Question 3.7
The tensile strength of Portland cement is being studied. Four different mixing techniques can be used economically. A completely randomized experiment was conducted and the data were collected.
Part a. Test the hypothesis that mixing techniques affect the strength of the cement. Use a=0.05.
Null Hypothesis: Ho: mu1 = mu2 = mu3 = mu4 = mu
Alternative Hypothesis: Ha: Atleast one mui differs i = {1,2,3,4}
Reading Data
Pop1 <- c(3129, 3000, 2865, 2890)
Pop2 <- c(3200, 3300, 2975, 3150)
Pop3 <- c(2800, 2900, 2985, 3050)
Pop4 <- c(2600, 2700, 2600, 2765)
Pop <- rbind(Pop1, Pop2, Pop3, Pop4)
GA <- c(mean(Pop))
a <- mean(Pop1)
b <- mean(Pop2)
c <- mean(Pop3)
d <- mean(Pop4)
SSE, SSTr, MSE, MSTr, F Statistic & Critical Region Calculations
SSE1 <- (3129-a)^2 + (3000-a)^2 + (2865-a)^2 + (2890-a)^2
SSE2 <- (3200-b)^2 + (3300-b)^2 + (2975-b)^2 + (3150-b)^2
SSE3 <- (2800-c)^2 + (2900-c)^2 + (2985-c)^2 + (3050-c)^2
SSE4 <- (2600-d)^2 + (2700-d)^2 + (2600-d)^2 + (2765-d)^2
SSE <- SSE1 + SSE2 + SSE3 + SSE4
str(SSE)
## num 153908
MSE <- SSE / (12)
str(MSE)
## num 12826
SSTr <- 4*((a - GA)^2 + (b - GA)^2 + (c - GA)^2 + (d - GA)^2)
str(SSTr)
## num 489740
MSTr <- SSTr / (3)
str(MSTr)
## num 163247
SST <- SSE + SSTr
str(SST)
## num 643648
Statistic <- MSTr / MSE
str(Statistic)
## num 12.7
qf(0.95, 3, 12)
## [1] 3.490295
Answer Part a: Since our F-Statistic Value (12.728) is greater than critical value (3.4902), so we reject Ho and thus we conclude that mixing techniques do affect the strength of the cement.
Question 3.10
A product developer is investigating the tensile strength of a new synthetic fiber that will be used to make cloth for men’s shirts. Strength is usually affected by the percentage of cotton used in the blend of materials for the fiber. The engineer conducts a completely randomized experiment with five levels of cotton content and replicates the experiment five times. The data are shown in the following table.
Part a. Is there evidence to support the claim that cotton content affects the mean tensile strength? Use a=0.05.
Null Hypothesis: Ho: mu1 = mu2 = mu3 = mu4 = mu5 = mu
Alternative Hypothesis: Ha: Atleast one mui differs i = {1,2,3,4,5}
Reading Data
PopA <- c(7, 7, 15, 11, 9)
PopB <- c(12, 17, 12, 18, 18)
PopC <- c(14, 19, 19, 18, 18)
PopD <- c(19, 25, 22, 19, 23)
PopE <- c(7, 10, 11, 15, 11)
PopT <- rbind(PopA, PopB, PopC, PopD, PopE)
GA2 <- c(mean(PopT))
e <- mean(PopA)
f <- mean(PopB)
g <- mean(PopC)
h <- mean(PopD)
k <- mean(PopE)
SSE, SSTr, MSE, MSTr, F Statistic & Critical Region Calculations
SSEA <- (7-e)^2 + (7-e)^2 + (15-e)^2 + (11-e)^2 + (9-e)^2
SSEB <- (12-f)^2 + (17-f)^2 + (12-f)^2 + (18-f)^2 + (18-f)^2
SSEC <- (14-g)^2 + (19-g)^2 + (19-g)^2 + (18-g)^2 + (18-g)^2
SSED <- (19-h)^2 + (25-h)^2 + (22-h)^2 + (19-h)^2 + (23-h)^2
SSEE <- (7-k)^2 + (10-k)^2 + (11-k)^2 + (15-k)^2 + (11-k)^2
SSE <- SSEA + SSEB + SSEC + SSED + SSEE
str(SSE)
## num 161
MSE <- SSE / (20)
str(MSE)
## num 8.06
SSTr <- 5*((e - GA2)^2 + (f - GA2)^2 + (g - GA2)^2 + (h - GA2)^2 + (k - GA2)^2)
str(SSTr)
## num 476
MSTr <- SSTr / (4)
str(MSTr)
## num 119
SST <- SSE + SSTr
str(SST)
## num 637
Statistic <- MSTr / MSE
str(Statistic)
## num 14.8
qf(0.95, 4, 20)
## [1] 2.866081
Answer Part a: Since our F-Statistic Value (14.7568) is greater than critical value (2.86608), so we reject Ho and thus we conclude that cotton content does affect the mean tensile strength.
Question 3.20
An article in the ACI Materials Journal (Vol. 84,1987, pp. 213–216) describes several experiments investigating the rodding of concrete to remove entrapped air.A 3-inch x 6-inch cylinder was used, and the number of times this rod was used is the design variable. The resulting compressive strength of the concrete specimen is the response
Part a. Is there any difference in compressive strength due to the rodding level? Use a=0.05.
Null Hypothesis: Ho: mu1 = mu2 = mu3 = mu4 = mu
Alternative Hypothesis: Ha: Atleast one mui differs i = {1,2,3,4}
Reading Data
Popa <- c(1530, 1530, 1440)
Popb <- c(1610, 1650, 1500)
Popc <- c(1560, 1730, 1530)
Popd <- c(1500, 1490, 1510)
Popt <- rbind(Popa, Popb, Popc, Popd)
GA3 <- c(mean(Popt))
l <- mean(Popa)
m <- mean(Popb)
n <- mean(Popc)
p <- mean(Popd)
SSE, SSTr, MSE, MSTr, F Statistic & Critical Region Calculations
SSEa <- (1530-l)^2 + (1530-l)^2 + (1440-l)^2
SSEb <- (1610-m)^2 + (1650-m)^2 + (1500-m)^2
SSEc <- (1560-n)^2 + (1730-n)^2 + (1530-n)^2
SSEd <- (1500-p)^2 + (1490-p)^2 + (1510-p)^2
SSE <- SSEa + SSEb + SSEc + SSEd
str(SSE)
## num 40933
MSE <- SSE / (8)
str(MSE)
## num 5117
SSTr <- 3*((l - GA3)^2 + (m - GA3)^2 + (n - GA3)^2 + (p - GA3)^2)
str(SSTr)
## num 28633
MSTr <- SSTr / (3)
str(MSTr)
## num 9544
SST <- SSE + SSTr
str(SST)
## num 69567
Statistic <- MSTr / MSE
str(Statistic)
## num 1.87
qf(0.95, 3, 8)
## [1] 4.066181
Answer Part a: Since our F-Statistic Value (1.865) is less than critical value (4.066), so we fail to reject Ho and thus we conclude that there is no difference in compressive strength due to the rodding level.
Part b. Find the P-value for the F statistic in part (a).
Answer Part b: By plugging in these statistics in a F Distribution Calculator we found the p-value = 0.2138.