Analisis exploratorio de datos e inferencia estadistica

Para este caso de estudio usaremos datos de un experimento hecho con plantulas en un invernadero de la UANL en el cual a un grupo de plantulas se les aplico fertilizante y a otro grupo no. El objetivo de esto es conocer que tan efectivo es el fertilizante par el desarrollo de las plantas.

Importar datos

library(readr)
plantas <- read_csv("plantas.csv")
## Rows: 42 Columns: 3
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): Tratamiento
## dbl (2): planta, IE
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Ctrl <- subset(plantas, Tratamiento == "Ctrl")
Fert <- subset(plantas, Tratamiento == "Fert")

Histograma de frecuencia absoluta

hist(Ctrl$IE)

summary(Ctrl$IE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.5500  0.7000  0.7700  0.7676  0.8700  0.9500
boxplot(Ctrl$IE)

var(Ctrl$IE)
## [1] 0.01329905
sd(Ctrl$IE)
## [1] 0.1153215
library(fdth)
## 
## Attaching package: 'fdth'
## The following objects are masked from 'package:stats':
## 
##     sd, var
dist <- fdt(Ctrl$IE)
dist
##     Class limits f   rf rf(%) cf  cf(%)
##  [0.5445,0.6137) 1 0.05  4.76  1   4.76
##  [0.6137,0.6828) 4 0.19 19.05  5  23.81
##   [0.6828,0.752) 4 0.19 19.05  9  42.86
##   [0.752,0.8212) 6 0.29 28.57 15  71.43
##  [0.8212,0.8903) 1 0.05  4.76 16  76.19
##  [0.8903,0.9595) 5 0.24 23.81 21 100.00

Grupo de plantulas ‘’Fert’’

hist(Fert$IE)

summary(Fert$IE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.5600  0.7800  0.9100  0.9067  1.0400  1.1600
summary(Fert$IE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.5600  0.7800  0.9100  0.9067  1.0400  1.1600
boxplot(Fert$IE)

var(Fert$IE)
## [1] 0.03238333
sd(Fert$IE)
## [1] 0.1799537
library(fdth)

dist2 <- fdt(Fert$IE)
dist2
##     Class limits f   rf rf(%) cf  cf(%)
##  [0.5544,0.6573) 2 0.10  9.52  2   9.52
##  [0.6573,0.7601) 3 0.14 14.29  5  23.81
##   [0.7601,0.863) 2 0.10  9.52  7  33.33
##   [0.863,0.9659) 6 0.29 28.57 13  61.90
##   [0.9659,1.069) 3 0.14 14.29 16  76.19
##    [1.069,1.172) 5 0.24 23.81 21 100.00

Para poder llegar a una conclusion al respecto de los datos, necesitamos saber si esta “efectividad” del fertilizante SI es representativa para la mayoria de los datos. Una forma de saber esto es determinar si la distribucion de los datos es NORMAL o no.

Para esto tenemos las pruebas de normalidad:

Prueba de normalidad de Kolmogorov-Smirnov en control

ks.test(Ctrl$IE, "pnorm", mean= mean(Ctrl$IE), sd=sd(Ctrl$IE))
## Warning in ks.test(Ctrl$IE, "pnorm", mean = mean(Ctrl$IE), sd = sd(Ctrl$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  Ctrl$IE
## D = 0.11991, p-value = 0.9233
## alternative hypothesis: two-sided

Prueba de normalidad de Kolmogorov-Smirnov en Fertilizante

ks.test(Fert$IE, "pnorm", mean= mean(Fert$IE), sd=sd(Fert$IE))
## Warning in ks.test(Fert$IE, "pnorm", mean = mean(Fert$IE), sd = sd(Fert$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  Fert$IE
## D = 0.10776, p-value = 0.9677
## alternative hypothesis: two-sided