\(H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4\)
\(H_a\): At least one of the means are different
mixing technique 1: 2971
mixing technique 2: 3156.25
mixing technique 3: 2933.75
mixing technique 4: 2666.25
F-Value: 12.73 p-value: 0.000489
Therefore we reject the null hypothesis because the p-value(0.000489) is < alpha (0.05).
mt1 <- c(3129, 3000, 2865, 2890)
mt2 <- c(3200, 3300, 2975, 3150)
mt3 <- c(2800, 2900, 2985, 3050)
mt4 <- c(2600,2700,2600,2765)
combinedGroups <- data.frame(cbind(mt1,mt2,mt3,mt4))
stackedGroups <- stack(combinedGroups)
dat <- aov(values~ind, data = stackedGroups)
summary(dat)
## Df Sum Sq Mean Sq F value Pr(>F)
## ind 3 489740 163247 12.73 0.000489 ***
## Residuals 12 153908 12826
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\(H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4 =\mu5\)
\(H_a\): At least on of the means are different
F- value = 14.76
P- value = 0.000000913
Therefore we reject the null hypothesis because the p-value(0.000000913) is < alpha (0.05).
cotton15 <- c(7,7,15,11,9)
cotton20 <- c(12,17,12,18,18)
cotton25 <- c(14,19,19,18,18)
cotton30 <- c(19,25,22,19,23)
cotton35 <-c(7,10,11,15,11)
combinedGroups2 <- data.frame(cbind(cotton15,cotton20,cotton25,cotton30,cotton35))
stackedGroups2 <- stack(combinedGroups2)
dat2 <- aov(values~ind, data = stackedGroups2)
summary(dat2)
## Df Sum Sq Mean Sq F value Pr(>F)
## ind 4 475.8 118.94 14.76 9.13e-06 ***
## Residuals 20 161.2 8.06
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
This means that at least one of the tensile strength for the various cotton differ from all the other means. The cotton effects the mean of the tensile strength ### 3.20 (a, b)
\(H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4\)
\(H_a\): At least one of the means are different
lvl10 <- c(1530,1530,1440)
lvl15 <- c(1610, 1650, 1500)
lvl20 <- c(1560, 1730,1530)
lvl25 <- c(1500,1490,1510)
combinedGroups3 <- data.frame(cbind(lvl10, lvl15, lvl20, lvl25))
stackedGroups3 <- stack(combinedGroups3)
dat3 <- aov(values~ind, data = stackedGroups3)
summary(dat3)
## Df Sum Sq Mean Sq F value Pr(>F)
## ind 3 28633 9544 1.865 0.214
## Residuals 8 40933 5117
The p-value(0.214) is greather than alpha(0.05). There for we fail to reject and accept the null hypothesis. There is not significant enough evidance to say that the rodding levels effects of the compressive strength.
The F-statisic is: 1.865