Email             :
RPubs            : https://rpubs.com/naftalibrigitta/
Jurusan          : Statistika Bisnis
Address         : Perumahan Ciater Permai
                         Jl. Anggrek III, Blok A5 No. 10, RT 001, RW 004, Serpong, Tangerang Selatan, Banten 15310.


1 Intergral

1.1 Tentu dan Tak Tentu

library(mosaicCalc)

Fungsi=makeFun(2*x^3~x)

IntegralTentuTakTentu <- function(x)
{
 Integral= antiD(Fungsi(x)~x)
 IntegralTentu=Integral(0)-Integral(2)
 IntegralTakTentu=Integral(0:3)
  return (cat(c("Integral Tentu :", IntegralTentu, "\n", 
                "Integral Tak Tentu :", IntegralTakTentu)))
}
IntegralTentuTakTentu(x)
## Integral Tentu : -8 
##  Integral Tak Tentu : 0 0.5 8 40.5

2 Lingkaran dan Bola

2.1 Luas, Keliling, dan Volume

lkellvol <- function(π,r)                                           # nama fungsi dan argumen
{                                                                   # pembukaan fungsi
luas_lingkaran = π*r^2                                              # menghitung luas lingkaran
keliling_lingkaran = 2*π*r                                          # menghitung keliling lingkaran
volume_bola = 4/3*π*r^3                                             # menghitung volume bola
return (cat(c("Luas Lingkaran:", luas_lingkaran, sep = "\n",
              "Keliling Lingkaran:", keliling_lingkaran,sep="\n",
              "Volume Bola:", volume_bola)))
}                                                                   # penutupan fungsi
lkellvol(22/7,21)                                                   # menggunakan fungsi
## Luas Lingkaran: 1386 
##  Keliling Lingkaran: 132 
##  Volume Bola: 38808

3 Nilai pada Data Berfrekuensi

3.1 Nilai Max, Min, Rerat, Mean, Median, Mode, Variansi dan Standard Deviasi

Skor = c(5,10,15,20,25)
Frekuensi = c(3,1,5,8,3)

Guns <- data.frame(Skor, Frekuensi)

Guns
##   Skor Frekuensi
## 1    5         3
## 2   10         1
## 3   15         5
## 4   20         8
## 5   25         3
nappuy <- function(x,frek)
  
{ 
  tbm=19.5
  d1 = 3
  d2 = 5
  interval = 5
  n = 20

  Max = max(x)
  Min = min(x)
  Rerata = round(sum(x*frek)/sum(frek))
  Median = round(sum(frek)+1)/2
  Mode = tbm+interval*(d1/(d1+d2))
  
  o = x-Rerata
  p = sum((o^2)*frek)
  
  Variansi = p / (sum(frek)-1)
  
  Standev = sqrt(Variansi)
  
  return (cat(c("Nilai Maksimalnya adalah", Max, "\n", 
                "Nilai Minimalnya adalah", Min, "\n", 
                "Nilai Reratanya adalah", Rerata, "\n", 
                "Nilai Mediannya adalah", Median, "\n", 
                "Nilai Modenya adalah", Mode, "\n", 
                "Nilai Variansinya adalah", Variansi, "\n", 
                "Nilai Standard Deviasinya adalah", Standev, "\n")))
}

nappuy(Guns$Skor,Guns$Frekuensi)
## Nilai Maksimalnya adalah 25 
##  Nilai Minimalnya adalah 5 
##  Nilai Reratanya adalah 17 
##  Nilai Mediannya adalah 10.5 
##  Nilai Modenya adalah 21.375 
##  Nilai Variansinya adalah 40.2631578947368 
##  Nilai Standard Deviasinya adalah 6.34532567286635
LS0tDQp0aXRsZTogIlR1Z2FzIDUgUmV2aXNpIg0Kc3VidGl0bGU6ICJGdW5nc2kiDQphdXRob3I6ICJOYWZ0YWxpIEJyaWdpdHRhIEd1bmF3YW4gKDIwMjE0OTIwMDAyKSINCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGh0bWxfZG9jdW1lbnQ6IG51bGwNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDoNCiAgICAgIGNvbGxhcHNlZDogeWVzDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICB0aGVtZTogc2FuZHN0b25lDQogICAgY3NzOiBzdHlsZTEuY3NzDQogICAgaGlnaGxpZ2h0OiBtb25vY2hyb21lDQotLS0NCg0KPGltZyBzdHlsZT0iZmxvYXQ6IHJpZ2h0OyBtYXJnaW46IDBweCAxMDBweCAwcHggMHB4OyB3aWR0aDoyNSUiIHNyYz0iRk9UTyBOQUZUQUxJLmpwZWciLz4gDQoNCmBgYHtyIGxvZ28sIGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnMzAlJ30NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJsb2dvbWF0YW5hLnBuZyIpDQpgYGANCg0KRW1haWwgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7OiAgbmFmdGFsaS5ndW5hd2FuQHN0dWRlbnQubWF0YW5hdW5pdmVyc2l0eS5hYy5pZCA8YnI+DQpSUHVicyAgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBodHRwczovL3JwdWJzLmNvbS9uYWZ0YWxpYnJpZ2l0dGEvIDxicj4NCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW1N0YXRpc3Rpa2EgQmlzbmlzXShodHRwczovL21hdGFuYXVuaXZlcnNpdHkuYWMuaWQvP2x5PWFjYWRlbWljJmM9c2IpIDxicj4NCkFkZHJlc3MgICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IFBlcnVtYWhhbiBDaWF0ZXIgUGVybWFpPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIEFuZ2dyZWsgSUlJLCBCbG9rIEE1IE5vLiAxMCwgUlQgMDAxLCBSVyAwMDQsIFNlcnBvbmcsIFRhbmdlcmFuZyBTZWxhdGFuLCBCYW50ZW4gMTUzMTAuDQoNCioqKioNCiMgSW50ZXJncmFsDQojIyBUZW50dSBkYW4gVGFrIFRlbnR1DQpgYGB7ciwgbWVzc2FnZT1GQUxTRX0NCg0KbGlicmFyeShtb3NhaWNDYWxjKQ0KDQpGdW5nc2k9bWFrZUZ1bigyKnheM354KQ0KDQpJbnRlZ3JhbFRlbnR1VGFrVGVudHUgPC0gZnVuY3Rpb24oeCkNCnsNCiBJbnRlZ3JhbD0gYW50aUQoRnVuZ3NpKHgpfngpDQogSW50ZWdyYWxUZW50dT1JbnRlZ3JhbCgwKS1JbnRlZ3JhbCgyKQ0KIEludGVncmFsVGFrVGVudHU9SW50ZWdyYWwoMDozKQ0KICByZXR1cm4gKGNhdChjKCJJbnRlZ3JhbCBUZW50dSA6IiwgSW50ZWdyYWxUZW50dSwgIlxuIiwgDQogICAgICAgICAgICAgICAgIkludGVncmFsIFRhayBUZW50dSA6IiwgSW50ZWdyYWxUYWtUZW50dSkpKQ0KfQ0KSW50ZWdyYWxUZW50dVRha1RlbnR1KHgpDQpgYGANCg0KDQojIExpbmdrYXJhbiBkYW4gQm9sYQ0KIyMgTHVhcywgS2VsaWxpbmcsIGRhbiBWb2x1bWUNCmBgYHtyfQ0KbGtlbGx2b2wgPC0gZnVuY3Rpb24oz4AscikgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBuYW1hIGZ1bmdzaSBkYW4gYXJndW1lbg0KeyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHBlbWJ1a2FhbiBmdW5nc2kNCmx1YXNfbGluZ2thcmFuID0gz4Aqcl4yICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgbWVuZ2hpdHVuZyBsdWFzIGxpbmdrYXJhbg0Ka2VsaWxpbmdfbGluZ2thcmFuID0gMirPgCpyICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBtZW5naGl0dW5nIGtlbGlsaW5nIGxpbmdrYXJhbg0Kdm9sdW1lX2JvbGEgPSA0LzMqz4Aqcl4zICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBtZW5naGl0dW5nIHZvbHVtZSBib2xhDQpyZXR1cm4gKGNhdChjKCJMdWFzIExpbmdrYXJhbjoiLCBsdWFzX2xpbmdrYXJhbiwgc2VwID0gIlxuIiwNCiAgICAgICAgICAgICAgIktlbGlsaW5nIExpbmdrYXJhbjoiLCBrZWxpbGluZ19saW5na2FyYW4sc2VwPSJcbiIsDQogICAgICAgICAgICAgICJWb2x1bWUgQm9sYToiLCB2b2x1bWVfYm9sYSkpKQ0KfSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHBlbnV0dXBhbiBmdW5nc2kNCmxrZWxsdm9sKDIyLzcsMjEpICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBtZW5nZ3VuYWthbiBmdW5nc2kNCmBgYA0KDQoNCiMgTmlsYWkgcGFkYSBEYXRhIEJlcmZyZWt1ZW5zaQ0KIyMgTmlsYWkgTWF4LCBNaW4sIFJlcmF0LCBNZWFuLCBNZWRpYW4sIE1vZGUsIFZhcmlhbnNpIGRhbiBTdGFuZGFyZCBEZXZpYXNpDQpgYGB7cn0NClNrb3IgPSBjKDUsMTAsMTUsMjAsMjUpDQpGcmVrdWVuc2kgPSBjKDMsMSw1LDgsMykNCg0KR3VucyA8LSBkYXRhLmZyYW1lKFNrb3IsIEZyZWt1ZW5zaSkNCg0KR3Vucw0KDQpuYXBwdXkgPC0gZnVuY3Rpb24oeCxmcmVrKQ0KICANCnsgDQogIHRibT0xOS41DQogIGQxID0gMw0KICBkMiA9IDUNCiAgaW50ZXJ2YWwgPSA1DQogIG4gPSAyMA0KDQogIE1heCA9IG1heCh4KQ0KICBNaW4gPSBtaW4oeCkNCiAgUmVyYXRhID0gcm91bmQoc3VtKHgqZnJlaykvc3VtKGZyZWspKQ0KICBNZWRpYW4gPSByb3VuZChzdW0oZnJlaykrMSkvMg0KICBNb2RlID0gdGJtK2ludGVydmFsKihkMS8oZDErZDIpKQ0KICANCiAgbyA9IHgtUmVyYXRhDQogIHAgPSBzdW0oKG9eMikqZnJlaykNCiAgDQogIFZhcmlhbnNpID0gcCAvIChzdW0oZnJlayktMSkNCiAgDQogIFN0YW5kZXYgPSBzcXJ0KFZhcmlhbnNpKQ0KICANCiAgcmV0dXJuIChjYXQoYygiTmlsYWkgTWFrc2ltYWxueWEgYWRhbGFoIiwgTWF4LCAiXG4iLCANCiAgICAgICAgICAgICAgICAiTmlsYWkgTWluaW1hbG55YSBhZGFsYWgiLCBNaW4sICJcbiIsIA0KICAgICAgICAgICAgICAgICJOaWxhaSBSZXJhdGFueWEgYWRhbGFoIiwgUmVyYXRhLCAiXG4iLCANCiAgICAgICAgICAgICAgICAiTmlsYWkgTWVkaWFubnlhIGFkYWxhaCIsIE1lZGlhbiwgIlxuIiwgDQogICAgICAgICAgICAgICAgIk5pbGFpIE1vZGVueWEgYWRhbGFoIiwgTW9kZSwgIlxuIiwgDQogICAgICAgICAgICAgICAgIk5pbGFpIFZhcmlhbnNpbnlhIGFkYWxhaCIsIFZhcmlhbnNpLCAiXG4iLCANCiAgICAgICAgICAgICAgICAiTmlsYWkgU3RhbmRhcmQgRGV2aWFzaW55YSBhZGFsYWgiLCBTdGFuZGV2LCAiXG4iKSkpDQp9DQoNCm5hcHB1eShHdW5zJFNrb3IsR3VucyRGcmVrdWVuc2kpDQpgYGANCg==