Document History

Original Publish Date: 29 June, 2020

Updated on: 01:10 PM – 21 October, 2021


In this document we will try to uncover how having criminal running in the elections affect the perception of voters and over all law and order in the constituency.

In the first part we use the 2014 NES data to find the relation between the voters mobilisation and participation, voters perception on increase in malpractices and fair election to the criminal candidacy in a constituency. We denote criminality in vast array of variables. They are as follows:

  • criminal_candidate -There is at least one criminal candidate in a constituency

  • serious_criminal_w - A criminal candidate has won that election

  • serious_1_2 - Either the winner or runner-up are serious criminal

  • serious_crime_cand - There is atleast one serious criminal candidate in the constituency

  • serious_crime_w_09 - A serious criminal won the 2009 election

NES

The following excerpt is from the csds website on the nes 14 sample-

For this survey, we selected samples from 26 States (the survey was not conducted in Goa, Nagaland and Sikkim): first we chose 306 of the 543 Lok Sabha constituencies. Within the parliamentary constituencies, 347 Assembly segments were selected, and then a further 1388 individual polling station areas were selected for conducting interviews. From each rural polling station 25 persons were selected from the electoral rolls and from each urban polling station 30 persons were drawn. Around 37,000 voters randomly selected from the most updated electoral rolls were approached for the interview, of which 22,295 voters could be successfully interviewed

The table below summarises the key info on criminal candidates in the 2014 election.

Summary table

year non_serious_criminal serious_criminal non_serious_winners non_serious_winners_1plus serious_winners serious_winner_1plus
2009 0.12 0.10 0.25 0.23 0.16 0.12
2014 0.14 0.11 0.30 0.26 0.22 0.14
2019 0.16 0.14 0.38 0.32 0.29 0.21

DIstribution

rdd checks

## # A tibble: 2 × 2
##   serious_criminal     n
##              <dbl> <int>
## 1                0    13
## 2                1     9

Models

participation

The index of participation a variable that combines answers to all sub questions of Q16 that measures the participation of voters in the campaigning process.

Q16. During the elections people participate in various activities. In the recent elections, out of the activities stated below, in which did you participate?

+================================================================================================================================================================+ +—————————————————————————————————————————————————————-+

Activities :


a. Attended election meetings/rallies?


b. Participated in processions/nukkad natak etc.?


c. Participated in door to door canvassing?


d. Contributed or collected money?


e. Distributed election leaflets or put up posters?

all

Dependent variable:
participation
criminal_winner09_in14 -0.018
(0.044)
serious_1_2 -0.048
(0.031)
enop -0.029
(0.029)
reservation -0.001
(0.025)
State fixed effects Yes
Caste control Yes
Age control Yes
Education control Yes
Asset control Yes
Clustered error PC Yes
Observations 20,899
R2 0.086
Adjusted R2 0.085
Residual Std. Error 0.440 (df = 20865)
Note: p<0.1; p<0.05; p<0.01
new models

mobilisation

The index of mobilisation asses the efforts of party and the party workers in mobilising the electorate. It is an index that combines all the answers to the following question.

+—————————————————————————————————————————————————————————————+ +—————————————————————————————————————————————————————————————+

a. Candidate/Party worker/canvasser came to your house to ask your vote .

b. Party/Candidate contacted you or a family member through a phone call or recorded voice or SMS.

c. Party/Candidate offering food/honorarium etc to voters in your locality.

d. Party/Candidate offering to drive voters in your locality to the polling stations .

all

Dependent variable:
participation
criminal_winner09_in14 -0.018
(0.044)
serious_1_2 -0.048
(0.031)
enop -0.029
(0.029)
reservation -0.001
(0.025)
female -0.200***
(0.011)
log(total_assets + 1) 0.002
(0.006)
State fixed effects Yes
Caste control Yes
Age control Yes
Education control Yes
Asset control Yes
Clustered error PC Yes
Observations 20,899
R2 0.086
Adjusted R2 0.085
Residual Std. Error 0.440 (df = 20865)
Note: p<0.1; p<0.05; p<0.01

fair election

Q20: Thinking of the way elections are conducted in India, what do you feel - are elections fair, somewhat fair or unfair?

Labels: value label 1 1: Fair 2 2: Somewhat fair 3 3: Unfair 8 8: No opinion

In the continuous scale, dependent variable is marked as follows : +2 - Fair, +1 - Somewhat fair, 0 - No opinion, -1 - Unfair

fair election - dummy

Fair elections dummy - all options included
Dependent variable:
fair_election_dummy
criminal_winner09_in14 -0.022
(0.043)
serious_1_2 -0.022
(0.033)
enop -0.054*
(0.032)
reservation -0.036
(0.028)
female -0.019**
(0.008)
log(total_assets + 1) 0.005
(0.007)
State fixed effects Yes
Caste control Yes
Age control Yes
Education control Yes
Asset control Yes
Clustered error PC Yes
Observations 20,899
R2 0.060
Adjusted R2 0.058
Residual Std. Error 0.471 (df = 20863)
Note: p<0.1; p<0.05; p<0.01

fair election removing the dummy excluding dk

Fair election continuous variable

malpractice

Q14: Now compare the recently held election in your area with elections held in the past. Do you think in this election things like rigging, intimidation, fraud and other malpractices have increased, decreased or remained the same?

Labels: value label 1 1: Increased 2 2: Same as before 3 3: Decreased 4 4: Malpractices never take place 8 8: Can’t say/Don’t know

Malpractice - binary

Malpractise increase - all options included
Dependent variable:
malpractise_increase
criminal_winner09_in14 -0.053***
(0.019)
serious_1_2 0.034**
(0.015)
enop 0.009
(0.017)
reservation 0.030*
(0.017)
female -0.007
(0.005)
log(total_assets + 1) 0.004
(0.004)
urban 0.039**
(0.017)
State fixed effects Yes
Caste control Yes
Age control Yes
Education control Yes
Asset control Yes
Clustered error PC Yes
Observations 20,899
R2 0.040
Adjusted R2 0.039
Residual Std. Error 0.326 (df = 20862)
Note: p<0.1; p<0.05; p<0.01

removing the dk

malpractice contd

In the continuous variable, dependent variable is marked as follows: +2 - Increased, +1 - Same as before, 0 - Can’t say/ Don’t know, , -1 - Decreased, -2 - Malpractices never take place

turnout

All turnout - 2014 only

Dependent variable:
turnout_percentage
(1) (2) (3) (4)
criminal_candidate -0.174
(0.469)
serious_criminal_w -0.013
(0.350)
serious_1_2 -0.496
(0.353)
serious_criminal -0.439
(0.371)
enop -1.614*** -1.616*** -1.577*** -1.581***
(0.512) (0.511) (0.510) (0.507)
reservation 0.667* 0.677* 0.640* 0.640*
(0.340) (0.331) (0.338) (0.339)
incumbent_cand -0.114 -0.122 -0.101 -0.112
(0.374) (0.386) (0.378) (0.377)
log(median_asset) -0.051 -0.045 -0.074 -0.070
(0.179) (0.178) (0.176) (0.176)
lagged_turnout 0.728*** 0.728*** 0.727*** 0.727***
(0.049) (0.050) (0.049) (0.049)
lagged_criminal_winner -0.279 -0.290 -0.237 -0.239
(0.520) (0.494) (0.510) (0.516)
State fixed effects Yes Yes Yes Yes
Clustered error - State Yes Yes Yes Yes
PC level asset control Yes Yes Yes Yes
Observations 506 506 506 506
R2 0.890 0.890 0.890 0.890
Adjusted R2 0.884 0.884 0.884 0.884
Residual Std. Error (df = 478) 3.452 3.453 3.446 3.448
Note: p<0.1; p<0.05; p<0.01

female turnout

Female turnout percentage
Dependent variable:
female_turnout
serious_1_2 -0.985
(0.847)
enop -1.186
(0.816)
reservation
incumbent_cand 0.879
(0.756)
log(median_asset) 0.178
(0.440)
lagged_turnout 0.738***
(0.078)
lagged_criminal_winner 1.038
(1.083)
State fixed effects Yes
Clustered error - State Yes
PC level asset control Yes
Observations 1,029
R2 0.982
Adjusted R2 0.956
Residual Std. Error 7.023 (df = 429)
Note: p<0.1; p<0.05; p<0.01

male turnout

Male turnout percentage
Dependent variable:
male_turnout
serious_1_2 -0.951**
(0.389)
enop -2.115***
(0.370)
reservation -0.100
(0.385)
incumbent_cand 0.571*
(0.329)
log(median_asset) -0.175
(0.181)
lagged_turnout 0.475***
(0.024)
lagged_criminal_winner -0.117
(0.446)
State fixed effects Yes
Clustered error - State Yes
PC level asset control Yes
Observations 1,029
R2 0.981
Adjusted R2 0.980
Residual Std. Error 4.892 (df = 971)
Note: p<0.1; p<0.05; p<0.01

Margin


Asset

Does the median asset of the candidates increase if there is a serious criminal in the constituency

CSES

  • 13963 observations

participation

Serious crime winner 2014/19 count_14 count_19 Avg. participation - NES Avg. participation - CSES
0 243 169 0.3 0.72
1 43 70 0.3 0.64

mobilisation

Serious crime winner 2014/19 count_14 count_19 Avg. mobilisation - NES Avg. mobilisation - CSES
0 243 169 0.66 0.81
1 43 70 0.63 0.81

ACLED

In this second part we use the ACLED data on violence to asses violence during the run upto the 2019 election. For India the data is available from 2015 and we will test our hypothesis on 2019 elections. We are looking at the violence from Jan’19 to May’19 and the criminality measures are the same the above one.

ACLED provides data on 4 kind of incidents - Battles , Explosions/Remote violence Protests, Riots, Strategic developments, Violence against civilians. For our analysis we are using Violence against civilians, Riots, Protests and all others in category called violence others.

Before focusing on the months run upto 2019 election it is essential that we look into the rest of the data to get an idea on the how the distribution looks like and how it is spread out throughout the year.

2019 winner graphs

2014 winner graphs

summary

The following table shows the break-up of those events for the 5 months period of 2019 elections.

event_type 2019
Battles 416
Explosions/Remote violence 115
Protests 6330
Riots 2457
Strategic developments 135
Violence against civilians 587

Impact of serious crime winner 2019 on avg. number of events during run upto the 2019 elections
violence no yes
Other violence 0.46 0.59
Protests 8.24 6.63
Riots 2.87 3.34
Violence against civilians 0.80 0.84

Impact of serious crime winner 2014 on avg. number of events during run upto the 2019 elections
event type no yes
Other violence 0.53 0.33
Protests 8.30 5.14
Riots 3.20 2.14
Violence against civilians 0.85 0.65

Protests

Dependent variable:
Number of protests in between Jan and May 2019
(1) (2) (3) (4)
serious_crime_w 0.130
(0.140)
criminal_candidate 0.111
(0.198)
serious_1_2 0.043
(0.163)
serious_criminalyes 0.130
(0.140)
enop 0.473** 0.462** 0.463** 0.473**
(0.221) (0.221) (0.222) (0.221)
incumbent_cand -0.231* -0.236* -0.234* -0.231*
(0.135) (0.135) (0.135) (0.135)
log(median_asset) 0.035 0.035 0.035 0.035
(0.072) (0.072) (0.072) (0.072)
lagged_criminal_winner 0.024 0.035 0.040 0.024
(0.164) (0.164) (0.163) (0.164)
n_events_month_lag 1.027*** 1.026*** 1.027*** 1.027***
(0.025) (0.025) (0.025) (0.025)
Year fixed effects Yes Yes Yes Yes
Observations 480 480 480 480
R2 0.879 0.878 0.878 0.879
Adjusted R2 0.866 0.866 0.865 0.866
Residual Std. Error (df = 433) 1.288 1.289 1.289 1.288
Note: p<0.1; p<0.05; p<0.01

Violence against civilians

Dependent variable:
Number of Violence against civilians happened between Jan and May 2019
(1) (2) (3) (4)
serious_crime_w 0.023
(0.025)
criminal_candidate 0.048
(0.035)
serious_1_2 0.014
(0.029)
serious_criminalyes 0.023
(0.025)
enop -0.010 -0.013 -0.013 -0.010
(0.040) (0.040) (0.040) (0.040)
incumbent_cand -0.015 -0.017 -0.016 -0.015
(0.024) (0.024) (0.024) (0.024)
log(median_asset) -0.010 -0.010 -0.010 -0.010
(0.013) (0.013) (0.013) (0.013)
lagged_criminal_winner -0.016 -0.015 -0.013 -0.016
(0.029) (0.029) (0.029) (0.029)
n_events_month_lag 0.403*** 0.399*** 0.404*** 0.403***
(0.044) (0.044) (0.044) (0.044)
Year fixed effects Yes Yes Yes Yes
Observations 480 480 480 480
R2 0.452 0.454 0.452 0.452
Adjusted R2 0.394 0.396 0.393 0.394
Residual Std. Error (df = 433) 0.231 0.230 0.231 0.231
Note: p<0.1; p<0.05; p<0.01

Riots

Dependent variable:
Average number of riots happened in every month during Jan and May 2019
(1) (2) (3) (4)
serious_crime_w 0.071
(0.087)
criminal_candidate 0.091
(0.124)
serious_1_2 0.157
(0.102)
serious_criminalyes 0.071
(0.087)
enop -0.216 -0.223 -0.233* -0.216
(0.139) (0.139) (0.139) (0.139)
incumbent_cand -0.074 -0.078 -0.082 -0.074
(0.084) (0.085) (0.084) (0.084)
log(median_asset) 0.075* 0.075* 0.075* 0.075*
(0.045) (0.045) (0.045) (0.045)
lagged_criminal_winner 0.010 0.014 0.012 0.010
(0.103) (0.102) (0.102) (0.103)
n_events_month_lag 0.740*** 0.737*** 0.738*** 0.740***
(0.065) (0.065) (0.065) (0.065)
Year fixed effects Yes Yes Yes Yes
Observations 480 480 480 480
R2 0.530 0.530 0.532 0.530
Adjusted R2 0.481 0.480 0.483 0.481
Residual Std. Error (df = 433) 0.805 0.805 0.804 0.805
Note: p<0.1; p<0.05; p<0.01

all violence

## 
## <table style="text-align:center"><tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="4"><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="4" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td colspan="4">Average number of violence happened in every month during Jan and May 2019</td></tr>
## <tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td><td>(3)</td><td>(4)</td></tr>
## <tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">serious_crime_w</td><td>0.058</td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left"></td><td>(0.050)</td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">criminal_candidate</td><td></td><td>-0.012</td><td></td><td></td></tr>
## <tr><td style="text-align:left"></td><td></td><td>(0.070)</td><td></td><td></td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">serious_1_2</td><td></td><td></td><td>0.050</td><td></td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td>(0.058)</td><td></td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">serious_criminalyes</td><td></td><td></td><td></td><td>0.058</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.050)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">enop</td><td>-0.095</td><td>-0.097</td><td>-0.102</td><td>-0.095</td></tr>
## <tr><td style="text-align:left"></td><td>(0.078)</td><td>(0.078)</td><td>(0.078)</td><td>(0.078)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">incumbent_cand</td><td>0.030</td><td>0.030</td><td>0.027</td><td>0.030</td></tr>
## <tr><td style="text-align:left"></td><td>(0.048)</td><td>(0.048)</td><td>(0.048)</td><td>(0.048)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">log(median_asset)</td><td>0.045<sup>*</sup></td><td>0.045<sup>*</sup></td><td>0.045<sup>*</sup></td><td>0.045<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.025)</td><td>(0.026)</td><td>(0.026)</td><td>(0.025)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">lagged_criminal_winner</td><td>0.055</td><td>0.064</td><td>0.061</td><td>0.055</td></tr>
## <tr><td style="text-align:left"></td><td>(0.058)</td><td>(0.058)</td><td>(0.058)</td><td>(0.058)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
## <tr><td style="text-align:left">n_events_month_lag</td><td>0.552<sup>***</sup></td><td>0.555<sup>***</sup></td><td>0.553<sup>***</sup></td><td>0.552<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.032)</td><td>(0.032)</td><td>(0.032)</td><td>(0.032)</td></tr>
## <tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
## <tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Year fixed effects</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td></tr>
## <tr><td style="text-align:left">Observations</td><td>480</td><td>480</td><td>480</td><td>480</td></tr>
## <tr><td style="text-align:left">R<sup>2</sup></td><td>0.572</td><td>0.571</td><td>0.572</td><td>0.572</td></tr>
## <tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>0.527</td><td>0.525</td><td>0.526</td><td>0.527</td></tr>
## <tr><td style="text-align:left">Residual Std. Error (df = 433)</td><td>0.456</td><td>0.457</td><td>0.457</td><td>0.456</td></tr>
## <tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="4" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>

ADR - Daksh

note: ADR Daksh data : CSES data

why did you vote for a criminal candidate

Data Frame Summary

daksh_crime

Dimensions: 238692 x 6
Duplicates: 238012

No Variable Stats / Values Freqs (% of Valid) Valid Missing
1 candidate is of similar caste or religion
[character]
1. (Empty string)
2. No
3. Yes
9741 ( 4.1%)
140785 (59.0%)
88166 (36.9%)
238692
(100.0%)
0
(0.0%)
2 candidate is powerful
[character]
1. (Empty string)
2. No
3. Yes
9072 ( 3.8%)
138307 (57.9%)
91313 (38.3%)
238692
(100.0%)
0
(0.0%)
3 candidate otherwise does good work
[character]
1. (Empty string)
2. No
3. Yes
9487 ( 4.0%)
74529 (31.2%)
154676 (64.8%)
238692
(100.0%)
0
(0.0%)
4 cases against him are not serious
[character]
1. (Empty string)
2. No
3. Yes
11094 ( 4.6%)
124018 (52.0%)
103580 (43.4%)
238692
(100.0%)
0
(0.0%)
5 candidate has spent generously in elections
[character]
1. (Empty string)
2. No
3. Yes
8939 ( 3.7%)
139421 (58.4%)
90332 (37.8%)
238692
(100.0%)
0
(0.0%)
6 voters don’t know about the criminal record
[character]
1. (Empty string)
2. No
3. Yes
9773 ( 4.1%)
128873 (54.0%)
100046 (41.9%)
238692
(100.0%)
0
(0.0%)