Para este caso de estudio usaremos datos de un experimento hecho con plantulas en un invernadero de la UANL en el cual a un grupo de plantulas se les aplico fertilizante y a otro grupo no. El objetivo de esto es conocer que tan efectivo es el fertilizante par el desarrollo de las plantas.
library(readr)
plantas <- read_csv("plantas.csv")
## Rows: 42 Columns: 3
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): Tratamiento
## dbl (2): planta, IE
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Ctrl <- subset(plantas, Tratamiento == "Ctrl")
Fert <- subset(plantas, Tratamiento == "Fert")
hist(Ctrl$IE)
summary(Ctrl$IE)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5500 0.7000 0.7700 0.7676 0.8700 0.9500
boxplot(Ctrl$IE)
var(Ctrl$IE)
## [1] 0.01329905
sd(Ctrl$IE)
## [1] 0.1153215
library(fdth)
##
## Attaching package: 'fdth'
## The following objects are masked from 'package:stats':
##
## sd, var
dist <- fdt(Ctrl$IE)
dist
## Class limits f rf rf(%) cf cf(%)
## [0.5445,0.6137) 1 0.05 4.76 1 4.76
## [0.6137,0.6828) 4 0.19 19.05 5 23.81
## [0.6828,0.752) 4 0.19 19.05 9 42.86
## [0.752,0.8212) 6 0.29 28.57 15 71.43
## [0.8212,0.8903) 1 0.05 4.76 16 76.19
## [0.8903,0.9595) 5 0.24 23.81 21 100.00
hist(Fert$IE)
summary(Fert$IE)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5600 0.7800 0.9100 0.9067 1.0400 1.1600
summary(Fert$IE)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5600 0.7800 0.9100 0.9067 1.0400 1.1600
boxplot(Fert$IE)
var(Fert$IE)
## [1] 0.03238333
sd(Fert$IE)
## [1] 0.1799537
library(fdth)
dist2 <- fdt(Fert$IE)
dist2
## Class limits f rf rf(%) cf cf(%)
## [0.5544,0.6573) 2 0.10 9.52 2 9.52
## [0.6573,0.7601) 3 0.14 14.29 5 23.81
## [0.7601,0.863) 2 0.10 9.52 7 33.33
## [0.863,0.9659) 6 0.29 28.57 13 61.90
## [0.9659,1.069) 3 0.14 14.29 16 76.19
## [1.069,1.172) 5 0.24 23.81 21 100.00
Para poder llegar a una conclusion al respecto de los datos, necesitamos saber si esta “efectividad” del fertilizante SI es representativa para la mayoria de los datos. Una forma de saber esto es determinar si la distribucion de los datos es NORMAL o no.
Para esto tenemos las pruebas de normalidad:
ks.test(Ctrl$IE, "pnorm", mean= mean(Ctrl$IE), sd=sd(Ctrl$IE))
## Warning in ks.test(Ctrl$IE, "pnorm", mean = mean(Ctrl$IE), sd = sd(Ctrl$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: Ctrl$IE
## D = 0.11991, p-value = 0.9233
## alternative hypothesis: two-sided
ks.test(Fert$IE, "pnorm", mean= mean(Fert$IE), sd=sd(Fert$IE))
## Warning in ks.test(Fert$IE, "pnorm", mean = mean(Fert$IE), sd = sd(Fert$IE)):
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: Fert$IE
## D = 0.10776, p-value = 0.9677
## alternative hypothesis: two-sided
¿Que tan diferentes son las poblaciones de FERT y CTRL? La diferencia entre las poblaciones de FERT y CTRL, se puede ver en el crecimiento de las plantas en CTRL, ya que alguna de estas se encuentra con bastantes irregularidades, en cambio a las que tienes fertilizante, ya que, al proveer este tratamiento a las plantas, crecen de una forma más pareja todas al mismo tiempo.
¿Podemos decir que el fertilizante es efectivo ? Al visualizar estas comparaciones vistas anteriormente, podemos verificar que efectivamente, el uso de fertilizante es más efectivo, ya que se puede observar el crecimiento uniforme y la gran ayuda que les hace este producto a las plantas que se le aplicaron, en cambio a las otras plantas en donde se podían observar estas irregularidades.
¿Los datos son normales ? En el grupo CTRL, los datos presentados son muy variados como para poder considerarse verdaderamente normales, lo que nos indica una anormalidad en estos datos, en cambio a los datos presentados en el estudio con las plantas fertilizadas, se puede notar bastante el cambio en comparación a los otros datos, viéndose más normalidad en estos datos.