Question 3.10a

Test Hypothesis

Ho: \(\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5\) - Null Hypothesis

Ha: At least 1 differs - Alternative Hypothesis

w1<-data.frame("cottonstrength"=c(7,7,15,11,9))
w2<-data.frame("cottonstrength"=c(12,17,12,18,18))
w3<-data.frame("cottonstrength"=c(14,19,19,18,18))
w4<-data.frame("cottonstrength"=c(19,25,22,19,23))
w5<-data.frame("cottonstrength"=c(7,10,11,15,11))
  
cottonlv<-factor(rep(c("lv15%","lv20%","lv25%","lv30%","lv35%"), each=5))

wstrength<-rbind(w1,w2,w3,w4,w5)

wstrength$cottonlv<-cottonlv
str(wstrength)
## 'data.frame':    25 obs. of  2 variables:
##  $ cottonstrength: num  7 7 15 11 9 12 17 12 18 18 ...
##  $ cottonlv      : Factor w/ 5 levels "lv15%","lv20%",..: 1 1 1 1 1 2 2 2 2 2 ...
plot(wstrength$cottonlv, wstrength$cottonstrength, main = "boxplot cotton strength at different weight levels", ylab="cotton strength")

From the plot, it appears that the strength of the cotton content has a positive response to the increment in amount of cotton weight percentages with an exception to the level at 35% cotton weight. Further analysis of the variance can depict a clear picture of the evidence to support the claim that cotton content affects the mean tensile strength

Analysis of variance

wstrength_model<-aov(cottonstrength~cottonlv, data=wstrength)
summary(wstrength_model)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cottonlv     4  475.8  118.94   14.76 9.13e-06 ***
## Residuals   20  161.2    8.06                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Critical value

qf(0.95, 4, 20)
## [1] 2.866081

Hence /fo/ = 14.76 > 2.866 \(z\) critical value

Conclusion

From the result /fo/ is 14.76 with a corresponding p-value of 0.00000913 is less than \(\alpha\) = 0.05. Therefore we reject Ho that the means are equal, and conclude that at least one of the means differs. Hence, there is evidence to support the claim that cotton content affects the mean tensile strength


Question 3.7a

Test Hypothesis

Ho: \(\mu_1 = \mu_2 = \mu_3 = \mu_4\) - Null Hypothesis

Ha: At least 1 differs - Alternative Hypothesis

t1<-data.frame("ten_strength"=c(3129,3000,2865,2890))
t2<-data.frame("ten_strength"=c(3200,3300,2975,3150))
t3<-data.frame("ten_strength"=c(2800,2900,2985,3050))
t4<-data.frame("ten_strength"=c(2600,2700,2600,2765))

Mixgroup<-factor(rep(c("mixtr1", "mixtr2", "mixtr3", "mixtr4"), each = 4))

TensileS<-rbind(t1,t2,t3,t4)

TensileS$Mixgroup<-Mixgroup
str(TensileS)
## 'data.frame':    16 obs. of  2 variables:
##  $ ten_strength: num  3129 3000 2865 2890 3200 ...
##  $ Mixgroup    : Factor w/ 4 levels "mixtr1","mixtr2",..: 1 1 1 1 2 2 2 2 3 3 ...
TensileS_model<-aov(ten_strength~Mixgroup, data = TensileS)
summary(TensileS_model)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Mixgroup     3 489740  163247   12.73 0.000489 ***
## Residuals   12 153908   12826                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Critical value

qf(0.95, 3, 12)
## [1] 3.490295

Hence /fo/ = 12.73 > 3.490 \(z\) critical value

Conclusion

From the result /fo/ is 12.73 with a corresponding p-value of 0.000489 is less than \(\alpha\) = 0.05. Therefore we reject Ho that the means are equal, and conclude that at least one of the means differs. Hence, there is evidence to support the claim that mixing technique affects the strength of cement


Question 3.20a

Test Hypothesis

Ho: \(\mu_1 = \mu_2 = \mu_3 = \mu_4\) - Null Hypothesis

Ha: At least 1 differs - Alternative Hypothesis

r1<-data.frame("comp_strength"=c(1530,1530,1440))
r2<-data.frame("comp_strength"=c(1610,1650,1500))
r3<-data.frame("comp_strength"=c(1560,1730,1530))
r4<-data.frame("comp_strength"=c(1500,1490,1510))

rodlvs<-factor(rep(c("lv10","lv15","lv20","lv25"), each=3))

ACIdata<-rbind(r1,r2,r3,r4)

ACIdata$rodlvs<-rodlvs
str(ACIdata)
## 'data.frame':    12 obs. of  2 variables:
##  $ comp_strength: num  1530 1530 1440 1610 1650 1500 1560 1730 1530 1500 ...
##  $ rodlvs       : Factor w/ 4 levels "lv10","lv15",..: 1 1 1 2 2 2 3 3 3 4 ...
ACIdata_model<-aov(comp_strength~rodlvs, data = ACIdata)
summary(ACIdata_model)
##             Df Sum Sq Mean Sq F value Pr(>F)
## rodlvs       3  28633    9544   1.865  0.214
## Residuals    8  40933    5117

Critical value

qf(0.95, 3, 8)
## [1] 4.066181

Hence /fo/ = 1.865 < 4.066 \(z\) critical value

Conclusion

From the result /fo/ is 1.865 with a corresponding p-value of 0.214 is greater than \(\alpha\) = 0.05. Therefore we fail to reject Ho that the means are equal, and conclude there is no evidence to support the claim that different rodding level affects the comprehensive strength

3b

Calculating p-value

pf(1.865, 3, 8, lower.tail = FALSE)
## [1] 0.2138423

The p-value for \(F\) statistic in part (a) is 0.2138423


Question 3.10a

w1<-data.frame("cottonweight"=c(7,7,15,11,9))
w2<-data.frame("cottonweight"=c(12,17,12,18,18))
w3<-data.frame("cottonweight"=c(14,19,19,18,18))
w4<-data.frame("cottonweight"=c(19,25,22,19,23))
w5<-data.frame("cottonweight"=c(7,10,11,15,11))
  
cottonlv<-factor(rep(c("lv15%","lv20%","lv25%","lv30%","lv35%"), each=5))

wstrength<-rbind(w1,w2,w3,w4,w5)

wstrength$cottonlv<-cottonlv
str(wstrength)

plot(wstrength$cottonlv, wstrength$cottonweight, main = "boxplot cotton weight at different levels", ylab="cotton weights")

wstrength_model<-aov(cottonweight~cottonlv, data=wstrength)
summary(wstrength_model)

qf(0.95, 4, 20)


Question 3.7a

t1<-data.frame("ten_strength"=c(3129,3000,2865,2890))
t2<-data.frame("ten_strength"=c(3200,3300,2975,3150))
t3<-data.frame("ten_strength"=c(2800,2900,2985,3050))
t4<-data.frame("ten_strength"=c(2600,2700,2600,2765))

Mixgroup<-factor(rep(c("mixtr1", "mixtr2", "mixtr3", "mixtr4"), each = 4))

TensileS<-rbind(t1,t2,t3,t4)

TensileS$Mixgroup<-Mixgroup
str(TensileS)


TensileS_model<-aov(ten_strength~Mixgroup, data = TensileS)
summary(TensileS_model)

qf(0.95, 3, 12)


Question 3.20a

r1<-data.frame("comp_strength"=c(1530,1530,1440))
r2<-data.frame("comp_strength"=c(1610,1650,1500))
r3<-data.frame("comp_strength"=c(1560,1730,1530))
r4<-data.frame("comp_strength"=c(1500,1490,1510))

rodlvs<-factor(rep(c("lv10","lv15","lv20","lv25"), each=3))

ACIdata<-rbind(r1,r2,r3,r4)

ACIdata$rodlvs<-rodlvs
str(ACIdata)

ACIdata_model<-aov(comp_strength~rodlvs, data = ACIdata)
summary(ACIdata_model)

qf(0.95, 3, 8)


Question 3b

pf(1.865, 3, 8, lower.tail = FALSE)