Continuacion exploracion en sentinel
Integrantes:
Andres Felipe Rivas Morales
#instalamos paquetes nuevos para excel
#install.packages("sf")
#install.packages("readxl")
#install.packages("writexl")
#contunuacion de la practica2 con landsat2
library(raster)
## Loading required package: sp
library(rgdal)
## Please note that rgdal will be retired by the end of 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
##
## rgdal: version: 1.5-25, (SVN revision 1143)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.2.1, released 2020/12/29
## Path to GDAL shared files: C:/Users/felip/Documents/R/win-library/4.1/rgdal/gdal
## GDAL binary built with GEOS: TRUE
## Loaded PROJ runtime: Rel. 7.2.1, January 1st, 2021, [PJ_VERSION: 721]
## Path to PROJ shared files: C:/Users/felip/Documents/R/win-library/4.1/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.4-5
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
## Overwritten PROJ_LIB was C:/Users/felip/Documents/R/win-library/4.1/rgdal/proj
library(sf)
## Linking to GEOS 3.9.1, GDAL 3.2.1, PROJ 7.2.1
library(readxl)
library(writexl)
#Nuevas bandas:
band2<-raster("C:/Users/felip/Desktop/electiva2/practica2/T18NVH_20170921T152631_B02.jp2")
band3<-raster("C:/Users/felip/Desktop/electiva2/practica2/T18NVH_20170921T152631_B02.jp2")
band4<-raster("C:/Users/felip/Desktop/electiva2/practica2/T18NVH_20170921T152631_B04.jp2")
band8<-raster("C:/Users/felip/Desktop/electiva2/practica2/T18NVH_20170921T152631_B08.jp2")
#creacion del stack con las banas anteriores:
s <- stack(band8, band4, band3, band2)
#creamos un landsatRGB2 para el stack anterior:
sentinelrgb <- stack(band8, band4, band3, band2)
#plots
par(mfrow= c(2,3))
plot(band2, main="blue",col =gray (0:100/100))
plot(band3, main="Green",col =gray (0:100/100))
plot(band4, main="red",col =gray (0:100/100))
plot(band8, main="NIR",col =gray (0:100/100))
#extendemos para ver sus medidas:
extent(sentinelrgb)
## class : Extent
## xmin : 399960
## xmax : 509760
## ymin : 190200
## ymax : 3e+05
#usamos comandos para los recortes y sus variables:
area_recorte <- extent (400000, 469000, 23800, 300000)
recorte <- crop(sentinelrgb, area_recorte)
sentinel_subset <- crop(sentinelrgb, area_recorte)
sentinel_subset
## class : RasterBrick
## dimensions : 10980, 6900, 75762000, 4 (nrow, ncol, ncell, nlayers)
## resolution : 10, 10 (x, y)
## extent : 4e+05, 469000, 190200, 3e+05 (xmin, xmax, ymin, ymax)
## crs : +proj=utm +zone=18 +datum=WGS84 +units=m +no_defs
## source : r_tmp_2021-09-24_145819_13324_18111.grd
## names : T18NVH_20170921T152631_B08, T18NVH_20170921T152631_B04, T18NVH_20170921T152631_B02.1, T18NVH_20170921T152631_B02.2
## min values : 1, 1, 154, 154
## max values : 18743, 18724, 15367, 15367
plot(recorte)
#vemos la banda8y la band2
compareRaster(band8, band2)
## [1] TRUE
#probamos el color verdadero
plotRGB(sentinelrgb, r=4, g=3, b=2, axes = TRUE, stretch = "hist", main = "color verdadero de sentinel")
#llamamos excel
names(sentinel_subset)<- c("blue", "green", "red", "NIR")
entrenamiento <- read_xlsx("C:/Users/felip/Desktop/electiva2/practica2/entrenamiento.xlsx")
entrenamiento <- entrenamiento %>%
st_as_sf(coords = c("x", "y"))
plot (entrenamiento$geometry)
df <- extract (sentinelrgb, entrenamiento); df
## T18NVH_20170921T152631_B08 T18NVH_20170921T152631_B04
## [1,] 815 711
## [2,] 570 655
## [3,] 1886 1559
## [4,] 2631 1722
## [5,] 877 701
## [6,] 819 669
## [7,] 1814 959
## [8,] 2940 830
## [9,] 774 896
## [10,] 506 698
## [11,] 971 776
## [12,] 1268 898
## [13,] 2819 1122
## [14,] 852 650
## [15,] 1208 879
## [16,] 2414 1573
## [17,] 2352 1463
## [18,] 2265 1104
## [19,] 1817 941
## [20,] 2019 1140
## [21,] 1760 1142
## [22,] 3135 915
## [23,] 2545 999
## [24,] 2521 1226
## [25,] 3480 2581
## [26,] 3038 2047
## [27,] 1771 1191
## [28,] 2298 1570
## [29,] 2059 1010
## [30,] 686 776
## [31,] 3311 641
## [32,] 2587 724
## [33,] 2906 898
## [34,] 2489 545
## [35,] 2914 518
## [36,] 2790 616
## [37,] 2370 1089
## [38,] 3301 687
## [39,] 2285 575
## [40,] 2828 619
## [41,] 2072 458
## [42,] 2504 474
## [43,] 3620 913
## [44,] 2974 648
## [45,] 3229 535
## [46,] 2269 1250
## [47,] 1995 1821
## [48,] 2579 1076
## [49,] 2059 1387
## [50,] 2445 1529
## [51,] 2357 1215
## [52,] 2142 1371
## [53,] 2256 1624
## [54,] 2064 1450
## [55,] 1869 1594
## [56,] 2353 1704
## [57,] 2320 1532
## [58,] 2820 967
## [59,] 3361 925
## [60,] 2277 1649
## T18NVH_20170921T152631_B02.1 T18NVH_20170921T152631_B02.2
## [1,] 1125 1125
## [2,] 1119 1119
## [3,] 1530 1530
## [4,] 1515 1515
## [5,] 1123 1123
## [6,] 1104 1104
## [7,] 1206 1206
## [8,] 1160 1160
## [9,] 1182 1182
## [10,] 1168 1168
## [11,] 1169 1169
## [12,] 1193 1193
## [13,] 1225 1225
## [14,] 1034 1034
## [15,] 1219 1219
## [16,] 1426 1426
## [17,] 1409 1409
## [18,] 1208 1208
## [19,] 1210 1210
## [20,] 1238 1238
## [21,] 1243 1243
## [22,] 1140 1140
## [23,] 1171 1171
## [24,] 1198 1198
## [25,] 1828 1828
## [26,] 1554 1554
## [27,] 1267 1267
## [28,] 1403 1403
## [29,] 1148 1148
## [30,] 1191 1191
## [31,] 1049 1049
## [32,] 1089 1089
## [33,] 1111 1111
## [34,] 902 902
## [35,] 883 883
## [36,] 944 944
## [37,] 1196 1196
## [38,] 1091 1091
## [39,] 875 875
## [40,] 951 951
## [41,] 823 823
## [42,] 844 844
## [43,] 1287 1287
## [44,] 1072 1072
## [45,] 840 840
## [46,] 1279 1279
## [47,] 1634 1634
## [48,] 1218 1218
## [49,] 1333 1333
## [50,] 1527 1527
## [51,] 1389 1389
## [52,] 1449 1449
## [53,] 1618 1618
## [54,] 1425 1425
## [55,] 1733 1733
## [56,] 1653 1653
## [57,] 1533 1533
## [58,] 1323 1323
## [59,] 1194 1194
## [60,] 1530 1530
ms <- aggregate(df, list(entrenamiento$clase), mean)
#write_xlsx(ms,"C:/Users/felip/Desktop/electiva2/practica2/file_name.xlsx")