :31.0  
##  1st Qu.:207.0   1st Qu.:49.0  
##  Median :234.0   Median :61.0  
##  Mean   :251.8   Mean   :61.1  
##  3rd Qu.:267.0   3rd Qu.:72.0  
##  Max.   :464.0   Max.   :96.0
names (metais)
## [1] "Inf.Pb" "Eff.Pb" "Inf.Ni" "Eff.Ni" "Inf.Zn" "Eff.Zn"
### 1) Análise grafica
pairs(metais)

## Usando a função scatterplotMatrix do pacote car
scatterplotMatrix(metais, spread=FALSE, smoother.args=list(lty=2))

## Usando a função corrplot
corrplot(cor(metais), type="upper", tl.col="black", tl.srt=4)

### 2) Matriz de Correlações
cor(metais)
##             Inf.Pb     Eff.Pb      Inf.Ni      Eff.Ni      Inf.Zn
## Inf.Pb  1.00000000  0.2157941  0.32276440  0.01812931  0.01765980
## Eff.Pb  0.21579410  1.0000000 -0.28512662 -0.20773675 -0.19800187
## Inf.Ni  0.32276440 -0.2851266  1.00000000  0.24432850 -0.05459522
## Eff.Ni  0.01812931 -0.2077367  0.24432850  1.00000000 -0.04786391
## Inf.Zn  0.01765980 -0.1980019 -0.05459522 -0.04786391  1.00000000
## Eff.Zn -0.16340908 -0.4262317  0.47898286  0.19415646  0.16986079
##            Eff.Zn
## Inf.Pb -0.1634091
## Eff.Pb -0.4262317
## Inf.Ni  0.4789829
## Eff.Ni  0.1941565
## Inf.Zn  0.1698608
## Eff.Zn  1.0000000
### Estimativas pontuais e ICs
cor.test(metais$Inf.Pb, metais$Eff.Pb, conf.level = 0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Pb and metais$Eff.Pb
## t = 0.9633, df = 19, p-value = 0.3475
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2380702  0.5923045
## sample estimates:
##       cor 
## 0.2157941
cor.test(metais$Inf.Pb, metais$Eff.Pb, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Pb and metais$Eff.Pb
## t = 0.9633, df = 19, p-value = 0.3475
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2380702  0.5923045
## sample estimates:
##       cor 
## 0.2157941
cor.test(metais$Inf.Zn, metais$Eff.Zn, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Zn and metais$Eff.Zn
## t = 0.7513, df = 19, p-value = 0.4617
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2825440  0.5604515
## sample estimates:
##       cor 
## 0.1698608
cor.test(metais$Inf.Ni, metais$Eff.Ni, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Ni and metais$Eff.Ni
## t = 1.0983, df = 19, p-value = 0.2858
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2094496  0.6115166
## sample estimates:
##       cor 
## 0.2443285
cor.test(metais$Inf.Pb, metais$Eff.Zn, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Pb and metais$Eff.Zn
## t = -0.722, df = 19, p-value = 0.4791
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.5558830  0.2886387
## sample estimates:
##        cor 
## -0.1634091
cor.test(metais$Inf.Pb, metais$Eff.Ni, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Pb and metais$Eff.Ni
## t = 0.079, df = 19, p-value = 0.9378
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4168196  0.4463231
## sample estimates:
##        cor 
## 0.01812931
cor.test(metais$Inf.Ni, metais$Eff.Pb, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Ni and metais$Eff.Pb
## t = -1.2967, df = 19, p-value = 0.2103
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.6382537  0.1671316
## sample estimates:
##        cor 
## -0.2851266
cor.test(metais$Inf.Ni, metais$Eff.Zn, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Ni and metais$Eff.Zn
## t = 2.3784, df = 19, p-value = 0.02803
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.05962472 0.75463362
## sample estimates:
##       cor 
## 0.4789829
cor.test(metais$Inf.Zn, metais$Eff.Pb, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Zn and metais$Eff.Pb
## t = -0.8805, df = 19, p-value = 0.3896
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.5801044  0.2555259
## sample estimates:
##        cor 
## -0.1980019
cor.test(metais$Inf.Zn, metais$Eff.Ni, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Inf.Zn and metais$Eff.Ni
## t = -0.2089, df = 19, p-value = 0.8368
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4698427  0.3919208
## sample estimates:
##         cor 
## -0.04786391
cor.test(metais$Eff.Pb, metais$Eff.Zn, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Eff.Pb and metais$Eff.Zn
## t = -2.0538, df = 19, p-value = 0.05402
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.724594181  0.006685118
## sample estimates:
##        cor 
## -0.4262317
cor.test(metais$Eff.Pb, metais$Eff.Ni, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Eff.Pb and metais$Eff.Ni
## t = -0.9257, df = 19, p-value = 0.3662
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.5868009  0.2460117
## sample estimates:
##        cor 
## -0.2077367
cor.test(metais$Eff.Zn, metais$Eff.Ni, conf.level=0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  metais$Eff.Zn and metais$Eff.Ni
## t = 0.8627, df = 19, p-value = 0.399
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2592602  0.5774448
## sample estimates:
##       cor 
## 0.1941565

Exercícios do Devore

library(Devore7)
## Warning: package 'Devore7' was built under R version 3.1.3
## Loading required package: MASS
## Loading required package: lattice
# Ex. 84, Ex. Complementar, Cap. 12

data(ex12.84)
str(ex12.84)
## 'data.frame':    20 obs. of  2 variables:
##  $ HW : num  8 6.2 9.2 6.4 8.6 12.2 7.2 12 14.9 12.1 ...
##  $ BOD: num  2.5 4 4.1 6.2 7.1 7 8.3 9.2 9.3 12 ...
#Grafico de Dispersão com ggplot2
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.1.3
qplot(HW, BOD, data = ex12.84, geom = c("point", "smooth"), method = "lm") + theme_bw()

# Quantificando a correlação
cor.test(ex12.84$HW, ex12.84$BOD, conf.level = 0.95)
## 
##  Pearson's product-moment correlation
## 
## data:  ex12.84$HW and ex12.84$BOD
## t = 7.4119, df = 18, p-value = 7.144e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6905699 0.9467818
## sample estimates:
##       cor 
## 0.8678753
#Estimando o modelo de regressão linear
mreg1=lm(BOD ~ HW, data=ex12.84)
summary(mreg1)
## 
## Call:
## lm(formula = BOD ~ HW, data = ex12.84)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6947 -1.5141 -0.0957  1.8149  4.7134 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.1052     1.8715  -1.125    0.275    
## HW            1.0134     0.1367   7.412 7.14e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.506 on 18 degrees of freedom
## Multiple R-squared:  0.7532, Adjusted R-squared:  0.7395 
## F-statistic: 54.94 on 1 and 18 DF,  p-value: 7.144e-07
  #Diagnóstico do modelo
plot(mreg1, which=1)

plot(mreg1, which=2)

# Ex. 47. Seção 13.4, Cap. 13
data(ex13.47)
str(ex13.47)
## 'data.frame':    30 obs. of  6 variables:
##  $ Row           : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Plastics      : num  18.7 19.4 19.2 22.6 16.5 ...
##  $ Paper         : num  15.6 23.5 24.2 22.2 23.6 ...
##  $ Garbage       : num  45 39.7 43.2 35.8 41.2 ...
##  $ Water         : num  58.2 46.3 46.6 45.9 55.1 ...
##  $ Energy.content: int  947 1407 1452 1553 989 1162 1466 1656 1254 1336 ...
# Definindo o valor de X para a previsão
 novox = data.frame(HW = 15)

# predict = intervalos de previsão para Y
predict(mreg1,novox, interval="predict")
##        fit      lwr      upr
## 1 13.09603 7.672846 18.51921
#confint = estimativas de IC para os parâmetros
confint(mreg1, level=0.95)
##                  2.5 %   97.5 %
## (Intercept) -6.0371353 1.826710
## HW           0.7261594 1.300673
# Ex. 47, seçãO 13.4 Cap. 13

data(ex13.47)
str(ex13.47)
## 'data.frame':    30 obs. of  6 variables:
##  $ Row           : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Plastics      : num  18.7 19.4 19.2 22.6 16.5 ...
##  $ Paper         : num  15.6 23.5 24.2 22.2 23.6 ...
##  $ Garbage       : num  45 39.7 43.2 35.8 41.2 ...
##  $ Water         : num  58.2 46.3 46.6 45.9 55.1 ...
##  $ Energy.content: int  947 1407 1452 1553 989 1162 1466 1656 1254 1336 ...
mreg2=lm(Energy.content ~ Plastics + Paper + Garbage + Water, data=ex13.47)
summary(mreg2)
## 
## Call:
## lm(formula = Energy.content ~ Plastics + Paper + Garbage + Water, 
##     data = ex13.47)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -41.34 -24.04 -11.00  22.54  59.73 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2245.093    177.892  12.621 2.42e-12 ***
## Plastics      28.922      2.823  10.243 1.97e-10 ***
## Paper          7.643      2.314   3.303  0.00288 ** 
## Garbage        4.297      1.916   2.243  0.03404 *  
## Water        -37.356      1.834 -20.367  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 31.48 on 25 degrees of freedom
## Multiple R-squared:  0.9641, Adjusted R-squared:  0.9583 
## F-statistic: 167.7 on 4 and 25 DF,  p-value: < 2.2e-16