(After loading CausalMapFunctions library)
The package ships with some example datasets, at the moment just these:
which you can also view in Causal Map on the web.
You can load the files like this:
example2 <- load_premap("example2") %>% pipe_coerce_mapfile()#### should not be necessary TODO
example2
## Factors: # A tibble: 11 x 19
## label factor_id factor_memo driver_score outcome_score driver_rank
## <chr> <int> <chr> <dbl> <dbl> <int>
## 1 Coastal erosion 2 <NA> -1 -1 5
## 2 Damage to Busine~ 3 <NA> -2 1 8
## # ... with 9 more rows, and 13 more variables: outcome_rank <int>,
## # is_opposable <lgl>, top_level_label <chr>, top_level_frequency <dbl>,
## # zoom_level <dbl>, is_flipped <lgl>, map_id <int>, size <dbl>,
## # betweenness <dbl>, betweenness_rank <dbl>, in_degree <dbl>,
## # out_degree <dbl>, frequency <dbl>
## Links: # A tibble: 8 x 31
## from_label to_label statement_id quote simple_bundle from to note
## <chr> <chr> <int> <chr> <chr> <int> <int> <lgl>
## 1 "High rainf~ "Floodin~ 1 Recent ~ "High rainfall~ 9 7 NA
## 2 "Flooding \~ "Damage ~ 1 The flo~ "Flooding \U00~ 7 4 NA
## # ... with 6 more rows, and 23 more variables: strength <int>, certainty <int>,
## # link_label <chr>, link_memo <chr>, hashtags <chr>, actualisation <int>,
## # link_id <int>, capacity <dbl>, weight <int>, from_flipped <lgl>,
## # to_flipped <lgl>, map_id <int>, text <chr>, statement_memo <chr>,
## # statement_map_id <dbl>, source_id <chr>, source_memo <chr>,
## # source_map_id <dbl>, question_id <chr>, question_text <chr>,
## # question_memo <chr>, question_map_id <dbl>, simple_frequency <int>
## Statements: # A tibble: 2 x 11
## text statement_memo statement_map_id statement_id source_id source_memo
## <chr> <chr> <dbl> <dbl> <chr> <chr>
## 1 "Welcome t~ st memo 1 1 1 ooh
## 2 "Rising se~ <NA> 1 2 1 ooh
## # ... with 5 more variables: source_map_id <dbl>, question_id <chr>,
## # question_text <chr>, question_memo <chr>, question_map_id <dbl>
## Sources: # A tibble: 1 x 3
## source_id source_memo source_map_id
## <chr> <chr> <dbl>
## 1 1 ooh 1
## Questions: # A tibble: 1 x 4
## question_id question_text question_memo question_map_id
## <chr> <chr> <chr> <dbl>
## 1 1 global question q memo 1
## Settings: # A tibble: 1 x 3
## setting_id value map_id
## <chr> <chr> <chr>
## 1 background_colour <NA> 1
example2 %>% summary
## $colnames
## $colnames$factors
## [1] "label" "factor_id" "factor_memo"
## [4] "driver_score" "outcome_score" "driver_rank"
## [7] "outcome_rank" "is_opposable" "top_level_label"
## [10] "top_level_frequency" "zoom_level" "is_flipped"
## [13] "map_id" "size" "betweenness"
## [16] "betweenness_rank" "in_degree" "out_degree"
## [19] "frequency"
##
## $colnames$links
## [1] "from_label" "to_label" "statement_id" "quote"
## [5] "simple_bundle" "from" "to" "note"
## [9] "strength" "certainty" "link_label" "link_memo"
## [13] "hashtags" "actualisation" "link_id" "capacity"
## [17] "weight" "from_flipped" "to_flipped" "map_id"
## [21] "text" "statement_memo" "statement_map_id" "source_id"
## [25] "source_memo" "source_map_id" "question_id" "question_text"
## [29] "question_memo" "question_map_id" "simple_frequency"
##
## $colnames$statements
## [1] "text" "statement_memo" "statement_map_id" "statement_id"
## [5] "source_id" "source_memo" "source_map_id" "question_id"
## [9] "question_text" "question_memo" "question_map_id"
##
## $colnames$sources
## [1] "source_id" "source_memo" "source_map_id"
##
## $colnames$questions
## [1] "question_id" "question_text" "question_memo" "question_map_id"
##
## $colnames$settings
## [1] "setting_id" "value" "map_id"
##
##
## $`Number of rows`
## # A tibble: 1 x 6
## factors links statements sources questions settings
## <int> <int> <int> <int> <int> <int>
## 1 11 8 2 1 1 1
Visualise them like this:
example2 %>% make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
You can also load up an Excel file:
# system.file("extdata", "quip-lorem", package = "CausalMapFunctions") %>%
# get_mapfile_from_excel()
The file should have the standard Causal Map format: you can see an example by downloading any of the files in Causal Map on the web.
pipe_coerce_mapfile will also process a file with no factors and from_label and to_label columns as a named edgelist.
If you filter the factors of a mapfile, e.g. show only factors with labels beginning xyz,
If you filter the links of a mapfile, e.g. show only links with hashtags containing xyz,
If you filter the statements of a mapfile, e.g. show only statements with texts containing xyz,
# ll <- quip_example
# ee <- example2
ee <- load_premap("example2")%>% pipe_coerce_mapfile
tt <- load_premap("cm1/tearfund-sl")%>% pipe_coerce_mapfile
ll <- load_premap("quip-coded")%>% pipe_coerce_mapfile
oo <- load_premap("organisation1coded")%>% pipe_coerce_mapfile
e3 <- load_premap("example3-path-tracing")%>% pipe_coerce_mapfile
mm <- load_premap("save-the-children-mozambique-copy")%>% pipe_coerce_mapfile
hh <- load_premap("hannahcombiningopposites-sp-test")%>% pipe_coerce_mapfile
One column in one table
ll %>%
pipe_find_factors(value="economic") %>%
.$factors %>%
.$label %>%
knitr::kable()
| x |
|---|
|
| (IEA) Poverty |
| (BF) Started, expanded or invested in business [P] |
| (BF) Stopped/reduced piece work ‘ganyu’ [P] |
| (IEA) Increased income [P] |
| (IEA) Increased purchasing power [P] |
| (IEA) Increased savings/loans [P] |
| (IEA) Increased financial knowledge [P] |
| (RW) Improved gender equality in household [P] |
| (IEA) Increased economic independence [P] |
| (IEA) No longer borrows from community members [P] |
| (RW) Increased resilience [P] |
|
| (RW) Reduction in household size |
| (RW) Moved to live with relative |
merge_mapfile(ee,tt %>% pipe_select_factors(top=8)) %>%
pipe_color_factors(field="map_id") %>%
pipe_color_links(field="map_id",fun="unique") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Note warning if factor labels are shared
load_premap("example2") %>%
pipe_coerce_mapfile %>%
pipe_merge_mapfile("example2") %>%
pipe_color_factors(field="map_id") %>%
pipe_color_links(field="map_id",fun="unique") %>%
make_interactive_map
## Warning in merge_mapfile(graf, map2): Factor labels are shared!
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
There is no guarantee that the resulting map is still a standard mapfile.
ee$factors$label[1] <- "Label changed"
ee %>% make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
There is no guarantee that the resulting map is still a standard mapfile.
ee %>%
pipe_update_mapfile(factors = ee$factors %>% mutate(label="one")) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Coercing to a standard mapfile:
ee %>%
pipe_update_mapfile(factors = ee$factors %>% mutate(label="one")) %>%
pipe_coerce_mapfile() %>%
make_interactive_map
## Warning: Unreplaced values treated as NA as .x is not compatible. Please specify
## replacements exhaustively or supply .default
## Warning: Unreplaced values treated as NA as .x is not compatible. Please specify
## replacements exhaustively or supply .default
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_label_links("link_id") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_label_links("link_id") %>%
make_print_map()
ee %>%
pipe_set_print(grv_layout="circo") %>%
make_print_map()
factors links and statements
ll %>%
pipe_select_factors(15) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Simple frequency
ll %>%
pipe_find_links("simple_frequency",value = 50,"greater") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_select_links(5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_find_statements(field="statement_id",value=5,operator="equals") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_find_factors(value="economic") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Case insensitive
ee %>%
pipe_find_factors(value="business") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Should these work?
ee %>%
pipe_find_factors(value="business|property") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_find_factors(value="business OR property") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_find_factors(value="sea",operator="notcontains") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_find_factors(value=c("sea", "High"),operator="notcontains") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>% pipe_find_statements(value="1",operator="notcontains",field="statement_id")%>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>% pipe_find_statements(value="1",operator="notcontains",field="statement_id")%>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>% pipe_find_statements(value="1",operator="notequals",field="statement_id")%>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_find_factors(value=c("Coastal erosion"),operator="notequals") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Does work:
ee %>%
pipe_find_factors(value=c("business", "property")) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Order matters
ll %>%
pipe_find_factors(value="economic") %>%
pipe_select_factors(5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
No result
ll %>%
pipe_find_factors(value="asdfasdfasdf") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_find_links(field="from_label",value="economic",operator="contains") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_find_statements(field="statement_id",value=20,operator="less") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
No result
ll %>%
pipe_find_statements(field="statement_id",value=20000000,operator="greater") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_select_factors(5) %>%
pipe_scale_factors(field="frequency") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_select_factors(5) %>%
pipe_color_factors(field="frequency") %>%
pipe_color_borders(field="betweenness") %>%
pipe_wrap_factors(5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_select_factors(5) %>%
pipe_color_links(value="count: link_id") %>%
pipe_wrap_factors(5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_label_links("from_label",fun = "unique") %>%
pipe_wrap_links(6) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_label_links(value="unique: from_label") %>%
pipe_wrap_links(6) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_select_factors(5) %>%
pipe_remove_brackets() %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_bundle_factors(value = "IEA") %>%
pipe_select_factors(5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_color_links("link_id",fun = "mean") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_scale_links("link_id",fun = "mean") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Note the defaults for bundle_links and label_links:
ll %>%
pipe_find_factors(value="economic") %>%
pipe_select_factors(5) %>%
pipe_bundle_links() %>%
pipe_label_links() %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_find_factors(value="economic") %>%
pipe_select_factors(5) %>%
pipe_bundle_links() %>%
pipe_label_links() %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Note the default for bundle_links is equivalent to simple_bundle:
ll %>%
pipe_find_factors(value="economic") %>%
pipe_select_factors(5) %>%
pipe_bundle_links(group="simple_bundle") %>%
pipe_label_links() %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Group and label by sex and scale by count:
ll %>%
pipe_select_factors(5) %>%
pipe_bundle_links(group="1. Sex") %>%
pipe_scale_links("link_id",fun = "count") %>%
pipe_label_links("1. Sex",fun = "unique") %>%
pipe_color_links("1. Sex",fun = "unique") %>%
make_interactive_map
## Warning in as_numeric_if_all(vec): NAs introduced by coercion
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ll %>%
pipe_select_links(16) %>%
pipe_bundle_links(group="1. Sex") %>%
pipe_label_links("link_id",fun = "count") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Group by sex and scale and colour by count:
ll %>%
pipe_select_factors(5) %>%
pipe_bundle_links(group="1. Sex") %>%
pipe_color_links("link_id",fun = "count") %>%
pipe_scale_links("link_id",fun = "count") %>%
pipe_label_links("link_id",fun = "count") %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
Proportion
ll %>%
pipe_find_factors(value="sed yield") %>%
pipe_bundle_links(group="District") %>%
pipe_color_links(field="District",fun="unique") %>%
pipe_label_links(value="percent: link_id") %>%
pipe_scale_links(field="link_id",fun="count") %>%
make_print_map
## Warning in as_numeric_if_all(vec): NAs introduced by coercion
ll %>%
pipe_find_factors(value="sed yield") %>%
pipe_bundle_links(group="1. Sex") %>%
pipe_color_links(field="1. Sex",fun="unique") %>%
pipe_label_links(field="link_id",fun="percent") %>%
pipe_scale_links(field="link_id",fun="count") %>%
make_print_map
## Warning in as_numeric_if_all(vec): NAs introduced by coercion
ll %>%
pipe_find_factors(value="sed yield") %>%
pipe_bundle_links(group="1. Sex") %>%
pipe_color_links(field="1. Sex",fun="unique") %>%
pipe_label_links(field="source_id",fun="percent") %>%
pipe_scale_links(field="source_id",fun="percent") %>%
make_print_map
## Warning in as_numeric_if_all(vec): NAs introduced by coercion
ll %>%
pipe_find_factors(value="sed yield",down=0) %>%
pipe_bundle_links(group="1. Sex") %>%
pipe_color_links(field="source_id",fun="percent") %>%
pipe_label_links(field="source_id",fun="percent") %>%
pipe_scale_links(field="source_id",fun="count") %>%
make_print_map
ll %>%
pipe_find_factors(value="sed yield",down=0) %>%
pipe_bundle_links(group="1. Sex") %>%
pipe_color_links(field="1. Sex",fun="unique") %>%
pipe_label_links(field="source_id",fun="surprise") %>%
pipe_scale_links(field="source_id",fun="count") %>%
make_print_map
## Warning in as_numeric_if_all(vec): NAs introduced by coercion
tt %>%
pipe_zoom_factors(1) %>%
pipe_select_factors(5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
tt %>%
pipe_zoom_factors(1) %>%
pipe_bundle_links() %>%
pipe_label_links() %>%
pipe_scale_links() %>%
make_print_map
oo %>%
pipe_zoom_factors(1) %>%
pipe_find_factors(value="Improved health and hygiene practices") %>%
pipe_bundle_links(group="simple_bundle") %>%
pipe_label_links(field="source_id",fun = "count") %>%
pipe_wrap_factors() %>%
make_print_map
## NULL
hh %>%
make_print_map()
hh %>%
pipe_combine_opposites %>%
make_print_map()
Note colours in Interactive view
tt %>%
pipe_zoom_factors(1) %>%
pipe_combine_opposites() %>%
pipe_select_links(3) %>%
make_print_map
tt %>%
pipe_zoom_factors(1) %>%
pipe_combine_opposites() %>%
pipe_select_links(3) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
cat("### Single\n")
## ### Single
ee %>%
pipe_trace_paths(from = "Funds",to="area",length = 5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
cat("### Case insensitive\n")
## ### Case insensitive
ee %>%
pipe_trace_paths(from = "funds",to="aREa",length = 5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
cat("### Failing; no paths at all\n")
## ### Failing; no paths at all
ee %>%
pipe_trace_paths(from = "xx",to="yy",length = 5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
cat("### Failing; no paths\n")
## ### Failing; no paths
ee %>%
pipe_trace_paths(from = "Funds",to="yy",length = 5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_trace_paths(from = "xx",to="Property",length = 5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
cat("### Implicit multiple\n")
## ### Implicit multiple
ee %>%
pipe_trace_paths(from = "High",to="Damage",length = 5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
cat("### Explicit multiple\n")
## ### Explicit multiple
ee %>%
pipe_trace_paths(from = "High",to="Property | Business",length = 5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_trace_paths(from = "High",to="Property OR Business",length = 5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
cat("Should this be possible?")
## Should this be possible?
ee %>%
pipe_trace_paths(from = "High",to=c("Property","Business"),length = 5) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
tt %>%
pipe_trace_paths(from = "Capabilities",to="[OP3]",length = 2) %>%
make_interactive_map
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
ee %>%
pipe_trace_paths(from = "Funds",to="area",length = 5) %>%
make_print_map()
ee %>%
pipe_trace_robustness(from = "High",to="Damage",length = 5) %>%
pipe_wrap_factors() %>%
make_print_map()
## Joining, by = "label"
ee %>%
pipe_trace_robustness(from = "High",to="Damage",length = 5) %>%
get_robustness()
## Joining, by = "label"
## # A tibble: 3 x 2
## row_names `High rainfall \U0001f327`
## <chr> <dbl>
## 1 All targets 1
## 2 Damage to Businesses 1
## 3 Damage to Property 1
tt %>%
pipe_trace_robustness(from = "Capabilities",to="[OP3]",length = 2) %>%
pipe_wrap_factors() %>%
make_print_map()
## Joining, by = "label"
tt %>%
pipe_trace_robustness(from = "Capabilities",to="[OP3",length = 2) %>%
pipe_wrap_factors() %>%
make_print_map()
## Joining, by = "label"
tt %>%
pipe_trace_robustness(from = "Capabilities",to="[OP3]",length = 2) %>%
get_robustness()
## Joining, by = "label"
## # A tibble: 1 x 6
## row_names `All origins` `Capabilities; [~ `Capabilities; [~ `Capabilities; ~
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Outcomes; ~ 11 6 2 2
## # ... with 1 more variable:
## # Capabilities; [P18] Expertise/knowledge for holistic wellbeing <dbl>
tt %>%
pipe_trace_robustness(from = "Capabilities",to="[OP3",length = 2) %>%
get_robustness()
## Joining, by = "label"
## # A tibble: 5 x 7
## row_names `All origins` `~Capabilities; [~ `Capabilities; ~ `Capabilities; ~
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 All targets 18 1 7 4
## 2 Outcomes; ~ 1 0 0 0
## 3 Outcomes; ~ 4 1 1 1
## 4 Outcomes; ~ 2 0 0 2
## 5 Outcomes; ~ 11 1 7 4
## # ... with 2 more variables:
## # Capabilities; [P15] CCMP: Envisioning the Church <dbl>,
## # Capabilities; [P18] Expertise/knowledge for holistic wellbeing <dbl>
tt %>%
pipe_trace_robustness(from = "Capabilities; [P13",to="[OP3]",length = 2) %>%
get_robustness()
## Joining, by = "label"
## # A tibble: 1 x 2
## row_names `Capabilities; [P13] Acquistion of edu~
## <chr> <dbl>
## 1 Outcomes; [OP3] Diversification of li~ 6
e3 %>%
pipe_trace_robustness(from = "High",to="People moving",length = 5) %>%
make_print_map()
## Joining, by = "label"
e3 %>%
pipe_trace_robustness(from = "High",to="People moving",length = 5) %>%
get_robustness() %>%
kable
## Joining, by = "label"
| row_names | External factor; High rainfall |
|---|---|
| Outcome; People moving away from the area | 2 |
e3 %>%
pipe_trace_robustness(from = "High",to="Flooding",length = 5) %>%
get_robustness() %>%
kable
## Joining, by = "label"
| row_names | External factor; High rainfall |
|---|---|
| Flooding | 3 |
e3 %>%
pipe_trace_robustness(from = "High",to="Damage",length = 5) %>%
get_robustness() %>%
kable
## Joining, by = "label"
| row_names | External factor; High rainfall |
|---|---|
| All targets | 3 |
| Damage to businesses | 1 |
| Damage to property | 2 |
e3 %>%
pipe_trace_robustness(from = "External",to="Damage",length = 5) %>%
get_robustness() %>%
kable
## Joining, by = "label"
| row_names | All origins | External factor; High rainfall | External factor; Loss of forests |
|---|---|---|---|
| All targets | 3 | 3 | 1 |
| Damage to businesses | 1 | 1 | 1 |
| Damage to property | 2 | 2 | 1 |
e3 %>%
pipe_trace_robustness(from = "External",to="Outcome",length = 5) %>%
get_robustness()%>%
kable
## Joining, by = "label"
| row_names | All origins | External factor; High rainfall | External factor; Loss of forests |
|---|---|---|---|
| All targets | 3 | 3 | 1 |
| Outcome; People moving away from the area | 2 | 2 | 1 |
| Outcome; Social things; People get angry | 1 | 1 | 1 |
Just one source:
ee %>%
pipe_trace_robustness(from = "Funds",to="Increased",length = 5,field = "source_id") %>% (get_robustness)
## Joining, by = "label"
## rowname Funds from Orgx
## 1 Increased investment into the area 1
Check that opposites colouring is always preserved?
hh %>%
pipe_trace_robustness(from = "Revision",to="happy",length = 5) %>%
pipe_combine_opposites %>%
make_print_map()
## Joining, by = "label"
hh %>%
pipe_combine_opposites %>%
pipe_find_factors(value="exam") %>%
make_print_map()
hh %>%
pipe_combine_opposites %>%
pipe_zoom_factors() %>%
pipe_find_factors(value="exam") %>%
pipe_select_factors(2) %>%
pipe_select_links(3) %>%
make_print_map()
Colours in interactive map
hh %>%
pipe_combine_opposites %>%
pipe_zoom_factors() %>%
make_interactive_map()
## 2vn
## 3vn
## 4vn
## 5vn
## 6vn
## 7vn
if(F){
graf <- tt1
graf$factors %>% filter(factor_id %notin% graf$links$from & factor_id %notin% graf$links$to) %>% nrow
graf$links %>% filter(from %notin% graf$factors$factor_id & to %notin% graf$factors$factor_id) %>% nrow
graf$links %>% filter(statement_id %notin% graf$statements$statement_id) %>% nrow
}
ee %>%
pipe_cluster_factors("Damage OR Flood") %>%
make_print_map
Pipe-able:
ee %>%
pipe_cluster_factors("Damage OR Flood") %>%
pipe_cluster_factors("Rising") %>%
make_print_map