3.7 (a):
null hypothesis: \(H_0: \mu_{1}=\mu_{2}=\cdots =\mu_{i}=\mu\)
alternative hypothesis: \(H_1:\) at least one \(\mu_{i}\) differs
Linear effects equation:
\(\overline{y_{ij}}=\mu_{i}+\epsilon_{ij}\)
\(\overline{y_{ij}}=\mu+\tau_{i}+\epsilon_{ij}\)
where, \(\mu_{i}\): mean of a certain population, \(\mu\): ground mean, \(\epsilon_{ij}\): error between populations, \(\tau_{i}\): effect of population.
Since we do not have a continuous range of type of mixing technique, it is a fixed effect model, hypothesis turns to:
null hypothesis: \(H_0: \epsilon_{ij}\) = 0, for all i
alternative hypothesis: \(H_1: \epsilon_{ij}\neq 0\), for some i
r1 <- c(3129,3000,2865,2890)
r2 <- c(3200,3300,2975,3150)
r3 <- c(2800,2900,2985,3050)
r4 <- c(2600,2700,2600,2765)
I1=4
J1=4
data1 <- cbind(r1,r2,r3,r4)
data1 <- as.data.frame(data1)
str(data1)
## 'data.frame': 4 obs. of 4 variables:
## $ r1: num 3129 3000 2865 2890
## $ r2: num 3200 3300 2975 3150
## $ r3: num 2800 2900 2985 3050
## $ r4: num 2600 2700 2600 2765
a1 <- mean(r1)
a2 <- mean(r2)
a3 <- mean(r3)
a4 <- mean(r4)
c1 <- c(a1,a2,a3,a4)
aveg1 <- mean(c1)
Ground mean = 2931.8125 \((lb/in^{2})\)
aver1 <- ave(r1)
aver2 <- ave(r2)
aver3 <- ave(r3)
aver4 <- ave(r4)
Ediff1 <- (r1-aver1)^2
Ediff2 <- (r2-aver2)^2
Ediff3 <- (r3-aver3)^2
Ediff4 <- (r4-aver4)^2
sum1 <- sum(Ediff1)
sum2 <- sum(Ediff2)
sum3 <- sum(Ediff3)
sum4 <- sum(Ediff4)
c2 <- c(sum1,sum2,sum3,sum4)
SSE1 <- sum(c2)
MSE1 <- SSE1/I1/(J1-1)
Trdiff1 <- (a1-aveg1)^2
Trdiff2 <- (a2-aveg1)^2
Trdiff3 <- (a3-aveg1)^2
Trdiff4 <- (a4-aveg1)^2
SSTr1 <- J1*sum(Trdiff1,Trdiff2,Trdiff3,Trdiff4)
MSTr1 <- SSTr1/(I1-1)
F1 <- MSTr1/MSE1
\[ SSE= \sum_{i} \sum_{j} (\overline{y_{ij}}-\overline{y_{i.}})^2 = 1.5390825\times 10^{5} \]
\[ MSE= \frac{SSE}{I(J-1)}=\frac{1.5390825\times 10^{5}}{4(4-1)} = 1.2825688\times 10^{4} \]
\[ SSTr= \sum_{i} J* (\overline{y_{i.}}-\overline{y_{i..}})^2 = 4.8974019\times 10^{5} \]
\[ MSTr= \frac{SSTr}{I-1}= \frac{4.8974019\times 10^{5}}{4-1} = 1.6324673\times 10^{5} \]
\[ F= \frac{MSTr}{MSE} = 12.7281075 \]
alpha1=0.05
qf(1-alpha1,I1-1,I1*(J1-1))
## [1] 3.490295
Since \(\alpha=0.05\), use code \(qf((1-\alpha), I-1, I*(J-1))\) to find critical value(CV).
Since CV = 3.4902948 < 12.7281075 = F, we will reject the null hypothesis. Mixing techiniques do affect the strength of cement.
————————————————————————————————
3.10 (a):
null hypothesis: \(H_0: \mu_{1}=\mu_{2}=\cdots =\mu_{i}=\mu\)
alternative hypothesis: \(H_1:\) at least one \(\mu_{i}\) differs
Linear effects equation:
\(\overline{y_{ij}}=\mu_{i}+\epsilon_{ij}\)
\(\overline{y_{ij}}=\mu+\tau_{i}+\epsilon_{ij}\)
where, \(\mu_{i}\): mean of a certain population, \(\mu\): ground mean, \(\epsilon_{ij}\): error between populations, \(\tau_{i}\): effect of population.
Since we do not have a continuous range of type of mixing technique, it is a fixed effect model, hypothesis turns to:
null hypothesis: \(H_0: \epsilon_{ij}\) = 0, for all i
alternative hypothesis: \(H_1: \epsilon_{ij}\neq 0\), for some i
r1 <- c(7,7,15,11,9)
r2 <- c(12,17,12,18,18)
r3 <- c(14,19,19,18,18)
r4 <- c(19,25,22,19,23)
r5 <- c(7,10,11,15,11)
I1=5
J1=5
data1 <- cbind(r1,r2,r3,r4,r5)
data1 <- as.data.frame(data1)
str(data1)
## 'data.frame': 5 obs. of 5 variables:
## $ r1: num 7 7 15 11 9
## $ r2: num 12 17 12 18 18
## $ r3: num 14 19 19 18 18
## $ r4: num 19 25 22 19 23
## $ r5: num 7 10 11 15 11
a1 <- mean(r1)
a2 <- mean(r2)
a3 <- mean(r3)
a4 <- mean(r4)
a5 <- mean(r5)
c1 <- c(a1,a2,a3,a4,a5)
aveg1 <- mean(c1)
Ground mean = 15.04 \((lb/in^{2})\)
aver1 <- ave(r1)
aver2 <- ave(r2)
aver3 <- ave(r3)
aver4 <- ave(r4)
aver5 <- ave(r5)
Ediff1 <- (r1-aver1)^2
Ediff2 <- (r2-aver2)^2
Ediff3 <- (r3-aver3)^2
Ediff4 <- (r4-aver4)^2
Ediff5 <- (r5-aver5)^2
sum1 <- sum(Ediff1)
sum2 <- sum(Ediff2)
sum3 <- sum(Ediff3)
sum4 <- sum(Ediff4)
sum5 <- sum(Ediff5)
c2 <- c(sum1,sum2,sum3,sum4,sum5)
SSE1 <- sum(c2)
MSE1 <- SSE1/I1/(J1-1)
Trdiff1 <- (a1-aveg1)^2
Trdiff2 <- (a2-aveg1)^2
Trdiff3 <- (a3-aveg1)^2
Trdiff4 <- (a4-aveg1)^2
Trdiff5 <- (a5-aveg1)^2
SSTr1 <- J1*sum(Trdiff1,Trdiff2,Trdiff3,Trdiff4,Trdiff5)
MSTr1 <- SSTr1/(I1-1)
F1 <- MSTr1/MSE1
\[ SSE= \sum_{i} \sum_{j} (\overline{y_{ij}}-\overline{y_{i.}})^2 = 161.2 \]
\[ MSE= \frac{SSE}{I(J-1)}=\frac{161.2}{5(5-1)} = 8.06 \]
\[ SSTr= \sum_{i} J* (\overline{y_{i.}}-\overline{y_{..}})^2 = 475.76 \]
\[ MSTr= \frac{SSTr}{I-1}= \frac{475.76}{5-1} = 118.94 \]
\[ F= \frac{MSTr}{MSE} = 14.7568238 \]
alpha1=0.05
qf(1-alpha1,I1-1,I1*(J1-1))
## [1] 2.866081
Since \(\alpha=0.05\), use code \(qf((1-\alpha), I-1, I*(J-1))\) to find critical value(CV).
Since CV = 2.8660814 < 14.7568238 = F, we will reject the null hypothesis. Cotton content does affect the mean tensile strength.
————————————————————————————————
3.20 (a):
null hypothesis: \(H_0: \mu_{1}=\mu_{2}=\cdots =\mu_{i}=\mu\)
alternative hypothesis: \(H_1:\) at least one \(\mu_{i}\) differs
Linear effects equation:
\(\overline{y_{ij}}=\mu_{i}+\epsilon_{ij}\)
\(\overline{y_{ij}}=\mu+\tau_{i}+\epsilon_{ij}\)
where, \(\mu_{i}\): mean of a certain population, \(\mu\): ground mean, \(\epsilon_{ij}\): error between populations, \(\tau_{i}\): effect of population.
Since we do not have a continuous range of type of mixing technique, it is a fixed effect model, hypothesis turns to:
null hypothesis: \(H_0: \epsilon_{ij}\) = 0, for all i
alternative hypothesis: \(H_1: \epsilon_{ij}\neq 0\), for some i
r1 <- c(1530,1530,1440)
r2 <- c(1610,1650,1500)
r3 <- c(1560,1730,1530)
r4 <- c(1500,1490,1510)
I1=4
J1=3
data1 <- cbind(r1,r2,r3,r4)
data1 <- as.data.frame(data1)
str(data1)
## 'data.frame': 3 obs. of 4 variables:
## $ r1: num 1530 1530 1440
## $ r2: num 1610 1650 1500
## $ r3: num 1560 1730 1530
## $ r4: num 1500 1490 1510
a1 <- mean(r1)
a2 <- mean(r2)
a3 <- mean(r3)
a4 <- mean(r4)
c1 <- c(a1,a2,a3,a4)
aveg1 <- mean(c1)
Ground mean = 1548.3333333 \((lb/in^{2})\)
aver1 <- ave(r1)
aver2 <- ave(r2)
aver3 <- ave(r3)
aver4 <- ave(r4)
Ediff1 <- (r1-aver1)^2
Ediff2 <- (r2-aver2)^2
Ediff3 <- (r3-aver3)^2
Ediff4 <- (r4-aver4)^2
sum1 <- sum(Ediff1)
sum2 <- sum(Ediff2)
sum3 <- sum(Ediff3)
sum4 <- sum(Ediff4)
c2 <- c(sum1,sum2,sum3,sum4)
SSE1 <- sum(c2)
MSE1 <- SSE1/I1/(J1-1)
Trdiff1 <- (a1-aveg1)^2
Trdiff2 <- (a2-aveg1)^2
Trdiff3 <- (a3-aveg1)^2
Trdiff4 <- (a4-aveg1)^2
SSTr1 <- J1*sum(Trdiff1,Trdiff2,Trdiff3,Trdiff4)
MSTr1 <- SSTr1/(I1-1)
F1 <- MSTr1/MSE1
\[ SSE= \sum_{i} \sum_{j} (\overline{y_{ij}}-\overline{y_{i.}})^2 = 4.0933333\times 10^{4} \]
\[ MSE= \frac{SSE}{I(J-1)}=\frac{4.0933333\times 10^{4}}{4(3-1)} = 5116.6666667 \]
\[ SSTr= \sum_{i} J* (\overline{y_{i.}}-\overline{y_{..}})^2 = 2.8633333\times 10^{4} \]
\[ MSTr= \frac{SSTr}{I-1}= \frac{2.8633333\times 10^{4}}{4-1} = 9544.4444444 \]
\[ F= \frac{MSTr}{MSE} = 1.8653637 \]
alpha1=0.05
qf(1-alpha1,I1-1,I1*(J1-1))
## [1] 4.066181
Since \(\alpha=0.05\), use code \(qf((1-\alpha), I-1, I*(J-1))\) to find critical value(CV).
Since CV = 4.0661806 > 1.8653637 = F, we will not reject the null hypothesis. There is no difference in compressive strength due to the rodding level.
(b)
pf(F1,I1-1,I1*(J1-1),lower.tail = FALSE)
## [1] 0.2137815
P-value using F statistic = 0.2137815.