library(readr)
plantas <- read_csv("plantas.csv")
## Rows: 42 Columns: 3
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): Tratamiento
## dbl (2): planta, IE
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(plantas)
## # A tibble: 6 x 3
## planta IE Tratamiento
## <dbl> <dbl> <chr>
## 1 1 0.8 Ctrl
## 2 2 0.66 Ctrl
## 3 3 0.65 Ctrl
## 4 4 0.87 Ctrl
## 5 5 0.63 Ctrl
## 6 6 0.94 Ctrl
Ctrl <- subset(plantas, Tratamiento == "Ctrl")
Fert <- subset(plantas, Tratamiento == "Fert")
hist(Ctrl$IE)
# Sumario estadistico:
summary(Ctrl$IE)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5500 0.7000 0.7700 0.7676 0.8700 0.9500
boxplot(Ctrl$IE)
# ¿Que tan dispersos son los datos?
var(Ctrl$IE)
## [1] 0.01329905
sd(Ctrl$IE)
## [1] 0.1153215
library(fdth)
##
## Attaching package: 'fdth'
## The following objects are masked from 'package:stats':
##
## sd, var
dist <- fdt(Ctrl$IE)
dist
## Class limits f rf rf(%) cf cf(%)
## [0.5445,0.6137) 1 0.05 4.76 1 4.76
## [0.6137,0.6828) 4 0.19 19.05 5 23.81
## [0.6828,0.752) 4 0.19 19.05 9 42.86
## [0.752,0.8212) 6 0.29 28.57 15 71.43
## [0.8212,0.8903) 1 0.05 4.76 16 76.19
## [0.8903,0.9595) 5 0.24 23.81 21 100.00
hist(Fert$IE)
# Sumario estadistico:
summary(Fert$IE)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5600 0.7800 0.9100 0.9067 1.0400 1.1600
ks.test(Ctrl$IE, "pnorm", mean= mean(Ctrl$IE), sd=sd(Ctrl$IE))
## Warning in ks.test(Ctrl$IE, "pnorm", mean = mean(Ctrl$IE), sd = sd(Ctrl$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: Ctrl$IE
## D = 0.11991, p-value = 0.9233
## alternative hypothesis: two-sided
var(Fert$IE)
## [1] 0.03238333
sd(Fert$IE)
## [1] 0.1799537
ks.test(Fert$IE, "pnorm", mean= mean(Fert$IE), sd=sd(Fert$IE))
## Warning in ks.test(Fert$IE, "pnorm", mean = mean(Fert$IE), sd = sd(Fert$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: Fert$IE
## D = 0.10776, p-value = 0.9677
## alternative hypothesis: two-sided
#Grafico de caja y bigote para plantulas fertilizadas:
ks.test(Fert$IE, "pnorm", mean= mean(Fert$IE), sd=sd(Fert$IE))
## Warning in ks.test(Fert$IE, "pnorm", mean = mean(Fert$IE), sd = sd(Fert$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: Fert$IE
## D = 0.10776, p-value = 0.9677
## alternative hypothesis: two-sided